1
|
Xu H, Pan G, Wang J. Repairing Mechanisms for Distal Airway Injuries and Related Targeted Therapeutics for Chronic Lung Diseases. Cell Transplant 2023; 32:9636897231196489. [PMID: 37698245 PMCID: PMC10498699 DOI: 10.1177/09636897231196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), involve progressive and irreversible destruction and pathogenic remodeling of airways and have become the leading health care burden worldwide. Pulmonary tissue has extensive capacities to launch injury-responsive repairing programs (IRRPs) to replace the damaged or dead cells upon acute lung injuries. However, the IRRPs are frequently compromised in chronic lung diseases. In this review, we aim to provide an overview of somatic stem cell subpopulations within distal airway epithelium and the underlying mechanisms mediating their self-renewal and trans-differentiation under both physiological and pathological circumstances. We also compared the differences between humans and mice on distal airway structure and stem cell composition. At last, we reviewed the current status and future directions for the development of targeted therapeutics on defective distal airway regeneration and repairment in chronic lung diseases.
Collapse
Affiliation(s)
- Huahua Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Villalba-Briones R, Barros-Diaz C, Gallo-Pérez A, Blasco-Carlos M, Molineros EB. First description of sarcoptic mange in a wild coati (Nasua narica), in Ecuador, and cooccurrence of canine distemper virus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e012421. [PMID: 35043872 PMCID: PMC9901857 DOI: 10.1590/s1984-29612022002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
We present a case of Sarcoptes and canine distemper virus (CDV) infection in a white-nosed coati (Nasua narica) that was trapped in the dry tropical forest of Cerro Blanco reserve, located in the coastal region of Ecuador. Sarcoptic mange is a highly contagious and zoonotic disease with worldwide distribution that causes epidemics. Mange is produced by Sarcoptes mites that causes severe epidermal damage. Secondary infections and physiological constrictions without treatment can lead to death of the host. In addition, cooccurrence of canine distemper virus was detected via iiRT-PCR from serum samples. Physical analyses showed that 90% of the skin was affected by severe alopecia due to the sarcoptic mange infection. The presence of mites and histopathological analyses confirmed the diagnosis of infection. This coati was taken to a veterinary clinic and was fed every day, but it died after four days. This is the first report of sarcoptic mange and the first report of CDV in white-nosed coatis in South America. Further studies are needed in this region, to seek out other suspected cases, given the high capacity for disease transmission. Preventive actions to avoid epidemic and zoonotic episodes are needed.
Collapse
Affiliation(s)
- Ricardo Villalba-Briones
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral - ESPOL, Facultad Ciencias de la Vida, Campus Gustavo Galindo, Guayaquil, Ecuador.,Fundación Proyecto Sacha, Guayaquil, Ecuador
| | | | - Abel Gallo-Pérez
- Fundación para la Conservación e Investigación JaPu, Guayaquil, Ecuador
| | - Miquel Blasco-Carlos
- Escuela de Nutrición y Dietética, Universidad Espíritu Santo-Ecuador - UEES, Guayaquil, Ecuador.,Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil - UCSG, Guayaquil, Ecuador
| | | |
Collapse
|
3
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
4
|
Guillon A, Sécher T, Dailey LA, Vecellio L, de Monte M, Si-Tahar M, Diot P, Page CP, Heuzé-Vourc'h N. Insights on animal models to investigate inhalation therapy: Relevance for biotherapeutics. Int J Pharm 2017; 536:116-126. [PMID: 29180257 DOI: 10.1016/j.ijpharm.2017.11.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Acute and chronic respiratory diseases account for major causes of illness and deaths worldwide. Recent developments of biotherapeutics opened a new era in the treatment and management of patients with respiratory diseases. When considering the delivery of therapeutics, the inhaled route offers great promises with a direct, non-invasive access to the diseased organ and has already proven efficient for several molecules. To assist in the future development of inhaled biotherapeutics, experimental models are crucial to assess lung deposition, pharmacokinetics, pharmacodynamics and safety. This review describes the animal models used in pulmonary research for aerosol drug delivery, highlighting their advantages and limitations for inhaled biologics. Overall, non-clinical species must be selected with relevant scientific arguments while taking into account their complexities and interspecies differences, to help in the development of inhaled medicines and ensure their successful transposition in the clinics.
Collapse
Affiliation(s)
- A Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France; CHRU de Tours, Service de Médecine Intensive - Réanimation, F-37000, Tours, France
| | - T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France
| | - L A Dailey
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06122, Halle (Saale), Germany
| | - L Vecellio
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Aerodrug, Université François Rabelais - Faculté de Médecine, Tours, France
| | - M de Monte
- Plateforme Scientifique et Technique (PST) Animaleries, Université F. Rabelais, F-37000, Tours, France
| | - M Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France
| | - P Diot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France; CHRU de Tours, Service de Pneumologie, F-37000, Tours, France
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France.
| |
Collapse
|
5
|
Neutrophilic Inflammation in the Immune Responses of Chronic Obstructive Pulmonary Disease: Lessons from Animal Models. J Immunol Res 2017; 2017:7915975. [PMID: 28536707 PMCID: PMC5426078 DOI: 10.1155/2017/7915975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.
Collapse
|
6
|
Oakes JM, Hofemeier P, Vignon-Clementel IE, Sznitman J. Aerosols in healthy and emphysematous in silico pulmonary acinar rat models. J Biomech 2015; 49:2213-2220. [PMID: 26726781 DOI: 10.1016/j.jbiomech.2015.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 12/24/2022]
Abstract
There has been relatively little attention given on predicting particle deposition in the respiratory zone of the diseased lungs despite the high prevalence of chronic obstructive pulmonary disease (COPD). Increased alveolar volume and deterioration of alveolar septum, characteristic of emphysema, may alter the amount and location of particle deposition compared to healthy lungs, which is particularly important for toxic or therapeutic aerosols. In an attempt to shed new light on aerosol transport and deposition in emphysematous lungs, we performed numerical simulations in models of healthy and emphysematous acini motivated by recent experimental lobar-level data in rats (Oakes et al., 2014a). Compared to healthy acinar structures, models of emphysematous subacini were created by removing inter-septal alveolar walls and enhancing the alveolar volume in either a homogeneous or heterogeneous fashion. Flow waveforms and particle properties were implemented to match the experimental data. The occurrence of flow separation and recirculation within alveolar cavities was found in proximal generations of the healthy zones, in contrast to the radial-like airflows observed in the diseased regions. In agreement with experimental data, simulations point to particle deposition concentrations that are more heterogeneously distributed in the diseased models compared with the healthy one. Yet, simulations predicted less deposition in the emphysematous models in contrast to some experimental studies, a likely consequence due to the shallower penetration depths and modified flow topologies in disease compared to health. These spatial-temporal particle transport simulations provide new insight on deposition in the emphysematous acini and shed light on experimental observations.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94709,USA; INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités, UPMC Univ Paris 6, Laboratoire Jacques-Louis Lions, 75252 Paris, France
| | - Philipp Hofemeier
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Irene E Vignon-Clementel
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités, UPMC Univ Paris 6, Laboratoire Jacques-Louis Lions, 75252 Paris, France
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
7
|
Polverino F, Doyle-Eisele M, McDonald J, Wilder JA, Royer C, Laucho-Contreras M, Kelly EM, Divo M, Pinto-Plata V, Mauderly J, Celli BR, Tesfaigzi Y, Owen CA. A novel nonhuman primate model of cigarette smoke-induced airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:741-55. [PMID: 25542772 DOI: 10.1016/j.ajpath.2014.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Small animal models of chronic obstructive pulmonary disease (COPD) have several limitations for identifying new therapeutic targets and biomarkers for human COPD. These include a pulmonary anatomy that differs from humans, the limited airway pathologies and lymphoid aggregates that develop in smoke-exposed mice, and the challenges associated with serial biological sampling. Thus, we assessed the utility of cigarette smoke (CS)-exposed cynomolgus macaque as a nonhuman primate (NHP) large animal model of COPD. Twenty-eight NHPs were exposed to air or CS 5 days per week for up to 12 weeks. Bronchoalveolar lavage and pulmonary function tests were performed at intervals. After 12 weeks, we measured airway pathologies, pulmonary inflammation, and airspace enlargement. CS-exposed NHPs developed robust mucus metaplasia, submucosal gland hypertrophy and hyperplasia, airway inflammation, peribronchial fibrosis, and increases in bronchial lymphoid aggregates. Although CS-exposed NHPs did not develop emphysema over the study time, they exhibited pathologies that precede emphysema development, including increases in the following: i) matrix metalloproteinase-9 and proinflammatory mediator levels in bronchoalveolar lavage fluid, ii) lung parenchymal leukocyte counts and lymphoid aggregates, iii) lung oxidative stress levels, and iv) alveolar septal cell apoptosis. CS-exposed NHPs can be used as a model of airway disease occurring in COPD patients. Unlike rodents, NHPs can safely undergo longitudinal sampling, which could be useful for assessing novel biomarkers or therapeutics for COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; Pulmonary Department, University of Parma, Parma, Italy
| | | | - Jacob McDonald
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Julie A Wilder
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Christopher Royer
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Emer M Kelly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Joe Mauderly
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Bartolome R Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
8
|
Marcelino MY, Fuoco NL, de Faria CA, Kozma RDLH, Marques LF, Ribeiro-Paes JT. Animal models in chronic obstructive pulmonary disease-an overview. Exp Lung Res 2014; 40:259-71. [PMID: 24785359 DOI: 10.3109/01902148.2014.908250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Collapse
Affiliation(s)
- Monica Yonashiro Marcelino
- 1Program of Post-Graduation in Biotechnology, Universidade de São Paulo-Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema. Stem Cell Rev Rep 2013; 9:210-8. [PMID: 23242964 DOI: 10.1007/s12015-012-9419-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p < 0.05) were observed among the groups treated with BMMC and evaluated after 7, 14 and 21 days. Analysis of the mean linear intercept (Lm) values for the different groups allowed to observe that the group treated with BMMC and evaluated after 21 days showed the most significant result. The group that received no treatment showed a statistically significant difference when compared to other groups, except the group treated and evaluated after 21 days, evidencing the efficacy of cell therapy with BMMC in pulmonary emphysema.
Collapse
|
10
|
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 2013; 4:91. [PMID: 23720629 PMCID: PMC3654205 DOI: 10.3389/fphys.2013.00091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the foremost causes of death worldwide. It is primarily caused by tobacco smoke, making it an easily preventable disease, but facilitated by genetic α-1 antitrypsin deficiency. In addition to active smokers, health problems also occur in people involuntarily exposed to second hand smoke (SHS). Currently, the relationship between SHS and COPD is not well established. Knowledge of pathogenic mechanisms is limited, thereby halting the advancement of new treatments for this socially and economically detrimental disease. Here, we attempt to summarize tobacco smoke studies undertaken in animal models, applying both mainstream (direct, nose only) and side stream (indirect, whole body) smoke exposures. This overview of 155 studies compares cellular and molecular mechanisms as well as proteolytic, inflammatory, and vasoreactive responses underlying COPD development. This is a difficult task, as listing of exposure parameters is limited for most experiments. We show that both mainstream and SHS studies largely present similar inflammatory cell populations dominated by macrophages as well as elevated chemokine/cytokine levels, such as TNF-α. Additionally, SHS, like mainstream smoke, has been shown to cause vascular remodeling and neutrophil elastase-mediated proteolytic matrix breakdown with failure to repair. Disease mechanisms and therapeutic interventions appear to coincide in both exposure scenarios. One of the more widely applied interventions, the anti-oxidant therapy, is successful for both mainstream and SHS. The comparison of direct with indirect smoke exposure studies in this review emphasizes that, even though there are many overlapping pathways, it is not conclusive that SHS is using exactly the same mechanisms as direct smoke in COPD pathogenesis, but should be considered a preventable health risk. Some characteristics and therapeutic alternatives uniquely exist in SHS-related COPD.
Collapse
Affiliation(s)
- Maike Leberl
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine Denver, CO, USA
| | | | | |
Collapse
|
11
|
Singh D, Zo SM, Kumar A, Han SS. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1343-59. [DOI: 10.1080/09205063.2012.759505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Deepti Singh
- a Department of Nano, Medical & Polymer Materials , College of Engineering, Yeungnam University , 214-1 Daedong, Gyeongsan , 712-749 , South Korea
- b Polymer Gel Cluster Research Center, Yeungnam University , 214 Dae-dong, Gyeongbuk , 712-749 , South Korea
| | - Sun Mi Zo
- a Department of Nano, Medical & Polymer Materials , College of Engineering, Yeungnam University , 214-1 Daedong, Gyeongsan , 712-749 , South Korea
- b Polymer Gel Cluster Research Center, Yeungnam University , 214 Dae-dong, Gyeongbuk , 712-749 , South Korea
| | - Ashok Kumar
- c Department of Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur , 208016 , India
| | - Sung Soo Han
- a Department of Nano, Medical & Polymer Materials , College of Engineering, Yeungnam University , 214-1 Daedong, Gyeongsan , 712-749 , South Korea
- b Polymer Gel Cluster Research Center, Yeungnam University , 214 Dae-dong, Gyeongbuk , 712-749 , South Korea
| |
Collapse
|
12
|
Wang W, Nguyen NM, Agapov E, Holtzman MJ, Woods JC. Monitoring in vivo changes in lung microstructure with ³He MRI in Sendai virus-infected mice. J Appl Physiol (1985) 2012; 112:1593-9. [PMID: 22383505 DOI: 10.1152/japplphysiol.01165.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, a Sendai virus (SeV) model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human chronic obstructive pulmonary disease (COPD) and asthma, but the effect on distal lung parenchyma has not been investigated. The aim of our study is to image the time course and regional distribution of mouse lung microstructural changes in vivo after SeV infection. (1)H and (3)He diffusion magnetic resonance imaging (MRI) were successfully performed on five groups of C57BL/6J mice. (1)H MR images provided precise anatomical localization and lung volume measurements. (3)He lung morphometry was implemented to image and quantify mouse lung geometric microstructural parameters at different time points after SeV infection. (1)H MR images detected the SeV-induced pulmonary inflammation in vivo; spatially resolved maps of acinar airway radius R, alveolar depth h, and mean linear intercept Lm were generated from (3)He diffusion images. The morphometric parameters R and Lm in the infected group were indistinguishable from PBS-treated mice at day 21, increased slightly at day 49, and were increased with statistical significance at day 77 (p = 0.02). Increases in R and Lm of infected mice imply that there is a modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Our results indicate that (3)He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and that the Sendai mouse model has the potential to be a valid murine model of COPD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physics, Washington Univ. Box 8131, Dept. of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
13
|
Mortaz E, Folkerts G, Redegeld F. Mast cells and COPD. Pulm Pharmacol Ther 2011; 24:367-72. [PMID: 21463700 DOI: 10.1016/j.pupt.2011.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/17/2022]
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) is based on the innate and adaptive inflammatory immune response to the inhalation of toxic particles and gases. Although tobacco smoking is the primary cause of this inhalation injury, many other environmental and occupational exposures contribute to the pathology of COPD. The immune inflammatory changes associated with COPD are linked to a tissue-repair and -remodeling process that increases mucus production and causes emphysematous destruction of the gas-exchanging surface of the lung. The common form of emphysema observed in smokers begins in the respiratory bronchioles near the thickened and narrowed small bronchioles that become the major site of obstruction in COPD. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages, T lymphocytes, and dendritic cells. The relative contribution of mast cells to airway injury and remodeling is not well documented. In this review, an overview is given on the possible role of mast cells and their mediators in the pathogenesis of COPD. Activation of mast cells and mast cell signaling in response to exposure to cigarette smoke is further discussed.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
14
|
Anciães AM, Olivo CR, Prado CM, Kagohara KH, Pinto TDS, Moriya HT, Mauad T, Martins MDA, Lopes FDTQDS. Respiratory mechanics do not always mirror pulmonary histological changes in emphysema. Clinics (Sao Paulo) 2011; 66:1797-803. [PMID: 22012054 PMCID: PMC3180141 DOI: 10.1590/s1807-59322011001000020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/07/2011] [Accepted: 06/14/2011] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To verify the accordance of functional and morphometric parameters during the development of emphysema. METHODS BALB/c mice received a nasal drop of either papain or saline solution and were studied after 1, 3, 15, 28, and 40 days. Functional parameters, such as airway resistance, tissue damping, and tissue elastance, were analyzed. To evaluate the structural changes and possible mechanisms involved in this disease, we measured the mean linear intercept, the volume proportions of elastic and collagen fibers, the number of macrophages, the numbers of cells expressing metalloprotease 12 and 8-isoprostane in lung parenchyma. RESULTS We only observed decreases in tissue elastance and tissue damping on the 28th day, with a concomitant increase in the mean linear intercept, indicating the presence of emphysema. However, only the mean linear intercept values remained increased until the 40th day. The volume proportion of collagen fibers was increased from the 15th day to the 40th day, whereas the volume proportion of elastic fibers was only increased on the 40th day. The number of macrophages increased beginning on the 1st day. The expression of metalloproteinase 12 was increased from the 3rd day until the 40th day. However, 8-isoprostane expression was only increased on the 1st and 3rd days. CONCLUSIONS In this study, morphometric parameters were found to be more reliable for detecting the presence of emphysema than the functional parameters measured by respiratory mechanics. Further investigations are necessary to understand how the extracellular matrix remodeling observed in the lung parenchyma could be involved in this process.
Collapse
Affiliation(s)
- Adriana Martins Anciães
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vanoirbeek JAJ, Rinaldi M, De Vooght V, Haenen S, Bobic S, Gayan-Ramirez G, Hoet PHM, Verbeken E, Decramer M, Nemery B, Janssens W. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol 2009; 42:96-104. [PMID: 19346316 DOI: 10.1165/rcmb.2008-0487oc] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary function analysis is an important tool in the evaluation of mouse respiratory disease models, but much controversy still exists on the validity of some tests. Most commonly used pulmonary function variables of humans are not routinely applied in mice, and the question of which pulmonary function is optimal for the monitoring of a particular disease model remains largely unanswered. Our study aimed to delineate the potential and restrictions of existing pulmonary function techniques in different respiratory disease models, and to determine some common variables between humans and mice. A noninvasive (unrestrained plethysmography) and two invasive pulmonary function devices (forced maneuvers system from Buxco Research Systems [Wilmington, NC] and forced oscillation technique from SCIREQ [Montreal, PQ, Canada]) were evaluated in well-established models of asthma (protein and chemical induced): a model of elastase-induced pulmonary emphysema, and a model of bleomycin-induced pulmonary fibrosis. In contrast to noninvasive tests, both invasive techniques were efficacious for the quantification of parenchymal disease via changes in functional residual capacity, total lung capacity, vital capacity, and compliance of the respiratory system. Airflow obstruction and airflow limitation at baseline were only present in emphysema, but could be significantly induced after methacholine challenge in mice with asthma, which correlated best with an increase of respiratory resistance. Invasive pulmonary functions allow distinction between respiratory diseases in mice by clinically relevant variables, and should become standard in the functional evaluation of pathological disease models.
Collapse
Affiliation(s)
- Jeroen A J Vanoirbeek
- Lung Toxicology Research Unit, Katholieke Universiteit Leuven, Herestraat 49 bus 706, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bourbon JR, Boucherat O, Boczkowski J, Crestani B, Delacourt C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med 2009; 15:169-79. [DOI: 10.1016/j.molmed.2009.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 11/15/2022]
|
17
|
Absence of cholinergic airway tone in normal BALB/c mice. Respir Physiol Neurobiol 2008; 161:223-9. [DOI: 10.1016/j.resp.2008.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/24/2008] [Accepted: 01/30/2008] [Indexed: 11/15/2022]
|
18
|
Kramer JA, Sagartz JE, Morris DL. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 2007; 6:636-49. [PMID: 17643090 DOI: 10.1038/nrd2378] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Toxicity is a leading cause of attrition at all stages of the drug development process. The majority of safety-related attrition occurs preclinically, suggesting that approaches to identify 'predictable' preclinical safety liabilities earlier in the drug development process could lead to the design and/or selection of better drug candidates that have increased probabilities of becoming marketed drugs. In this Review, we discuss how the early application of preclinical safety assessment--both new molecular technologies as well as more established approaches such as standard repeat-dose rodent toxicology studies--can identify predictable safety issues earlier in the testing paradigm. The earlier identification of dose-limiting toxicities will provide chemists and toxicologists the opportunity to characterize the dose-limiting toxicities, determine structure-toxicity relationships and minimize or circumvent adverse safety liabilities.
Collapse
Affiliation(s)
- Jeffrey A Kramer
- Department of Drug Metabolism and Pharmacokinetics, Lexicon Pharmaceuticals Inc., 8800 Technology Forest Place, The Woodlands, Texas 77381, USA.
| | | | | |
Collapse
|
19
|
Green FHY, Vallyathan V, Hahn FF. Comparative pathology of environmental lung disease: an overview. Toxicol Pathol 2007; 35:136-47. [PMID: 17325982 DOI: 10.1080/01926230601132055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Environmental factors play a major role in a majority of lung diseases. Asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and many interstitial lung diseases are influenced or caused by environmental factors. Animals and humans may respond differently to the same agent, and a study of the comparative pathology between the two is useful for optimizing animal models of environmental lung disease and for evaluating their predictive value in carcinogenicity studies. This overview describes the most common nonneoplastic pathologic pulmonary responses to inhaled environmental agents in the human and contrasts them with the responses observed in rats exposed to the same agents. We show both similarities and difference in response to the same agents; furthermore, both species have unique responses to some agents (for example, progressive massive fibrosis in the human and proliferative squamous lesions in the rat). Quantitative analysis of the grades of response to three environmental particulate dusts revealed differences between the 2 species at the cellular level. Specifically, acute intra-alveolar inflammation, alveolar epithelial hyperplasia, and alveolar lipoproteinosis were all greater in rats than in humans exposed to the same agents. These differences may account for differences between the 2 species in carcinogenic response to nonfibrous particulates.
Collapse
Affiliation(s)
- Francis H Y Green
- Respiratory Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
20
|
Lee KM, Renne RA, Harbo SJ, Clark ML, Johnson RE, Gideon KM. 3-week inhalation exposure to cigarette smoke and/or lipopolysaccharide in AKR/J mice. Inhal Toxicol 2007; 19:23-35. [PMID: 17127640 DOI: 10.1080/08958370600985784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AKR/J mice were exposed to cigarette smoke (CS) and/or lipopolysaccharide (LPS) via inhalation for 3 wk and pulmonary responses were evaluated. The objective was to explore the feasibility of coexposing LPS with cigarette smoke under a subacute exposure, as a surrogate for viral or bacterial insults, that would mimic the pathogenesis of infection-related chronic obstructive pulmonary disease (COPD) exacerbations. The study was the first step in an effort to develop a rodent COPD model in which morphologic lesions of COPD develop in a shorter period of exposure and more closely simulate human COPD. Mice were exposed 6 h/day, 5 days/wk for 3 wk to one of the following: (1) sham control: filtered air; (2) CS: 250 microg/L wet total particulate matter (WTPM) for 5 h/day followed by 1 h/day air; (3) LPS: 0.5 microg/L LPS (055:B5 Escherichia coli; 3,000,000 EU/mg) for the last 1 h/day 2 day/wk (following 5 h/day of filtered air); and (4) CS/LPS: CS 5 h/day followed by air or LPS (2 days/wk) for 1 h/day. After the last exposure, animals were necropsied and subjected to bronchoalveolar lavage (BAL) or histopathology. The BAL neutrophil counts were highest in the LPS group, while macrophage counts were higher in the CS/LPS group than other exposed groups. The LPS group displayed the greatest increases in BAL cytokines, while KC (keratinocyte-derived chemokine) and TARC (thymus and activation-regulated chemokine) were highest in the CS group. The CS/LPS group had generally lower cytokine levels relative to the LPS or CS groups, except for the levels of RANTES and G-CSF (granulocyte-colony stimulating factor) comparable to the LPS group. At microscopic examination of lung sections, cellular inflammatory infiltrates were most notable in the CS/LPS group, which had a diffuse, predominantly macrophage infiltrate with fewer neutrophils. The LPS group had predominantly neutrophils in the pulmonary infiltrate and the CS group had a predominantly macrophage infiltrate in alveolar ducts and adjacent alveoli. Apoptotic labeling of lung cells was highest with the CS/LPS group. In summary, the CS/LPS group displayed greater cellular infiltration and apoptotic responses in the lung with an indication of immunosuppressive effects (lower BAL cytokines) than the CS or LPS group, suggesting that the CS/LPS model shows promise to be further explored as an animal model for studying pathogenesis of COPD exacerbations. A longer term study with interim assessments is needed to confirm that the subacute responses observed in the CS/LPS group will result in greater severity of COPD-related pulmonary lesions following prolonged exposures.
Collapse
Affiliation(s)
- K Monica Lee
- Battelle Toxicology Northwest, Richland, Washington, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu M. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 2006; 292:L510-8. [PMID: 17028264 DOI: 10.1152/ajplung.00175.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emphysema is a chronic lung disease characterized by alveolar enlargement and tissue loss. Tissue engineering represents an attractive potential for regeneration of several organ systems. The complex three-dimensional architectural structure of lung parenchyma requiring connections of alveolar units to airways and the pulmonary circulation makes this strategy less optimistic. In the present study, we used Gelfoam sponge as a scaffold material, supplemented with fetal rat lung cells as progenitors, to explore the potential application of cell-based tissue engineering for lung regeneration in adult rats. After injection into lung parenchyma, the sponge showed porous structures similar to alveolar units. It did not induce severe local inflammatory response. Fetal lung cells in the sponge were able to survive in the adult lung for at least 35 days, determined by CMTMR [5-(and-6)-{[(4-chloromethyl)benzoyl]amino}tetramethylrhodamine] labeling. Proliferation of cells within the sponge was demonstrated in vivo by bromodeoxyuridine (BrdU) labeling. Cells formed "alveolar-like structures" at the border between the sponge and the surrounding lung tissue with positive immunohistochemical staining for epithelial and endothelial cells. Neovascularization of the sponge was demonstrated with India ink perfusion. The sponge degraded after several months. This study suggests that cell-based tissue engineering possesses the potential to regenerate alveolar-like structures, an important step towards our ultimate goal of lung regeneration.
Collapse
Affiliation(s)
- Cristiano F Andrade
- Thoracic Surgery Research Laboratory, Toronto General Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Brusselle GG, Bracke KR, Maes T, D'hulst AI, Moerloose KB, Joos GF, Pauwels RA. Murine models of COPD. Pulm Pharmacol Ther 2006; 19:155-65. [PMID: 16084119 DOI: 10.1016/j.pupt.2005.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/15/2005] [Accepted: 06/08/2005] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, that is not fully reversible, and that is associated with an abnormal inflammatory response of the airways and lungs to noxious particles and gases. The airflow limitation is caused by increased resistance of the small conducting airways and by decreased elastic recoil forces of the lung due to emphysematous destruction of the lung parenchyma. In vivo animal models can help to unravel the molecular and cellular mechanisms underlying the pathogenesis of COPD. Mice represent the most favored animal species with regard to the study of (both innate and adaptive) immune mechanisms, since they offer the opportunity to manipulate gene expression. Several experimental approaches are applied in order to mimic the different traits of COPD in these murine models. Firstly, the tracheal instillation of tissue-degrading enzymes induces emphysema-like lesions in the lung parenchyma, adding further proof to the protease-antiprotease imbalance hypothesis. Secondly, the inhalation of noxious stimuli, including tobacco smoke, sulfur dioxide, nitrogen dioxide, or oxidants such as ozone, may also lead to COPD-like lesions in mice, depending on concentration, duration of exposure and strainspecific genetic susceptibility. Thirdly, in transgenic mice, a specific gene is either overexpressed (non-specific or organ-specific) or selectively depleted (constitutively or conditionally). The study of these transgenic mice, either per se or in combination with the above mentioned experimental approaches (e.g. the inhalation of tobacco smoke), can offer valuable information on both the physiological function of the gene of interest as well as the pathophysiological mechanisms of diseases with complex traits such as COPD.
Collapse
Affiliation(s)
- G G Brusselle
- Department of Respiratory Diseases, Ghent University Hospital and Ghent University, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Obot C, Lee K, Fuciarelli A, Renne R, McKinney W. Characterization of mainstream cigarette smoke-induced biomarker responses in ICR and C57Bl/6 mice. Inhal Toxicol 2004; 16:701-19. [PMID: 15371058 DOI: 10.1080/08958370490476604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pulmonary emphysema is a major component of the morbidity and mortality of chronic obstructive pulmonary disease (COPD). Currently there are no predictive biomarkers for COPD. Initial steps toward identifying potentially predictive biomarkers involve utilizing well-characterized mainstream smoke (MS) exposure conditions (dose-response) to identify changes in biomarkers of effect (inflammation, tissue injury, oxidative stress) in emphysema-susceptible and -resistant mouse strains. C57Bl/6 mice have been reported to develop emphysema when exposed chronically to cigarette smoke, while similarly exposed ICR mice do not. Male C57Bl/6 and ICR mice were exposed 2 h/day for 7 consecutive days to MS from a standard reference cigarette (2R4F) at 75, 250, and 600 microg total particulate matter (TPM)/L or filtered air. To confirm exposure, blood samples were collected toward the end of the last exposure and analyzed for carboxyhemoglobin, nicotine, and cotinine. Bronchoalveolar lavage (BAL) fluid samples were collected 2 or 12 h postexposure and analyzed for biomarkers of effect. MS dose differed slightly between strains. More necrosis was observed in nasal epithelium of exposed C57Bl/6 mice. Exposure concentration-dependent increases in apoptosis, chemokines, and neutrophil counts were greater in ICR mice. Similar increases in thymus and activated-regulated chemokine were only observed in C57Bl/6 mice. BAL fluid cells of C57Bl/6 mice appear to undergo necrosis, while the BAL fluid cells of ICR mice appear to undergo apoptosis following MS exposure. Utilizing two strains of mice we identified MS-responsive biomarkers of effect that may be predictive of COPD pathology. Chronic MS exposures are needed to link these biomarkers with emphysema.
Collapse
Affiliation(s)
- Chrysanthus Obot
- Philip Morris USA Postgraduate Research Program, Richmond, Virginia 23261-6583, USA
| | | | | | | | | |
Collapse
|