1
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2024:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
2
|
Limbu S, McCloskey KE. An Endothelial Cell Is Not Simply an Endothelial Cell. Stem Cells Dev 2024; 33:517-527. [PMID: 39030822 PMCID: PMC11564855 DOI: 10.1089/scd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.
Collapse
Affiliation(s)
- Shiwani Limbu
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
| | - Kara E. McCloskey
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
3
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
4
|
Fridayana FR, Ock J, Liu FY, Niloofar L, Vo MN, Huang Y, Yin GN, Ryu JK. Heparin-binding epidermal growth factor-like growth factor improves erectile function in streptozotocin-induced diabetic mice. J Sex Med 2024; 21:751-761. [PMID: 39033084 DOI: 10.1093/jsxmed/qdae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Heparin-binding epidermal growth factor-like growth factor (HB-EGF) serves as a pro-angiogenic factor; however, there is to our knowledge currently no reported research on the relationship between HB-EGF and diabetic erectile dysfunction (ED). AIM In this study we aimed to determine whether HB-EGF can improve the erectile function of streptozotocin-induced diabetic mice and to explore the related mechanisms. METHODS Eight-week-old male C57BL/6 mice were used for diabetes induction. Diabetes mellitus (DM) was induced by low-dose injections of streptozotocin (50 mg/kg) for 5 consecutive days. Eight weeks after streptozotocin injections, DM was determined by measuring blood glucose and body weight. Diabetic mice were treated with two intracavernous administrations of phosphate-buffered saline (20 μL) or various doses of HB-EGF (days -3 and 0; 1, 5, and 10 μg in 20 μL of phosphate-buffered saline). The angiogenesis effect of HB-EGF was confirmed by tube formation and migration assays in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was measured by electrical stimulation of the cavernous nerve, as well as histological examination and Western blot analysis for mechanism assessment. OUTCOMES In vitro angiogenesis, cell proliferation, in vivo intracavernous pressure, neurovascular regeneration, cavernous permeability, and survival signaling were the outcomes measured. RESULTS Expression of HB-EGF was reduced under diabetic conditions. Exogenous HB-EGF induced angiogenesis in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was decreased in the DM group, whereas administration of HB-EGF resulted in a significant improvement of erectile function (91% of the age-matched control group) in association with increased neurovascular content, including cavernous endothelial cells, pericytes, and neuronal cells. Histological and Western blot analyses revealed a significant increase in the permeability of the corpus cavernosum in DM mice, which was attenuated by HB-EGF treatment. The protein expression of phospho-Akt Ser473 and phosphorylated endothelial nitric oxide synthase Ser1177 increased after HB-EGF treatment. CLINICAL IMPLICATIONS The use of HB-EGF may be an effective strategy to treat ED associated with DM or other neurovascular diseases. STRENGTHS AND LIMITATIONS Similarly to other pro-angiogenic factors, HB-EGF has dual roles in vascular and neuronal development. Our study focused on broadly evaluating the role of HB-EGF in diabetic ED. In view of the properties of HB-EGF as an angiogenic factor, its dose concentration should be strictly controlled to avoid potential side effects. CONCLUSION In the diabetic ED mouse model in this study erectile function was improved by HB-EGF, which may provide new treatment strategies for patients with ED who do not respond to phosphodiesterase 5 Inhibitors.
Collapse
Affiliation(s)
- Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Lashkari Niloofar
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
5
|
Nie M, Tian Y, Xiao Y, Lei S, Wu D. Enhancing high-quality fat survival: A novel strategy using cell-free fat extract. FASEB J 2024; 38:e23733. [PMID: 38995329 DOI: 10.1096/fj.202400523rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
High-quality fat (HQF) improves the survival rate of fat and volumetric filling compared to traditional Coleman fat. However, this HQF strategy inevitably leads to a significant amount of unused fat being wasted. "CEFFE" (cell-free fat extract) is an acellular aqueous-phase liquid, rich in bioactive proteins. The remaining fat from preparing HQF can be further processed into CEFFE to promote the survival of HQF. HQF was obtained and the remaining fat was processed into CEFFE, then HQF was transplanted subcutaneously in nude mice. Animal studies showed that CEFFE significantly improved the survival rate of HQF. Histological analysis revealed that CEFFE improved the survival rate of HQF, by enhancing cell proliferation activity, reducing apoptosis, increasing angiogenesis, and improving the inflammatory state. Under simulated anaerobic conditions, CEFFE also improved the viability of HQF. In vitro, studies demonstrated that CEFFE enhanced the survival rate of HQF through multiple mechanisms. Transcriptomic analysis and qPCR showed that CEFFE increased the expression of angiogenesis-related genes in ADSCs while enhancing their proliferation-related gene expression and suppressing the expression of three differentiation-related genes. Moreover, functional experiments demonstrated that CEFFE-induced ADSCs exhibited stronger proliferation and adipogenic differentiation abilities. Tube formation and migration assays revealed that CEFFE promoted tube formation and migration of HUVECs, indicating its inherent pro-angiogenic properties. CEFFE facilitated the development of M0 to M2 macrophages, suggesting its role in improving the inflammatory state. This innovative clinical strategy optimizes HQF transplantation strategy, minimizing fat wastage and enhancing the efficiency of fat utilization.
Collapse
Affiliation(s)
- Mengqi Nie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Yi Tian
- Department of Plastic and Aesthetic (Burn) Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yutian Xiao
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Dingyu Wu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| |
Collapse
|
6
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
7
|
Hovis G, Chandra N, Kejriwal N, Hsieh KJY, Chu A, Yang I, Wadehra M. Understanding the Role of Endothelial Cells in Glioblastoma: Mechanisms and Novel Treatments. Int J Mol Sci 2024; 25:6118. [PMID: 38892305 PMCID: PMC11173095 DOI: 10.3390/ijms25116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is a highly aggressive neoplasm and the most common primary malignant brain tumor. Endothelial tissue plays a critical role in glioblastoma growth and progression, facilitating angiogenesis, cellular communication, and tumorigenesis. In this review, we present an up-to-date and comprehensive summary of the role of endothelial cells in glioblastomas, along with an overview of recent developments in glioblastoma therapies and tumor endothelial marker identification.
Collapse
Affiliation(s)
- Gabrielle Hovis
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Chandra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Nidhi Kejriwal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Kaleb Jia-Yi Hsieh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Geropoulos G, Psarras K, Koimtzis G, Fornasiero M, Anestiadou E, Geropoulos V, Michopoulou A, Papaioannou M, Kouzi-Koliakou K, Galanis I. Knockout Genes in Bowel Anastomoses: A Systematic Review of Literature Outcomes. J Pers Med 2024; 14:553. [PMID: 38929776 PMCID: PMC11205243 DOI: 10.3390/jpm14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The intestinal wound healing process is a complex event of three overlapping phases: exudative, proliferative, and remodeling. Although some mechanisms have been extensively described, the intestinal healing process is still not fully understood. There are some similarities but also some differences compared to other tissues. The aim of this systematic review was to summarize all studies with knockout (KO) experimental models in bowel anastomoses, underline any recent knowledge, and clarify further the cellular and molecular mechanisms of the intestinal healing process. A systematic review protocol was performed. MATERIALS AND METHODS Medline, EMBASE, and Scopus were comprehensively searched. RESULTS a total of eight studies were included. The silenced genes included interleukin-10, the four-and-one-half LIM domain-containing protein 2 (FHL2), cyclooxygenase-2 (COX-2), annexin A1 (ANXA-1), thrombin-activatable fibrinolysis inhibitor (TAFI), and heparin-binding epidermal growth factor (HB-EGF) gene. Surgically, an end-to-end bowel anastomosis was performed in the majority of the studies. Increased inflammatory cell infiltration in the anastomotic site was found in IL-10-, annexin-A1-, and TAFI-deficient mice compared to controls. COX-1 deficiency showed decreased angiogenesis at the anastomotic site. Administration of prostaglandin E2 in COX-2-deficient mice partially improved anastomotic leak rates, while treatment of ANXA1 KO mice with Ac2-26 nanoparticles reduced colitis activity and increased weight recovery following surgery. CONCLUSIONS our findings provide new insights into improving intestinal wound healing by amplifying the aforementioned genes using appropriate gene therapies. Further research is required to clarify further the cellular and micromolecular mechanisms of intestinal healing.
Collapse
Affiliation(s)
- Georgios Geropoulos
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | - Kyriakos Psarras
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | - Georgios Koimtzis
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | | | - Elissavet Anestiadou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Vasileios Geropoulos
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | - Anna Michopoulou
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Kokkona Kouzi-Koliakou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Galanis
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| |
Collapse
|
9
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
10
|
Lee JG, Yon JM, Kim G, Lee SG, Kim CY, Cheong SA, Kim HY, Yu J, Kim K, Sung YH, Yoo HJ, Woo DC, Rho JK, Ha CH, Pack CG, Oh SH, Lim JS, Han YM, Hong EJ, Seong JK, Lee HW, Lee SW, Lee KU, Kim CJ, Nam SY, Cho YS, Baek IJ. PIBF1 regulates trophoblast syncytialization and promotes cardiovascular development. Nat Commun 2024; 15:1487. [PMID: 38374152 PMCID: PMC10876648 DOI: 10.1038/s41467-024-45647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, 52834, Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | | | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jin Kyung Rho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chang Hoon Ha
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Joon Seo Lim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Yu Mi Han
- Research Institute of Medical Science, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sang-Wook Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ki-Up Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - You Sook Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea.
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea.
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
11
|
Park HJ, Jeong JH, Choi YH, Park SH. Hexane Fraction of Adenophora triphylla var. japonica Root Extract Inhibits Angiogenesis and Endothelial Cell-Induced Erlotinib Resistance in Lung Cancer Cells. Molecules 2024; 29:597. [PMID: 38338342 PMCID: PMC10856037 DOI: 10.3390/molecules29030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this study was to investigate the anti-angiogenic effects of the hexane fraction of Adenophora triphylla var. japonica root extract (HAT) and its influence on the development of erlotinib resistance in human lung cancer cells. HAT significantly reduced the migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). The phosphorylation levels of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream molecules were decreased via HAT, indicating its anti-angiogenic potential in endothelial cells (ECs). A docking analysis demonstrated that β-sitosterol and lupeol, representative components of HAT, exhibit a high affinity for binding to VEGFR2. In addition, conditioned media from HAT-pretreated H1299 human lung cancer cells attenuated cancer-cell-induced chemotaxis of HUVECs, which was attributed to the decreased expression of angiogenic and chemotactic factors in H1299 cells. Interestingly, co-culture of erlotinib-sensitive PC9 human lung cancer cells with HUVECs induced erlotinib resistance in PC9 cells. However, co-culture with HAT-pretreated HUVECs partially restored the sensitivity of PC9 cells to erlotinib. HAT inhibited the development of erlotinib resistance by attenuating hepatocyte growth factor (HGF) production by ECs. Taken together, our results demonstrate that HAT exerts its anticancer effects by regulating the crosstalk between ECs and lung cancer cells.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea; (H.-J.P.); (J.-H.J.)
| | - Jae-Hoon Jeong
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea; (H.-J.P.); (J.-H.J.)
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea;
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea; (H.-J.P.); (J.-H.J.)
| |
Collapse
|
12
|
Lee DH, Imran M, Choi JH, Park YJ, Kim YH, Min S, Park TJ, Choi YW. CDK4/6 inhibitors induce breast cancer senescence with enhanced anti-tumor immunogenic properties compared with DNA-damaging agents. Mol Oncol 2024; 18:216-232. [PMID: 37854019 PMCID: PMC10766199 DOI: 10.1002/1878-0261.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Since therapy-induced senescence (TIS) can either support or inhibit cancer progression, identifying which types of chemotherapeutic agents can produce the strongest anti-tumor TIS is an important issue. Here, cyclin-dependent kinase4/6 inhibitors (CDK4/6i)-induced senescence was compared to the TIS induced by conventional DNA-damaging agents. Despite both types of agents eliciting a similar degree of senescence, we observed increased expression of the senescence-associated secretory phenotype (SASP) and ligands related to pro-tumor immunity (IL6, CXCL8, TGFβ, CD274, and CEACAM1) and angiogenesis (VEGFA) mainly in TIS induced by DNA-damaging agents rather than by CDK4/6i. Additionally, although all agents increased the expression of anti-tumor immunomodulatory proteins related to antigen presentation (MHC-I, B2M) and T cell chemokines (CXCL9, 10, 11), CDK4/6i-induced senescent cells still maintained this expression at a similar or even higher intensity than cells treated with DNA-damaging agents, despite the absence of nuclear factor-kappa-B (NF-κB) and p53 activation. These data suggest that in contrast with DNA-damaging agents, which augment the pro-tumorigenic microenvironment via pro-inflammatory SASP, CDK4/6i can generate TIS only with antitumor immunomodulatory proteins.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwonKorea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonKorea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Muhammad Imran
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwonKorea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Jae Ho Choi
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
- Department of Hematology‐OncologyAjou University School of MedicineSuwonKorea
| | - Yoo Jung Park
- Department of Hematology‐OncologyAjou University School of MedicineSuwonKorea
| | - Young Hwa Kim
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Sunwoo Min
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
| | - Tae Jun Park
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwonKorea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonKorea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Yong Won Choi
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
- Department of Hematology‐OncologyAjou University School of MedicineSuwonKorea
| |
Collapse
|
13
|
Lim WJ, Chan PF, Hamid RA. A 1, 4-benzoquinone derivative isolated from Ardisia crispa (Thunb.) A. DC. root suppresses angiogenesis via its angiogenic signaling cascades. Saudi Pharm J 2024; 32:101891. [PMID: 38111673 PMCID: PMC10727947 DOI: 10.1016/j.jsps.2023.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
The root hexane extract of Ardisia crispa (ACRH), which belongs to the Primulaceae family, has been reported to possess anti-inflammatory, chemopreventive, anti-arthritic, and antiangiogenic activities. In this study, we isolated a p-benzoquinone derivative, 2-methoxy-6-undecyl-1,4-benzoquinone (AC2), from ACRH and investigated its potential antiangiogenic activity in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo models. Prior to this study, AC2 was characterized using 1H NMR spectroscopy and MS. AC2 significantly suppressed HUVEC proliferation in a time-independent manner, with an IC50 value of 1.35 ± 0.05, 1.15 ± 0.02, and 1.00 ± 0.01 µg/mL at 24, 48, and 72 h, respectively. AC2 also induced apoptosis in HUVECs and significantly suppressed their migration, invasion, and tube formation in a concentration-dependent manner. Additionally, AC2 significantly attenuated most of the analyzed protein markers, including pro-MMP-2, VEGF-C, VEGF-D, angiopoietin-2, endothelin-1, fibroblast growth factor (FGF)-1, FGF-2, follistatin, heparin-binding epidermal growth factor-like growth factor (HB-EGF), and hepatocyte growth factor (HGF) at all tested concentrations. Furthermore, AC2 significantly inhibited zebrafish embryo intersegmental vessels (ISVs), confirming its antiangiogenic role. In conclusion, AC2 exhibits a potential anti-angiogenic effect by suppressing several proangiogenic and growth factors. Further studies are needed to investigate their effects on other excessive angiogenic diseases.
Collapse
Affiliation(s)
- Wen Jun Lim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
14
|
Ngaha TYS, Zhilenkova AV, Essogmo FE, Uchendu IK, Abah MO, Fossa LT, Sangadzhieva ZD, D. Sanikovich V, S. Rusanov A, N. Pirogova Y, Boroda A, Rozhkov A, Kemfang Ngowa JD, N. Bagmet L, I. Sekacheva M. Angiogenesis in Lung Cancer: Understanding the Roles of Growth Factors. Cancers (Basel) 2023; 15:4648. [PMID: 37760616 PMCID: PMC10526378 DOI: 10.3390/cancers15184648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Research has shown the role of growth factors in lung cancer angiogenesis. Angiogenesis promotes lung cancer progression by stimulating tumor growth, enhancing tumor invasion, contributing to metastasis, and modifying immune system responses within the tumor microenvironment. As a result, new treatment techniques based on the anti-angiogenic characteristics of compounds have been developed. These compounds selectively block the growth factors themselves, their receptors, or the downstream signaling pathways activated by these growth factors. The EGF and VEGF families are the primary targets in this approach, and several studies are being conducted to propose anti-angiogenic drugs that are increasingly suitable for the treatment of lung cancer, either as monotherapy or as combined therapy. The efficacy of the results are encouraging, but caution must be placed on the higher risk of toxicity, outlining the importance of personalized follow-up in the management of these patients.
Collapse
Affiliation(s)
- Tchawe Yvan Sinclair Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Department of Public Health, James Lind Institute, Rue de la Cité 1, 1204 Geneva, Switzerland
| | - Angelina V. Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Freddy Elad Essogmo
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Ikenna K. Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Moses Owoicho Abah
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Lionel Tabola Fossa
- Department of Oncology, Bafoussam Regional Hospital, Bafoussam 980, Cameroon;
| | - Zaiana D. Sangadzhieva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Varvara D. Sanikovich
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander S. Rusanov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Yuliya N. Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Boroda
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Rozhkov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Jean D. Kemfang Ngowa
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde 1364, Cameroon;
| | - Leonid N. Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Marina I. Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| |
Collapse
|
15
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
16
|
Lin D, Chen Z, Zeng Y, Ding Y, Zhao L, Xu Q, Yu F, Song X, Zhu X. A pyroptosis-related gene signature provides an alternative for predicting the prognosis of patients with hepatocellular carcinoma. BMC Med Genomics 2023; 16:2. [PMID: 36611208 PMCID: PMC9826587 DOI: 10.1186/s12920-023-01431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a common malignant neoplasm with limited treatment options and poor outcomes. Thus, there is an urgent need to find sensitive biomarkers for HCC. METHODS Gene expression and clinicopathological information were obtained from public databases, based on which a pyroptosis-related gene signature was constructed by the least absolute shrinkage and selection operator Cox regression. The applicability of the signature was evaluated via Kaplan-Meier curve and time-dependent ROC curve. TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT, ssGSEA, and ESTIMATE were employed to assess the immune status. Comparisons between groups were analyzed with Wilcoxon test. Pearson and Spearman correlation analyses were adopted for linear correlation analysis. Genetic knockdown was conducted using siRNA transfection and the mRNA expression levels of interest genes were measured using quantitative reverse transcription PCR. Finally, protein levels in 10 paired tumor tissues and adjacent non-tumor tissues from HCC patients were measured using immunohistochemistry. RESULTS A pyroptosis-related gene signature was established successfully to calculate independent prognostic risk scores. It was found that survival outcomes varied significantly between different risk groups. In addition, an attenuated antitumor immune response was found in the high-risk group. Meanwhile, multiple immune checkpoints were up-regulated in high-risk score patients. Cell cycle-related genes, angiogenesis-related genes and tumor drug resistance genes were also markedly elevated. Knockdown of prognostic genes in the signature significantly inhibited the expression of immune checkpoint genes and angiogenesis-related genes. Besides, each prognostic gene was expressed at a higher level in HCC tissues than in adjacent normal tissues. CONCLUSIONS We successfully established a novel pyroptosis-related gene signature which could help predict the overall survival and assess the immune status of HCC patients.
Collapse
Affiliation(s)
- Dezhao Lin
- grid.478150.f0000 0004 1771 6371Department of Surgical Oncology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang People’s Republic of China
| | - Zhuoyan Chen
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Yuan Zeng
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Yinrong Ding
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Luying Zhao
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Qian Xu
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Fujun Yu
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Xian Song
- grid.414906.e0000 0004 1808 0918Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| | - Xiaohong Zhu
- grid.414906.e0000 0004 1808 0918Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang People’s Republic of China
| |
Collapse
|
17
|
Clemente L, Bird IM. The epidermal growth factor receptor in healthy pregnancy and preeclampsia. J Mol Endocrinol 2023; 70:e220105. [PMID: 36197759 PMCID: PMC9742168 DOI: 10.1530/jme-22-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
The epidermal growth factor receptor (EGFR) is expressed robustly in the placenta, and critical processes of pregnancy such as placental growth and trophoblast fusion are dependent on EGFR function. However, the role that aberrant EGFR signaling might play in the etiology and/or maintenance of preeclampsia (PE) remains largely unexplored. Recently, we have shown that overexpression of EGFR in cultured uterine artery endothelial cells (UAEC), which express little endogenous EGFR, remaps responsiveness away from vascular endothelial growth factor receptor (VEGFR) signaling and toward EGFR, suggesting that endothelial EGFR expression may be kept low to preserve VEGFR control of angiogenesis. Here we will consider the evidence for the possibility that the endothelial dysfunction observed in PE might in some cases result from elevation of endothelial EGFR. During pregnancy, trophoblasts are known to synthesize large amounts of EGFR protein, and the placenta regularly releases syncytiotrophoblast-derived exosomes and microparticles into the maternal circulation. Although there are no reports of elevated EGFR gene expression in preeclamptic endothelial cells, the ongoing shedding of placental vesicles into the vascular system raises the possibility that EGFR-rich vesicles might fuse with endothelium, thereby contributing to the symptoms of PE by interrupting angiogenesis and blocking pregnancy-adapted vasodilatory function.
Collapse
Affiliation(s)
- Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Ian M. Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53715, USA
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53715, USA
| |
Collapse
|
18
|
Casanova NG, Reyes-Hernon V, Gregory T, Sun B, Bermudez T, Hufford MK, Oita RC, Camp SM, Hernandez-Molina G, Serrano JR, Sun X, Fimbres J, Mirsaeidi M, Sammani S, Bime C, Garcia JGN. Biochemical and genomic identification of novel biomarkers in progressive sarcoidosis: HBEGF, eNAMPT, and ANG-2. Front Med (Lausanne) 2022; 9:1012827. [PMID: 36388923 PMCID: PMC9640603 DOI: 10.3389/fmed.2022.1012827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Progressive pulmonary fibrosis is a serious complication in subjects with sarcoidosis. The absence of reliable, non-invasive biomarkers that detect early progression exacerbates the difficulty in predicting sarcoidosis severity. To potentially address this unmet need, we evaluated a panel of markers for an association with sarcoidosis progression (HBEGF, NAMPT, IL1-RA, IL-6, IL-8, ANG-2). This panel encompasses proteins related to inflammation, vascular injury, cell proliferation, and fibroblast mitogenesis processes. Methods Plasma biomarker levels and biomarker protein expression in lung and lymph nodes tissues (immunohistochemical studies) from sarcoidosis subjects with limited disease and progressive (complicated) sarcoidosis were performed. Gene expression of the protein-coding genes included in this panel was analyzed using RNAseq in sarcoidosis granulomatous tissues from lung and lymph nodes. Results Except for IL-8, plasma levels of each biomarker—eNAMPT, IL-1RA, IL-6, ANG-2, and HBEGF—were significantly elevated in sarcoidosis subjects compared to controls. In addition, plasma levels of HBEGF were elevated in complicated sarcoidosis, while eNAMPT and ANG-2 were observed to serve as markers of lung fibrosis in a subgroup of complicated sarcoidosis. Genomic studies corroborated HBEGF and NAMPT among the top dysregulated genes and identified cytokine-related and fibrotic pathways in lung granulomatous tissues from sarcoidosis. Conclusion These findings suggest HBEGF, eNAMPT, and ANG-2 may serve as potential novel indicators of the clinical severity of sarcoidosis disease.
Collapse
Affiliation(s)
- Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes-Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Taylor Gregory
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew K. Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Radu C. Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | | | | | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jocelyn Fimbres
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mehdi Mirsaeidi
- Department of Medicine, College of Medicine, University of Florida, Jacksonville, FL, United States
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
19
|
Azzarito G, Kurmann L, Leeners B, Dubey RK. Micro-RNA193a-3p Inhibits Breast Cancer Cell Driven Growth of Vascular Endothelial Cells by Altering Secretome and Inhibiting Mitogenesis: Transcriptomic and Functional Evidence. Cells 2022; 11:cells11192967. [PMID: 36230929 PMCID: PMC9562882 DOI: 10.3390/cells11192967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) cell secretome in the tumor microenvironment (TME) facilitates neo-angiogenesis by promoting vascular endothelial cell (VEC) growth. Drugs that block BC cell growth or angiogenesis can restrict tumor growth and are of clinical relevance. Molecules that can target both BC cell and VEC growth as well as BC secretome may be more effective in treating BC. Since small non-coding microRNAs (miRs) regulate cell growth and miR193a-3p has onco-suppressor activity, we investigated whether miR193a-3p inhibits MCF-7-driven growth (proliferation, migration, capillary formation, signal transduction) of VECs. Using BC cells and VECs grown in monolayers or 3D spheroids and gene microarrays, we demonstrate that: pro-growth effects of MCF-7 and MDA-MB231 conditioned medium (CM) are lost in CM collected from MCF-7/MDA-MB231 cells pre-transfected with miR193a-3p (miR193a-CM). Moreover, miR193a-CM inhibited MAPK and Akt phosphorylation in VECs. In microarray gene expression studies, miR193a-CM upregulated 553 genes and downregulated 543 genes in VECs. Transcriptomic and pathway enrichment analysis of differentially regulated genes revealed downregulation of interferon-associated genes and pathways that induce angiogenesis and BC/tumor growth. An angiogenesis proteome array confirmed the downregulation of 20 pro-angiogenesis proteins by miR193a-CM in VECs. Additionally, in MCF-7 cells and VECs, estradiol (E2) downregulated miR193a-3p expression and induced growth. Ectopic expression of miR193a-3p abrogated the growth stimulatory effects of estradiol E2 and serum in MCF-7 cells and VECs, as well as in MCF-7 and MCF-7+VEC 3D spheroids. Immunostaining of MCF-7+VEC spheroid sections with ki67 showed miR193a-3p inhibits cell proliferation. Taken together, our findings provide first evidence that miR193a-3p abrogates MCF-7-driven growth of VECs by altering MCF-7 secretome and downregulating pro-growth interferon signals and proangiogenic proteins. Additionally, miR193a-3p inhibits serum and E2-induced growth of MCF-7, VECs, and MCF-7+VEC spheroids. In conclusion, miRNA193a-3p can potentially target/inhibit BC tumor angiogenesis via a dual mechanism: (1) altering proangiogenic BC secretome/TME and (2) inhibiting VEC growth. It may represent a therapeutic molecule to target breast tumor growth.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
20
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
21
|
Guo B, Qu X, Chen Z, Yu J, Yan L, Zhu H. Transcriptome analysis reveals transforming growth factor-β1 prevents extracellular matrix degradation and cell adhesion during the follicular-luteal transition in cows. J Reprod Dev 2022; 68:12-20. [PMID: 34690213 PMCID: PMC8872751 DOI: 10.1262/jrd.2021-071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Ovarian angiogenesis is an extremely rapid process that occurs during the transition from follicle to corpus luteum (CL) and is crucial for reproduction. It is regulated by numerous factors including transforming growth factor-β1 (TGFB1). However, the regulatory mechanism of TGFB1 in ovarian angiogenesis is not fully understood. To address this, in this study we obtained high-throughput transcriptome analysis (RNA-seq) data from bovine luteinizing follicular cells cultured in a system mimicking angiogenesis and treated with TGFB1, and identified 455 differentially expressed genes (DEGs). Quantitative real-time PCR results confirmed the differential expression patterns of the 12 selected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified that the MAPK and ErbB pathways, cell adhesion molecules (CAMs), and extracellular matrix (ECM)-receptor interactions may play pivotal roles in TGFB1-mediated inhibition of CL angiogenesis. TGFB1 phosphorylated ERK1/2 (MAPK1/3) and Akt, indicating that these pathways may play an important role in the regulation of angiogenesis. Several genes with specific functions in cell adhesion and ECM degradation were identified among the DEGs. In particular, TGFB1-induced upregulation of syndecan-1 (SDC1) and collagen type I alpha 1 chain (COL1A1) expression may contribute to the deposition of type I collagen in luteinizing follicular cells. These results indicate that TGFB1 inhibits cell adhesion and ECM degradation processes involving ERK1/2, ErbB, and PI3K/Akt signaling pathways, and leads to inhibition of angiogenesis during the follicular-luteal transition. Our results further reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinization.
Collapse
Affiliation(s)
- Binbin Guo
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
22
|
Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022; 11:cells11040650. [PMID: 35203301 PMCID: PMC8870715 DOI: 10.3390/cells11040650] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients’ overall survival and quality of life.
Collapse
|
23
|
Li J, Guo W, Yu F, Liu L, Wang X, Li L, Fang B, Xia L. Low-intensity pulsed ultrasound promotes angiogenesis via the AKT pathway and DNA methylation in human umbilical vein endothelial cells. ULTRASONICS 2022; 118:106561. [PMID: 34500338 DOI: 10.1016/j.ultras.2021.106561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Angiogenesis involves the activation of endothelial cells (ECs). Low-intensity pulsed ultrasound (LIPUS), which delivers ultrasound waves at a low intensity, can induce the angiogenic potential of ECs. However, the underlying cellular mechanisms remain to be elucidated. In this study, the LIPUS parameters were 1.5 MHz pulsed frequency, 200 us pulse duration, 1.0 kHz repetition rate, and 30 mW/cm2 energy intensity. First, we evaluated the effects of LIPUS on the proliferation and angiogenic differentiation of the EC line EA.hy926. The results showed that LIPUS could induce cell proliferation, promote migration, and increase mRNA level inKDR and CD144.Also, the mRNA level and secretion of VEGF were enhanced. We then investigated the role of the AKT signaling pathway in this process. We observed that the expression of p-AKT was upregulated which means that the AKT signaling pathway could be activated by LIPUS, while inhibitor LY294002 of the AKT signaling pathway effectively blocked LIPUS-induced angiogenesis. Finally,we applied confocal Raman microscopy to track biomolecular changes in cells after LIPUS treatment. Spectral analysis showed DNA methylation changes. An Infinium Methylation assay suggested that399 sites were significantly different. After KEGG enrichment analysis, we found seven genes (IRS1, GNG7, COL4A1, FOXO3, COL4A2, CDK4 and EGF) which were closely related to AKT signaling pathway. We verified that AKT signaling pathway inhibition partially blocked LIPUS-induced DNA methylation changes. Ourstudy demonstrated that LIPUS couldpromote the proliferation and angiogenic differentiation of ECs via the AKT signaling pathway. LIPUS could also alter DNA methylation of ECs via the activation of AKT signal.
Collapse
Affiliation(s)
- JiaYi Li
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - WeiMing Guo
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Fei Yu
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 500 Qu Xi Road, Shanghai 200011, China
| | - XiaoTing Wang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 500 Qu Xi Road, Shanghai 200011, China
| | - LvYuan Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 500 Qu Xi Road, Shanghai 200011, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 500 Qu Xi Road, Shanghai 200011, China.
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 500 Qu Xi Road, Shanghai 200011, China.
| |
Collapse
|
24
|
An Z, Zhang L, Liu Y, Zhao H, Zhang Y, Cao Y, Zhang Y, Pei R. Injectable thioketal-containing hydrogel dressing accelerates skin wound healing with the incorporation of reactive oxygen species scavenging and growth factor release. Biomater Sci 2021; 10:100-113. [PMID: 34792044 DOI: 10.1039/d1bm01179k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex dynamic process. During the occurrence of skin injury, the excessive reactive oxygen species (ROS) level is associated with sustained inflammatory response, which limits efficient wound repair. Although multifunctional hydrogels are considered ideal wound dressings due to their unique advantages, the development of hydrogel dressings with rapid gelling rates, shape adaptation, and antioxidant function is still a vital challenge. In this work, a ROS-responsive injectable polyethylene glycol hydrogel containing thioketal bonds (PEG-TK hydrogel) was synthesized and utilized to deliver epidermal growth factor (EGF). We adopted bio-orthogonal click chemistry for crosslinking the polymer chains to obtain the EGF@PEG-TK hydrogel with fast gelation time, injectability and shape-adaptability. More interestingly, the thioketal bonds in the PEG-TK hydrogel not only scavenged excessive ROS in the wound sites but also achieved responsive and controlled EGF release to facilitate regeneration. The EGF@PEG-TK hydrogel treatment offered the benefits of protecting cells from oxidative stress, accelerating wound closure, and reducing scar formation in the full-thickness skin defect model. This work provides a promising strategy for developing antioxidant hydrogel dressing for facilitating the repair of wounds.
Collapse
Affiliation(s)
- Zhen An
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hongbo Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
25
|
Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients 2021; 13:nu13113751. [PMID: 34836007 PMCID: PMC8620589 DOI: 10.3390/nu13113751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Growing evidence demonstrates human milk's protective effect against necrotizing enterocolitis (NEC). Human milk derives these properties from biologically active compounds that influence intestinal growth, barrier function, microvascular development, and immunological maturation. Among these protective compounds are growth factors that are secreted into milk with relatively high concentrations during the early postnatal period, when newborns are most susceptible to NEC. This paper reviews the current knowledge on human milk growth factors and their mechanisms of action relevant to NEC prevention. It will also discuss the stability of these growth factors with human milk pasteurization and their potential for use as supplements to infant formulas with the goal of preventing NEC.
Collapse
|
26
|
Kaur K, Hadas Y, Kurian AA, Żak MM, Yoo J, Mahmood A, Girard H, Komargodski R, Io T, Santini MP, Sultana N, Kabir Sharkar MT, Magadum A, Fargnoli A, Yoon S, Chepurko E, Chepurko V, Eliyahu E, Pinto D, Lebeche D, Kovacic JC, Hajjar RJ, Rafii S, Zangi L. Direct Reprogramming Induces Vascular Regeneration Post Muscle Ischemic Injury. Mol Ther 2021; 29:3042-3058. [PMID: 34332145 PMCID: PMC8531157 DOI: 10.1016/j.ymthe.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes—Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)—together with three reprogramming-helper genes—dominant-negative (DN)-TGFβ, DN-Wnt8a, and acid ceramidase (AC)—to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.
Collapse
Affiliation(s)
- Keerat Kaur
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Yoav Hadas
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Ann Anu Kurian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Magdalena M Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Asharee Mahmood
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Hanna Girard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Rinat Komargodski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co. Ltd., Osaka, Japan, 103-0023
| | - Maria Paola Santini
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Nishat Sultana
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Ajit Magadum
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Anthony Fargnoli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Seonghun Yoon
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Multiscale Biology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Dalila Pinto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Djamel Lebeche
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Roger J Hajjar
- Phospholamban Foundation, Amsterdam, The Netherlands 1775 ZH
| | - Shahin Rafii
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029.
| |
Collapse
|
27
|
Wang Y, Fan Y, Liu H. Macrophage Polarization in Response to Biomaterials for Vascularization. Ann Biomed Eng 2021; 49:1992-2005. [PMID: 34282494 DOI: 10.1007/s10439-021-02832-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Vascularization of tissue engineering constructs is an urgent need for delivering oxygen and nutrients and promoting tissue remodeling. As we all know, almost all implanted biomaterials elicit immune responses. Interestingly, the immunomodulatory biomaterials can utilize the inherent regenerative capability of endogenous cells and stem cells recruited by the activated immune cells to facilitate anagenesis and tissue remodeling. Macrophages, as almost ones of the first responses upon the implantation of biomaterials, play a vital role in guiding vascular formation and tissue remodeling. The polarization of macrophages can be influenced by the physical and chemical properties of biomaterials and thus they display diverse function states. Here, this review focus on the macrophage polarization in response to biomaterials and the interactions between them. It also summarizes the current strategies to promote vascularization of tissue engineering constructs through macrophage responses.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
28
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
29
|
Ni P, Clinkenbeard EL, Noonan ML, Richardville JM, McClintick J, Hato T, Janosevic D, Cheng YH, El-Achkar TM, Eadon MT, Dagher PC, White KE. Targeting fibroblast growth factor 23-responsive pathways uncovers controlling genes in kidney mineral metabolism. Kidney Int 2020; 99:598-608. [PMID: 33159963 DOI: 10.1016/j.kint.2020.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Fibroblast Growth Factor 23 (FGF23) is a bone-derived hormone that reduces kidney phosphate reabsorption and 1,25(OH)2 vitamin D synthesis via its required co-receptor alpha-Klotho. To identify novel genes that could serve as targets to control FGF23-mediated mineral metabolism, gene array and single-cell RNA sequencing were performed in wild type mouse kidneys. Gene array demonstrated that heparin-binding EGF-like growth factor (HBEGF) was significantly up-regulated following one-hour FGF23 treatment of wild type mice. Mice injected with HBEGF had phenotypes consistent with partial FGF23-mimetic activity including robust induction of Egr1, and increased Cyp24a1 mRNAs. Single cell RNA sequencing showed overlapping HBEGF and EGF-receptor expression mostly in the proximal tubule, and alpha-Klotho expression in proximal and distal tubule segments. In alpha-Klotho-null mice devoid of canonical FGF23 signaling, HBEGF injections significantly increased Egr1 and Cyp24a1 with correction of basally elevated Cyp27b1. Additionally, mice placed on a phosphate deficient diet to suppress FGF23 had endogenously increased Cyp27b1 mRNA, which was rescued in mice receiving HBEGF. In HEK293 cells with stable alpha-Klotho expression, FGF23 and HBEGF increased CYP24A1 mRNA expression. HBEGF, but not FGF23 bioactivity was blocked with EGF-receptor inhibition. Thus, our findings support that the paracrine/autocrine factor HBEGF could play novel roles in controlling genes downstream of FGF23 via targeting common signaling pathways.
Collapse
Affiliation(s)
- Pu Ni
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Megan L Noonan
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joseph M Richardville
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Department of Biochemistry and Molecular Biology, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Danielle Janosevic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pierre C Dagher
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
30
|
Dong ZR, Sun D, Yang YF, Zhou W, Wu R, Wang XW, Shi K, Yan YC, Yan LJ, Yao CY, Chen ZQ, Zhi XT, Li T. TMPRSS4 Drives Angiogenesis in Hepatocellular Carcinoma by Promoting HB-EGF Expression and Proteolytic Cleavage. Hepatology 2020; 72:923-939. [PMID: 31867749 DOI: 10.1002/hep.31076] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor family, plays a pivotal role in the progression of several malignancies, but its role and regulatory mechanisms in hepatocellular carcinoma (HCC) remain obscure. Here, we report that transmembrane protease serine 4 (TMPRSS4) significantly enhanced the expression and proteolytic cleavage of HB-EGF to promote angiogenesis and HCC progression. APPROACH AND RESULTS A mechanistic analysis revealed that TMPRSS4 not only increased the transcriptional and translational levels of HB-EGF precursor, but also promoted its proteolytic cleavage by enhancing matrix metallopeptidase 9 expression through the EGF receptor/Akt/mammalian target of rapamycin/ hypoxia-inducible factor 1 α signaling pathway. In addition, HB-EGF promoted HCC proliferation and invasion by the EGF receptor/phosphoinositide 3-kinase/Akt signaling pathway. The level of HB-EGF in clinical samples of serum or HCC tissues from patients with HCC was positively correlated with the expression of TMPRSS4 and the microvessel density, and was identified as a prognostic factor for overall survival and recurrence-free survival, which suggests that HB-EGF can serve as a potential therapeutic target for HCC. More importantly, we provide a demonstration that treatment with the HB-EGF inhibitor cross-reacting material 197 alone or in combination with sorafenib can significantly suppress angiogenesis and HCC progression. CONCLUSIONS HB-EGF can be regulated by TMPRSS4 to promote HCC proliferation, invasion, and angiogenesis, and the combination of the HB-EGF inhibitor cross-reacting material 197 with sorafenib might be used for individualized treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Zhou
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Wu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Wei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Kai Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xu-Ting Zhi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Stahler A, Heinemann V, Ricard I, von Einem JC, Giessen-Jung C, Westphalen CB, Michl M, Heinrich K, Miller-Phillips L, Jelas I, Stintzing S, Modest DP. Current treatment options in RAS mutant metastatic colorectal cancer patients: a meta-analysis of 14 randomized phase III trials. J Cancer Res Clin Oncol 2020; 146:2077-2087. [PMID: 32561975 PMCID: PMC7324435 DOI: 10.1007/s00432-020-03290-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Although biomarkers for patients with metastatic colorectal cancer exist, the benefit patients with RAS mutated tumors derive from established regimens is unclear. METHODS Efficacy of therapeutic strategies available for RAS mutated patients (addition of chemotherapeutic agents and/or anti angiogenic agents) were investigated in fourteen randomized controlled phase III trials at trial level by meta-analysing individual study hazard ratios and 95% confidence intervals (95% CI) for overall survival (OS) and progression free survival (PFS). RESULTS 6810 of 10,748 patients (63.3%) were available (48.5% RAS wildtype, 51.5% RAS mutated). Across all treatment lines, additional treatment efficacy (chemotherapy and/or anti angiogenic agents) was significantly smaller in RAS mutated compared to wildtype tumors for OS and PFS. In detail, patients with RAS mutated metastatic colorectal cancer derived significant benefit in PFS but not in OS by the addition of either chemotherapy or anti angiogenic agents to the respective comparator. In patients with RAS wildtype metastatic colorectal cancer, PFS and OS were improved by the addition of chemotherapy or anti angiogenic agent. CONCLUSION The therapeutic benefit of additional substances is less distinct in patients with RAS mutated as compared to RAS wildtype metastatic colorectal cancer, especially with regard to OS.
Collapse
Affiliation(s)
- Arndt Stahler
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ingrid Ricard
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Jobst C von Einem
- Department of Hematology, Oncology, and Tumor Immunology (CCM), Charité-Universtiaetsmedizin, Berlin, Germany
| | - Clemens Giessen-Jung
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christoph Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Marlies Michl
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Lisa Miller-Phillips
- Department of Medicine III and Comprehensive Cancer Centre, University Hospital Grosshadern, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Ivan Jelas
- Department of Hematology, Oncology, and Tumor Immunology (CCM), Charité-Universtiaetsmedizin, Berlin, Germany
| | - Sebastian Stintzing
- Department of Hematology, Oncology, and Tumor Immunology (CCM), Charité-Universtiaetsmedizin, Berlin, Germany
| | - Dominik Paul Modest
- Department of Hematology, Oncology, and Tumor Immunology (CVK), Charité-Universtiaetsmedizin, Berlin, Germany
| |
Collapse
|
32
|
Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers (Basel) 2020; 12:polym12061237. [PMID: 32485901 PMCID: PMC7362214 DOI: 10.3390/polym12061237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
The skin plays an important role in protecting the human body, and wound healing must be set in motion immediately following injury or trauma to restore the normal structure and function of skin. The extracellular matrix component of the skin mainly consists of collagen, glycosaminoglycan (GAG), elastin and hyaluronic acid (HA). Recently, natural collagen, polysaccharide and their derivatives such as collagen, gelatin, alginate, chitosan and pectin have been selected as the matrix materials of bioink to construct a functional artificial skin due to their biocompatible and biodegradable properties by 3D bioprinting, which is a revolutionary technology with the potential to transform both research and medical therapeutics. In this review, we outline the current skin bioprinting technologies and the bioink components for skin bioprinting. We also summarize the bioink products practiced in research recently and current challenges to guide future research to develop in a promising direction. While there are challenges regarding currently available skin bioprinting, addressing these issues will facilitate the rapid advancement of 3D skin bioprinting and its ability to mimic the native anatomy and physiology of skin and surrounding tissues in the future.
Collapse
|
33
|
Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J Control Release 2020; 323:24-35. [PMID: 32283209 DOI: 10.1016/j.jconrel.2020.04.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/13/2023]
Abstract
Supramolecular hydrogels confer control over structural properties in a reversible, dynamic, and biomimetic fashion. The design of supramolecular hydrogels with an improved structural and functional recapitulation of damaged organs is important for clinical applications. For wound healing management, in particular, an effective healing process, through the modulation of epidermal growth factor (EGF) delivery using supramolecular polysaccharide hydrogels, has yet to be developed. In this study, photo-responsive supramolecular polysaccharide hydrogels were formed through host-guest interactions between azobenzene and β-cyclodextrin groups conjugated to hyaluronic acid chains. By exploiting the photoisomerization properties of azobenzene under different wavelengths, a supramolecular hydrogel featuring a dynamic spatial network crosslink density through the application of a light stimulus was obtained. Under ultra violet (UV) light, the loosened hydrogel can rapidly release EGF, thereby enhancing EGF delivery at the wound site. Based on an in vivo assessment of the healing process through a full-thickness skin defect model, the controlled EGF release from a supramolecular hydrogel exhibited superior wound healing efficiency with respect to granulation tissue formation, growth factor levels, and angiogenesis. Therefore, the proposed supramolecular hydrogels are potentially valuable as controlled delivery systems for future clinical wound healing applications.
Collapse
|
34
|
Yang SS, Oh JM, Chun S, Kim BS, Kim CS, Lee J. Tauroursodeoxycholic acid induces angiogenic activity in endothelial cells and accelerates bone regeneration. Bone 2020; 130:115073. [PMID: 31626993 DOI: 10.1016/j.bone.2019.115073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
Angiogenesis is a crucial process during bone tissue regeneration. The aim of this study was to investigate the angiogenic activity and the potentiation of bone regeneration via angiogenesis using tauroursodeoxycholic acid (TUDCA) in vitro and in vivo. We investigated the effect of TUDCA on proliferation and angiogenic differentiation in human umbilical vein endothelial cells (HUVECs) and the associated signaling pathway. Proliferation was determined using crystal violet assay. Angiogenic effects were evaluated based on cell migration and tube formation. In order to explore TUDCA-signaling pathways, phosphorylation of mitogen activated protein kinase, protein kinase B (AKT), and endothelial nitric oxide synthase (eNOS) was determined using western blot. Furthermore, in vivo bone formation and angiogenesis were determined using a New Zealand outbred albino rabbit calvarial defect model, while angiogenesis and bone formation were evaluated using micro-CT and histological analysis. Our results show that TUDCA significantly increased cell proliferation. Moreover, TUDCA enhanced cell migration and tube formation in HUVECs. TUDCA increased the phosphorylation of AKT, ERK1/2, c-Jun N-terminal kinase, and eNOS. Specific inhibitors of ERK1/2 (PD98059), JNK (SP600125), and AKT (AKT1/2) inhibited the TUDCA-induced migration and tube formation, while the p38 inhibitor (SB203580) did not. The in vivo study used TUDCA to accelerate new blood vessel formation and promoted bone formation in rabbit calvarial defect model. These results indicate that TUDCA plays a critical role in enhancing the angiogenesis of endothelial cells and in vivo new bone regeneration. The use of TUDCA may contribute to the regeneration of bone tissue by improving angiogenesis.
Collapse
Affiliation(s)
- Sun-Sik Yang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University 77 Dunsan-ro, Seo-gu, Daejeon 302-120, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Chonbuk National Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Beom-Su Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University 77 Dunsan-ro, Seo-gu, Daejeon 302-120, Republic of Korea.
| |
Collapse
|
35
|
Zhou Y, Liu C, He J, Dong L, Zhu H, Zhang B, Feng X, Weng W, Cheng K, Yu M, Wang H. KLF2 + stemness maintains human mesenchymal stem cells in bone regeneration. Stem Cells 2019; 38:395-409. [PMID: 31721356 DOI: 10.1002/stem.3120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/01/2019] [Indexed: 01/04/2023]
Abstract
Mesenchymal stem cells (MSCs), which are undifferentiated stem cells with the property of stemness and the potential to differentiate into multiple lineages, including osteoblasts, have attracted a great deal of attention in bone tissue engineering. Consistent with the heterogeneity of MSCs, various surface markers have been used. However, it is still unclear which markers of MSCs are best for cell amplification in vitro and later bone regeneration in vivo. Krüppel-like Factor 2 (KLF2) is an important indicator of the stemness of human MSCs (hMSCs) and as early vascularization is also critical for bone regeneration, we used KLF2 as a novel in vitro marker for MSCs and investigated the angiogenesis and osteogenesis between KLF2+ MSCs and endothelial cells (ECs). We found a synergistic interaction between hMSCs and human umbilical vein ECs (HUVECs) in that KLF2+ stemness-maintained hMSCs initially promoted the angiogenesis of HUVECs, which in turn more efficiently stimulated the osteogenesis of hMSCs. In fact, KLF2+ hMSCs secreted angiogenic factors initially, with some of the cells then differentiating into pericytes through the PDGF-BB/PDGFR-β signaling pathway, which improved blood vessel formation. The matured HUVECs in turn synergistically enhanced the osteogenesis of KLF2+ hMSCs through upregulated vascular endothelial growth factor. A three-dimensional coculture model using cell-laden gelatin methacrylate (GelMA) hydrogel further confirmed these results. This study provides insight into the stemness-directed synergistic interaction between hMSCs and HUVECs, and our results will have a profound impact on further strategies involving the application of KLF2+ hMSC/HUVEC-laden GelMA hydrogel in vascular network bioengineering and bone regeneration.
Collapse
Affiliation(s)
- Ying Zhou
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianxiang He
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiyong Zhu
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Bin Zhang
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxia Feng
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Kui Cheng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
36
|
He LH, Zhang ZY, Zhang X, Xiao E, Liu M, Zhang Y. Osteoclasts may contribute bone substitute materials remodeling and bone formation in bone augmentation. Med Hypotheses 2019; 135:109438. [PMID: 31739077 DOI: 10.1016/j.mehy.2019.109438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
Bone augmentation is increasingly important in implantology. Bone substitute materials exert essential roles during bone augmentation process. However, accelerating bone substitute materials remodeling and acquiring high bone architecture quality was still the challenges of bone augmentation. Accumulated studies had suggested osteoclasts is the key cell type to resorb bone or bone substitute materials. Our previous study and other studies suggested osteoclasts contributed to bone formation by promoting osteoblast function and facilitate angiogenesis. We hypothesized that bone substitute materials loaded osteoclastogenic cytokines or osteoclast progenitors will help to bone substitute materials rapid remodeling and subsequent bone formation. Our hypothesis could help to lessen long-term post-bone augmentation period and acquire better bone quality for osseointegration.
Collapse
Affiliation(s)
- Lin-Hai He
- First Clinical Division, Peking University School Hospital of Stomatology, China; Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, China
| | - Zhi-Yong Zhang
- First Clinical Division, Peking University School Hospital of Stomatology, China
| | - Xiao Zhang
- First Clinical Division, Peking University School Hospital of Stomatology, China
| | - E Xiao
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, China
| | - Meng Liu
- Laser and Cosmetic Surgery Division, Peking University Hospital of Stomatology, China
| | - Yi Zhang
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
37
|
Park HS, Ashour D, Elsharoud A, Chugh RM, Ismail N, El Andaloussi A, Al-Hendy A. Towards Cell free Therapy of Premature Ovarian Insufficiency: Human Bone Marrow Mesenchymal Stem Cells Secretome Enhances Angiogenesis in Human Ovarian Microvascular Endothelial Cells. ACTA ACUST UNITED AC 2019; 5. [PMID: 32494757 PMCID: PMC7269190 DOI: 10.24966/srdt-2060/100019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Primary Ovarian Insufficiency (POI) refers to an ovarian loss of function in women under the age of 40. Unfortunately, currently, there is no effective treatment available for POI-related infertility. Alternatives such as the use of egg donations are culturally and ethically unacceptable to many couples. Human Bone marrow-derived Mesenchymal Stem Cells (MSCs) are known for their ability to differentiate into other cell types, once primed by the organ microenvironment. Importantly MSCs produce a vast array of bioactive factors many of them have been shown to enhance neovascularization in various tissues. Recently, preliminary data from our ongoing clinical trial revealed encouraging preliminary data after autologous MSC engraftment into the ovaries of 2 POI patients with durable elevation in serum estrogen levels and increase in size of treated ovaries sustained up to one-year post cell therapy. In this study, we investigated the action of the mechanisms of MSCs treatment on a POI ovary. We designed an in vitro study using MSC secretome and Human Ovarian Endothelial Cells (HOVECs) to understand the molecular mechanisms by which MSC mediates their angiogenic properties and regenerative effects. Human primary HOVECs were treatment with MSC secretome and examined by FACS for the expression of angiogenesis markers such as Endoglin, Tie-2, and VEGF. The formation of vessels was evaluated by using a 3D Matrigel tubulogenesis assay. We observed that the expression of proliferation marker Ki67 was significantly increased under treatment with MSC secretome in HOVEC cells (P4). MSCs secretome treatment also induced significantly higher expression of several angiogenic markers such as VEGFR2, Tie2/Tek, VE-Cadherin, Endoglin, and VEGF compared to matched control (P4). Furthermore, MSC secretome significantly increased the number of branching points in tubulogenesis assay (P4). Our study suggests that MSC secretome likely contains bioactive factors that can enhance ovarian angiogenesis. Further characterization of these factors can lead to novel therapeutic options for women with premature ovarian insufficiency and other related causes of female infertility.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Dalia Ashour
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA.,Department of Pathology, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Amro Elsharoud
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Rishi Man Chugh
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Nahed Ismail
- Department of Pathology, University at Illinois at Chicago, Medical College, Chicago, USA
| | | | - Ayman Al-Hendy
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| |
Collapse
|
38
|
Xu L, Huang Y, Wang D, Zhu S, Wang Z, Yang Y, Guo Y. Reseeding endothelial cells with fibroblasts to improve the re-endothelialization of pancreatic acellular scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:85. [PMID: 31292746 DOI: 10.1007/s10856-019-6287-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Pancreatic transplantation remains the only cure for diabetes, but the shortage of donors limits its clinical application. Whole organ decellularized scaffolds offer a new opportunity for pancreatic organ regeneration; however inadequate endothelialization and vascularization can prevent sufficient transport of oxygen and nutrient supplies to the transplanted organ, as well as leading unwanted thrombotic events. In the present study, we explored the re-endothelialization of rat pancreatic acellular scaffolds via circulation perfusion using human skin fibroblasts (FBs) and human umbilical vein endothelial cells (HUVECs). Our results revealed that the cell adhesion rate when these cells were co-cultured was higher than under control conditions, and this increase was associated with increased release of growth factors including VEGF, FGFb, EGF, and IGF-1 as measured by ELISA. When these recellularized organs were implanted in vivo for 28 days in rat dorsal subcutaneous pockets, we found that de novo vasculature formation in the co-culture samples was superior to the control samples. Together these results suggest that endothelial cell and FB co-culture enhances the re-endothelialization and vascularization of pancreatic acellular scaffolds.
Collapse
Affiliation(s)
- Liancheng Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Dongzhi Wang
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shajun Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, Nantong, China.
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
39
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 492] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
40
|
Lai PMR, Du R. Differentially Expressed Genes Associated with the Estrogen Receptor Pathway in Cerebral Aneurysms. World Neurosurg 2019; 126:e557-e563. [DOI: 10.1016/j.wneu.2019.02.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 01/23/2023]
|
41
|
Oria VO, Lopatta P, Schmitz T, Preca BT, Nyström A, Conrad C, Bartsch JW, Kulemann B, Hoeppner J, Maurer J, Bronsert P, Schilling O. ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol Oncol 2019; 13:456-479. [PMID: 30556643 PMCID: PMC6360373 DOI: 10.1002/1878-0261.12426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
A disintegrin and a metalloprotease (ADAM)‐9 is a metzincin cell‐surface protease with strongly elevated expression in solid tumors, including pancreatic ductal adenocarcinoma (PDAC). In this study, we performed immunohistochemistry (IHC) of a tissue microarray (TMA) to examine the expression of ADAM9 in a cohort of >100 clinically annotated PDAC cases. We report that ADAM9 is prominently expressed by PDAC tumor cells, and increased ADAM9 expression levels correlate with poor tumor grading (P = 0.027) and the presence of vasculature invasion (P = 0.017). We employed gene expression silencing to generate a loss‐of‐function system for ADAM9 in two established PDAC cell lines. In vitro analysis showed that loss of ADAM9 does not impede cellular proliferation and invasiveness in basement membrane. However, ADAM9 plays a crucial role in mediating cell migration and adhesion to extracellular matrix substrates such as fibronectin, tenascin, and vitronectin. This effect appears to depend on its catalytic activity. In addition, ADAM9 facilitates anchorage‐independent growth. In AsPC1 cells, but not in MiaPaCa‐2 cells, we noted a pronounced yet heterogeneous impact of ADAM9 on the abundance of various integrins, a process that we characterized as post‐translational regulation. Sprout formation of human umbilical vein endothelial cells (HUVECs) is promoted by ADAM9, as examined by transfer of cancer cell conditioned medium; this finding further supports a pro‐angiogenic role of ADAM9 expressed by PDAC cancer cells. Immunoblotting analysis of cancer cell conditioned medium highlighted that ADAM9 regulates the levels of angiogenic factors, including shed heparin‐binding EGF‐like growth factor (HB‐EGF). Finally, we carried out orthotopic seeding of either wild‐type AsPC‐1 cells or AsPC‐1 cells with silenced ADAM9 expression into murine pancreas. In this in vivo setting, ADAM9 was also found to foster angiogenesis without an impact on tumor cell proliferation. In summary, our results characterize ADAM9 as an important regulator in PDAC tumor biology with a strong pro‐angiogenic impact.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Germany.,Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Birte Kulemann
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Jens Hoeppner
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Jochen Maurer
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Peter Bronsert
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| |
Collapse
|
42
|
First-in-human study of the anti-HB-EGF antibody U3-1565 in subjects with advanced solid tumors. Invest New Drugs 2018; 37:147-158. [PMID: 30056611 DOI: 10.1007/s10637-018-0646-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
U3-1565 is a monoclonal antibody directed against heparin-binding epidermal growth factor-like growth factor (HB-EGF), which mediates angiogenesis via induction of vascular endothelial growth factor (VEGF-A). This first-in-human study characterized the safety, tolerability, efficacy, pharmacokinetics, and pharmacodynamics of U3-1565 in subjects with advanced solid tumors. In Part 1 (dose escalation following a modified 3 + 3 design), Cohorts 1-4, U3-1565 was administered at 2, 8, 16, and 24 mg/kg every 3 weeks for Cycle 1 and every 2 weeks thereafter. In Part 1, Cohort 5, and in Part 2 (dose expansion), U3-1565 was administered at 24 mg/kg every week. Thirty-six subjects were enrolled and treated (15 in Part 1; 21 in Part 2). No subject experienced dose limiting toxicity and maximum tolerated dose was not reached. All drug-related events were Grade 1 or 2 in severity, with fatigue and rash predominating. Following treatment with U3-1565, 1 subject with metastatic colorectal cancer experienced partial response and 6 subjects achieved stable disease. Four subjects completed the study main phase (first 12 cycles) and entered the extension phase. Of the 6/36 subjects with high (> 1500 pg/ml) baseline VEGF-A levels, all showed a decrease in VEGF-A (median - 60% [-22% to -97%]). Of the remaining subjects, only 19/30 showed a decrease (median - 18% [-2% to -82%]). Subjects with high VEGF-A baseline levels remained on treatment longer (3/6 entered study extension phase versus 1/30), and were more likely to show disease control (3/6 versus 4/30). In conclusion, U3-1565 demonstrates both proof of mechanism and clinical activity across different tumor types.
Collapse
|
43
|
Berndt R, Hummitzsch L, Heß K, Albrecht M, Zitta K, Rusch R, Sarras B, Bayer A, Cremer J, Faendrich F, Groß J. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach. Stem Cell Res Ther 2018; 9:117. [PMID: 29703251 PMCID: PMC5921555 DOI: 10.1186/s13287-018-0871-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
BACKROUND Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). METHODS Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. RESULTS Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. CONCLUSIONS In summary, PCMO improve angiogenesis and tissue recovery in chronic ischemic muscle and first clinical results promise to provide an effective and safe treatment of CLI.
Collapse
Affiliation(s)
- Rouven Berndt
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany.
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Beke Sarras
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Andreas Bayer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Fred Faendrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Groß
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| |
Collapse
|
44
|
Wang X, Yuan W, Wang X, Qi J, Qin Y, Shi Y, Zhang J, Gong J, Dong Z, Liu X, Sun C, Chai R, Le Noble F, Liu D. The somite-secreted factor Maeg promotes zebrafish embryonic angiogenesis. Oncotarget 2018; 7:77749-77763. [PMID: 27780917 PMCID: PMC5363618 DOI: 10.18632/oncotarget.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 01/06/2023] Open
Abstract
MAM and EGF containing gene (MAEG), also called Epidermal Growth Factor-like domain multiple 6 (EGFL6), belongs to the epidermal growth factor repeat superfamily. The role of Maeg in zebrafish angiogenesis remains unclear. It was demonstrated that maeg was dynamically expressed in zebrafish developing somite during a time window encompassing many key steps in embryonic angiogenesis. Maeg loss-of-function embryos showed reduced endothelial cell number and filopodia extensions of intersegmental vessels (ISVs). Maeg gain-of-function induced ectopic sprouting evolving into a hyperbranched and functional perfused vasculature. Mechanistically we demonstrate that Maeg promotes angiogenesis dependent on RGD domain and stimulates activation of Akt and Erk signaling in vivo. Loss of Maeg or Itgb1, augmented expression of Notch receptors, and inhibiting Notch signaling or Dll4 partially rescued angiogenic phenotypes suggesting that Notch acts downstream of Itgb1. We conclude that Maeg acts as a positive regulator of angiogenic cell behavior and formation of functional vessels.
Collapse
Affiliation(s)
- Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xueqian Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jialing Qi
- Medical College, Nantong University, Nantong, China
| | - Yinyin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Zhang
- Medical College, Nantong University, Nantong, China
| | - Jie Gong
- School of life science, Nantong University, Nantong, China
| | - Zhangji Dong
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Chen Sun
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
45
|
Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z, Zhang B. Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in Vitro. Eur J Vasc Endovasc Surg 2017; 55:257-265. [PMID: 29208350 DOI: 10.1016/j.ejvs.2017.10.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Endothelial cells (ECs) play an important role in neovascularisation, but are too limited in number for adequate therapeutic applications. Mesenchymal stem cells (MSCs) have the potential to differentiate into endothelial lineage cells, which makes them attractive candidates for therapeutic angiogenesis. The aim of this study was to investigate efficient differentiation of MSCs into ECs by inducing medium in vitro. METHODS MSCs were isolated from bone marrow by density gradient centrifugation. The characterisation of the MSCs was determined by their cluster of differentiation (CD) marker profile. Inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied to differentiate the MSCs into ECs. Endothelial differentiation was quantitatively evaluated using flow cytometry. Real time quantitative PCR (qRT-PCR) was used to analyse mRNA expression of endothelial markers. Tube formation assay was further performed to examine the functional status of the differentiated MSCs. RESULTS Flow cytometry analysis demonstrated that CD31+ and CD34+ cells increased steadily from 12% at 3 days, to 40% at 7 days, and to 60% at 14 days. Immunofluorescence staining further confirmed the expression of CD31 and CD34. qRT-PCR showed that expression of von Willebrand factor (vWF), vascular endothelial cadherin (VE-cadherin) and vascular endothelial growth factor receptor-2 (VEGFR-2) were significantly higher in the induced MSCs group compared with the uninduced MSCs group. The functional behavior of the differentiated cells was tested by tube formation assay in vitro on matrigel. Induced MSCs were capable of developing capillary networks, and progressive formation of vessel like structures was associated with increased EC population. CONCLUSIONS These results provide a method to efficiently promote differentiation of MSCs into ECs in vitro for potential application in the treatment of peripheral arterial disease.
Collapse
Affiliation(s)
- Chengen Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Haematology, Peking University First Hospital, Beijing, China.
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China.
| | - Huihui Liu
- Department of Haematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Haematology, Peking University First Hospital, Beijing, China
| | - Yue Yin
- Department of Haematology, Peking University First Hospital, Beijing, China
| | - Guochen Niu
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Bihui Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
46
|
Hellen IA, Steffen M, Stocker T, Christian S. Small but mighty: Platelets as central effectors of host defense. Thromb Haemost 2017; 117:651-661. [DOI: 10.1160/th16-12-0921] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
Abstract
SummaryPlatelets actively participate in inflammatory processes and drive diseases such as atherosclerosis, rheumatoid arthritis and cancer metastasis. However, platelets also have anti-inflammatory and anti-infective properties, which have received less consideration in the past. In this review, we highlight recent findings on the role of platelets in host defense and describe regulatory pathways modulating immuneresponses. Furthermore, we discuss the role of platelets for the resolution of inflammation and tissue repair. These conceptual changes contribute to our understanding of platelet biology in disease.
Collapse
|
47
|
Sawaya AP, Pastar I, Stojadinovic O, Lazovic S, Davis SC, Gil J, Kirsner RS, Tomic-Canic M. Topical mevastatin promotes wound healing by inhibiting the transcription factor c-Myc via the glucocorticoid receptor and the long non-coding RNA Gas5. J Biol Chem 2017; 293:1439-1449. [PMID: 29158265 DOI: 10.1074/jbc.m117.811240] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetic foot ulcers (DFUs), a life-threatening complication of diabetes mellitus, have limited treatment options, often resulting in amputations. HMG-CoA reductase inhibitors such as statins are cholesterol-reducing agents that may provide a new therapeutic option. Statins target the cholesterol pathway and block the synthesis of the wound-healing inhibitors farnesyl pyrophosphate (FPP) and cortisol, ligands for the glucocorticoid receptor (GR). Here we demonstrate that the naturally occurring statin mevastatin reverses FPP's effects and promotes healing by using in vitro wound healing assays, human ex vivo and porcine in vivo wound models, and DFU tissue. Moreover, we measured cortisol levels by ELISA and found that mevastatin inhibited cortisol synthesis in keratinocytes and biopsies from patients with DFU. Of note, topical mevastatin stimulated epithelialization and angiogenesis in vivo Mevastatin also reversed FPP-mediated induction of the GR target, the transcription factor c-Myc (a biomarker of non-healing wounds), in porcine and human wound models. Importantly, mevastatin reversed c-Myc overexpression in DFUs. It induced expression of the long noncoding RNA Gas5 that blocks c-Myc expression, which was confirmed by overexpression studies. We conclude that topical mevastatin accelerates wound closure by promoting epithelialization via multiple mechanisms: modulation of GR ligands and induction of the long noncoding RNA Gas5, leading to c-Myc inhibition. In light of these findings, we propose that repurposing statin drugs for topical treatment of DFUs may offer another option for managing this serious condition.
Collapse
Affiliation(s)
- Andrew P Sawaya
- From the Molecular and Cellular Pharmacology Program and.,Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,the Immunology, Infection, and Inflammation Graduate Program, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia, and
| | - Sonja Lazovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Stephen C Davis
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Joel Gil
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,the Wound Healing Clinical Research Program, University of Miami Hospital, University of Miami Health System, Miami, Florida 33136
| | - Marjana Tomic-Canic
- From the Molecular and Cellular Pharmacology Program and .,Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,the Wound Healing Clinical Research Program, University of Miami Hospital, University of Miami Health System, Miami, Florida 33136
| |
Collapse
|
48
|
Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 2017; 3:31. [PMID: 28835854 PMCID: PMC5563895 DOI: 10.1186/s40942-017-0084-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/01/2017] [Indexed: 11/10/2022] Open
Abstract
Retinal and choroidal neovascularization are a major cause of significant visual impairment, worldwide. Understanding the various factors involved in the accompanying physiopathology is vital for development of novel treatments, and most important, for preserving patient vision. The intraocular use of anti-vascular endothelial growth factor therapeutics has improved management of the retinal and choroidal neovascularization but some patients do not respond, suggesting other vascular mediators may also contribute to ocular angiogenesis. Several recent studies examined possible new targets for future anti-angiogenic therapies. Potential targets of retinal and choroidal neovascularization therapy include members of the platelet-derived growth factor family, vascular endothelial growth factor sub-family, epidermal growth factor family, fibroblast growth factor family, transforming growth factor-β superfamily (TGF-β1, activins, follistatin and bone morphogenetic proteins), angiopoietin-like family, galectins family, integrin superfamily, as well as pigment epithelium derived factor, hepatocyte growth factor, angiopoietins, endothelins, hypoxia-inducible factors, insulin-like growth factors, cytokines, matrix metalloproteinases and their inhibitors and glycosylation proteins. This review highlights current antiangiogenic therapies under development, and discusses future retinal and choroidal pro- and anti-angiogenic targets as wells as the importance of developing of new drugs.
Collapse
|
49
|
Li Z, Yan H, Yuan J, Cao L, Lin A, Dai H, Ni Z, Qian J, Fang W. Pharmacological inhibition of heparin-binding EGF-like growth factor promotes peritoneal angiogenesis in a peritoneal dialysis rat model. Clin Exp Nephrol 2017; 22:257-265. [PMID: 28710535 DOI: 10.1007/s10157-017-1440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Molecular mechanisms of peritoneal dialysis (PD) ultrafiltration failure, peritoneal neo-angiogenesis, and fibrosis remain to be determined. We aimed to determine the role of heparin-binding EGF-like growth factor (HB-EGF) inhibition on angiogenesis of peritoneal membrane in a PD rat model. METHODS 32 male Wistar rats were assigned into (1) control group; (2) uremic non-PD group: subtotal nephrectomy-induced uremic rats without PD; (3) uremic rats subjected to PD: uremic rats that were dialyzed with Dianeal® for 4 weeks; (4) CRM 197 group: dialyzed uremic rats were supplemented with CRM197, a specific HB-EGF inhibitor. Peritoneal transport function was examined by peritoneal equilibration test. Expression of HB-EGF and EGFR in peritoneal samples were examined by real-time PCR, immunohistochemical staining, and western blot. RESULTS Progressive angiogenesis and fibrosis were observed in uremic PD rats, and there were associated with decreased net ultrafiltration (nUF), increased permeability of peritoneal membrane, and reduced expression of HB-EGF and EGFR protein and mRNA in uremic PD rats compared to uremic non-PD or control groups (both p < 0.05). CRM197 significantly induced peritoneal membrane permeability, decreased nUF, increased higher vessel density, and reduced pericyte count compared to that of uremic PD rats. The levels of HB-EGF and EGFR expression negatively correlated with vessel density in peritoneal membrane (both p < 0.001). CONCLUSION PD therapy was associated with peritoneal angiogenesis, functional deterioration, and downregulation of HB-EGF/EGFR. Pharmacological inhibition of HB-EGF promoted PD-induced peritoneal angiogenesis and fibrosis and ultrafiltration decline, suggesting that HB-EGF downregulation contributes to peritoneal functional deterioration in the uremic PD rat model.
Collapse
Affiliation(s)
- Zhenyuan Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Hao Yan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Jiangzi Yuan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Liou Cao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Aiwu Lin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Huili Dai
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Jiaqi Qian
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
50
|
The Effect of Omeprazole Usage on the Viability of Random Pattern Skin Flaps in Rats. Ann Plast Surg 2017; 78:e5-e9. [DOI: 10.1097/sap.0000000000000922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|