1
|
Zhao J, Sarkar N, Ren Y, Pathak AP, Grayson WL. Engineering next-generation oxygen-generating scaffolds to enhance bone regeneration. Trends Biotechnol 2024:S0167-7799(24)00250-6. [PMID: 39343620 DOI: 10.1016/j.tibtech.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
In bone, an adequate oxygen (O2) supply is crucial during development, homeostasis, and healing. Oxygen-generating scaffolds (OGS) have demonstrated significant potential to enhance bone regeneration. However, the complexity of O2 delivery and signaling in vivo makes it challenging to tailor the design of OGS to precisely meet this biological requirement. We review recent advances in OGS and analyze persisting engineering and translational hurdles. We also discuss the potential of computational and machine learning (ML) models to facilitate the integration of novel imaging data with biological readouts and advanced biomanufacturing technologies. By elucidating how to tackle current challenges using cutting-edge technologies, we provide insights for transitioning from traditional to next-generation OGS to improve bone regeneration in patients.
Collapse
Affiliation(s)
- Jingtong Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yunke Ren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules 2024; 14:813. [PMID: 39062526 PMCID: PMC11274915 DOI: 10.3390/biom14070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
- Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| |
Collapse
|
3
|
Hong JH, Kim SH, Kim HG, Jang JH, Son RG, Pack SP, Park YH, Kang P, Jeong KJ, Kim JS, Choi H, Kim SU, Jung YW. Effect of Human or Mouse IL-7 on the Homeostasis of Porcine T Lymphocytes. Immune Netw 2021; 21:e24. [PMID: 34277114 PMCID: PMC8263216 DOI: 10.4110/in.2021.21.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/01/2022] Open
Abstract
Due to the inconsistent fluctuation of blood supply for transfusion, much attention has been paid to the development of artificial blood using other animals. Although mini-pigs are candidate animals, contamination of mini-pig T cells in artificial blood may cause a major safety concern. Therefore, it is important to analyze the cross-reactivity of IL-7, the major survival factor for T lymphocytes, between human, mouse, and mini-pig. Thus, we compared the protein sequences of IL-7 and found that porcine IL-7 was evolutionarily different from human IL-7. We also observed that when porcine T cells were cultured with either human or mouse IL-7, these cells did not increase the survival or proliferation compared to negative controls. These results suggest that porcine T cells do not recognize human or mouse IL-7 as their survival factor.
Collapse
Affiliation(s)
- Ji Hwa Hong
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Sang Hoon Kim
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Hyun Gyung Kim
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Jun Ho Jang
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Cheongju 28116, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center (FARRC), Cheongju 28116, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kang-Jin Jeong
- Futuristic Animal Resource & Research Center (FARRC), Cheongju 28116, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Ji-Su Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56216, Korea
| | - Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Cheongju 28116, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
4
|
Haldar R, Gupta D, Chitranshi S, Singh MK, Sachan S. Artificial Blood: A Futuristic Dimension of Modern Day Transfusion Sciences. Cardiovasc Hematol Agents Med Chem 2019; 17:11-16. [PMID: 31204626 PMCID: PMC6864588 DOI: 10.2174/1871525717666190617120045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023]
Abstract
Artificial blood is an innovative concept of transfusion medicine where specifically designed compounds perform the task of transport and delivery of oxygen in the body to replace this function of allogenic human blood transfusion. Several molecules have been developed in the past few decades to achieve this objective and continous refinements are being continuously made in the quest of the ideal blood substitute. Currently, available technology manufactures artificial blood from haemoglobin obtained from outdated human/bovine blood (Haemoglobin Based Oxygen Carriers) or utilizing Perfluorocarbons. These synthetic blood substitutes are advantageous in that they do not require compatibility testing, are free from blood borne infections, have prolonged shelf life and do not require refrigeration. Artificial blood is projected to have a significant impact on the development of medical care in the future. It can complement the current blood products for transfusion and create a stable supply of safe and effective products. It is likely to reduce the requirements of blood transfusions drastically especially in settings of trauma and surgery thereby reducing the reliance on banked donated blood.
Collapse
Affiliation(s)
- Rudrashish Haldar
- Department of Anaesthesia, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Devendra Gupta
- Department of Anaesthesia, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shweta Chitranshi
- Department of Anaesthesia, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manish Kumar Singh
- Department of Anaesthesia, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sumit Sachan
- Department of Anaesthesia, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
5
|
Moradi S, Jahanian-Najafabadi A, Roudkenar MH. Artificial Blood Substitutes: First Steps on the Long Route to Clinical Utility. Clin Med Insights Blood Disord 2016; 9:33-41. [PMID: 27812292 PMCID: PMC5084831 DOI: 10.4137/cmbd.s38461] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 11/28/2022]
Abstract
The 21st century is challenging for human beings. Increased population growth, population aging, generation of new infectious agents, and natural disasters are some threatening factors for the current state of blood transfusion. However, it seems that science and technology not only could overcome these challenges but also would turn many human dreams to reality in this regard. Scientists believe that one of the future evolutionary innovations could be artificial blood substitutes that might pave the way to a new era in transfusion medicine. In this review, recent status and progresses in artificial blood substitutes, focusing on red blood cells substitutes, are summarized. In addition, steps taken toward the development of artificial blood technology and some of their promises and hurdles will be highlighted. However, it must be noted that artificial blood is still at the preliminary stages of development, and to fulfill this dream, ie, to routinely transfuse artificial blood into human vessels, we still have to strengthen our knowledge and be patient.
Collapse
Affiliation(s)
- Samira Moradi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- Department of Medical Biotechnology, Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences Rasht, Iran
| |
Collapse
|
6
|
Shegokar R, Sawant S, Al Shaal L. Applications of Cell-Based Drug Delivery Systems: Use of Single Cell Assay. SERIES IN BIOENGINEERING 2016. [DOI: 10.1007/978-3-662-49118-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Moon S, Lee SH, Ryoo HW, Kim JK, Ahn JY, Kim SJ, Jeon JC, Lee KW, Sung AJ, Kim YJ, Lee DR, Do BS, Park SR, Lee JS. Preventable trauma death rate in Daegu, South Korea. Clin Exp Emerg Med 2015; 2:236-243. [PMID: 27752603 PMCID: PMC5052913 DOI: 10.15441/ceem.15.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study investigated the preventable death rate in Daegu, South Korea, and assessed affecting factors and preventable factors in order to improve the treatment of regional trauma patients. METHODS All traumatic deaths between January 2012 and December 2012 in 5 hospitals in Daegu were analyzed by panel review, which were classified into preventable and non-preventable deaths. We determined the factors affecting trauma deaths and the preventable factors during trauma care. RESULTS There were overall 358 traumatic deaths during the study period. Two hundred thirty four patients were selected for the final analysis after excluding cases of death on arrival, delayed death, and unknown causes. The number of preventable death was 59 (25.2%), which was significantly associated with mode of arrival, presence of head injury, date, and time of injury. A multivariate analysis revealed that preventable death was more likely when patients were secondly transferred from another hospital, visited hospital during non-office hour, and did not have head injuries. The panel discovered 145 preventable factors, which showed that majority of factors occurred in emergency departments (49.0%), and were related with system process (76.6%). CONCLUSION The preventable trauma death rate in Daegu was high, and mostly process-related.
Collapse
Affiliation(s)
- Sungbae Moon
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Suk Hee Lee
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyun Wook Ryoo
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jong Kun Kim
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae Yun Ahn
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sung Jin Kim
- Department of Emergency Medicine, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Jae Cheon Jeon
- Department of Emergency Medicine, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Kyung Woo Lee
- Department of Emergency Medicine, Daegu Catholic University Medical Center, Daegu, Korea
| | - Ae Jin Sung
- Department of Emergency Medicine, Daegu Catholic University Medical Center, Daegu, Korea
| | - Yun Jeong Kim
- Department of Emergency Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - Dae Ro Lee
- Department of Emergency Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - Byung Soo Do
- Department of Emergency Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Sin Ryul Park
- Department of Emergency Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin-Seok Lee
- Department of Health Policy and Management, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Alam F, Yadav N, Ahmad M, Shadan M. Blood substitutes: possibilities with nanotechnology. Indian J Hematol Blood Transfus 2014; 30:155-62. [PMID: 25114400 PMCID: PMC4115085 DOI: 10.1007/s12288-013-0309-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology deals with molecules in the nanometer (10(-9)) range and is currently being used successfully in the field of medicine. Nanotechnology has important implications in nearly all the branches of medicine and it has all the capabilities to revolutionize the vast field of medicine in future. Nanotechnological advancements have been used for the preparation of artificial hemoglobin. It is formed by assembling the hemoglobin molecules into a soluble complex. A recent approach includes the assembling of this artificial hemoglobin with enzymes such as catalase and superoxide dismutase into a nano-complex. This complex acts as an oxygen carrier as well as an antioxidant in conditions with ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Feroz Alam
- />Department of Pathology, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Neha Yadav
- />All India Institute of Medical Sciences, New Delhi, India
| | - Murad Ahmad
- />Department of Pathology, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Mariyam Shadan
- />Department of Pathology, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
9
|
Li H, Wijekoon A, Leipzig ND. Encapsulated Neural Stem Cell Neuronal Differentiation in Fluorinated Methacrylamide Chitosan Hydrogels. Ann Biomed Eng 2013; 42:1456-69. [DOI: 10.1007/s10439-013-0925-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
|
10
|
Varnado CL, Mollan TL, Birukou I, Smith BJ, Henderson DP, Olson JS. Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal 2013; 18:2314-28. [PMID: 23025383 PMCID: PMC3638513 DOI: 10.1089/ars.2012.4917] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/23/2012] [Accepted: 10/01/2012] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. RECENT ADVANCES Large amounts of recombinant human Hb can be expressed and purified from transgenic Escherichia coli. The physiological suitability of this material can be enhanced using protein-engineering strategies to address specific efficacy and toxicity issues. Mutagenesis of Hb can (i) adjust dioxygen affinity over a 100-fold range, (ii) reduce nitric oxide (NO) scavenging over 30-fold without compromising dioxygen binding, (iii) slow the rate of autooxidation, (iv) slow the rate of hemin loss, (v) impede subunit dissociation, and (vi) diminish irreversible subunit denaturation. Recombinant Hb production is potentially unlimited and readily subjected to current good manufacturing practices, but may be restricted by cost. Acellular Hb-based O(2) carriers have superior shelf-life compared to red blood cells, are universally compatible, and provide an alternative for patients for whom no other alternative blood products are available or acceptable. CRITICAL ISSUES Remaining objectives include increasing Hb stability, mitigating iron-catalyzed and iron-centered oxidative reactivity, lowering the rate of hemin loss, and lowering the costs of expression and purification. Although many mutations and chemical modifications have been proposed to address these issues, the precise ensemble of mutations has not yet been identified. FUTURE DIRECTIONS Future studies are aimed at selecting various combinations of mutations that can reduce NO scavenging, autooxidation, oxidative degradation, and denaturation without compromising O(2) delivery, and then investigating their suitability and safety in vivo.
Collapse
Affiliation(s)
| | - Todd L. Mollan
- Center for Biologics Evaluation and Research, Division of Hematology, United States Food and Drug Administration, Bethesda, Maryland
| | - Ivan Birukou
- Department of Biochemistry, Duke University, Durham, North Carolina
| | - Bryan J.Z. Smith
- Department of Biology, The University of Texas of the Permian Basin, Odessa, Texas
| | - Douglas P. Henderson
- Department of Biology, The University of Texas of the Permian Basin, Odessa, Texas
| | - John S. Olson
- Department of Biochemistry & Cell Biology, Rice University, Houston, Texas
| |
Collapse
|
11
|
Modery-Pawlowski CL, Tian LL, Pan V, McCrae KR, Mitragotri S, Sen Gupta A. Approaches to synthetic platelet analogs. Biomaterials 2013; 34:526-41. [DOI: 10.1016/j.biomaterials.2012.09.074] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/29/2012] [Indexed: 11/15/2022]
|
12
|
Tan LK. World Blood Donor Day: The Challenges Ahead. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2012. [DOI: 10.47102/annals-acadmedsg.v41n6p236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Abstract
Plasma volume expanders comprise a heterogeneous group of substances used in medicine that are intravenously administered in cases of great blood loss owing to surgery or medical emergency. These substances, however, can also be used to artificially enhance performance of healthy athletes in sport activities, and to mask the presence of others substances. These practices are considered doping, and are therefore prohibited by the International Olympic Committee and the World Antidoping Agency. Consequently, drug testing procedures are essential. The present work provides an overview of plasma volume expanders, assembling pertinent data such as chemical characteristics, physiological aspects, adverse effects, doping and analytical detection methods, which are currently dispersed in the literature.
Collapse
|
14
|
Prevention of the pulmonary vasoconstrictor effects of HBOC-201 in awake lambs by continuously breathing nitric oxide. Anesthesiology 2009; 110:113-22. [PMID: 19104178 DOI: 10.1097/aln.0b013e318190bc4f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hemoglobin-based oxygen-carrying solutions (HBOC) provide emergency alternatives to blood transfusion to carry oxygen to tissues without the risks of disease transmission or transfusion reaction. Two primary concerns hampering the clinical acceptance of acellular HBOC are the occurrence of systemic and pulmonary vasoconstriction and the maintenance of the heme-iron in the reduced state (Fe2+). We recently demonstrated that pretreatment with inhaled nitric oxide prevents the systemic hypertension induced by HBOC-201 (polymerized bovine hemoglobin) infusion in awake mice and sheep without causing methemoglobinemia. However, the impact of HBOC-201 infusion with or without inhaled nitric oxide on pulmonary vascular tone has not yet been examined. METHODS The pulmonary and systemic hemodynamic effects of breathing nitric oxide both before and after the administration of HBOC-201 were determined in healthy, awake lambs. RESULTS Intravenous administration of HBOC-201 (12 ml/kg) induced prolonged systemic and pulmonary vasoconstriction. Pretreatment with inhaled nitric oxide (80 parts per million [ppm] for 1 h) prevented the HBOC-201--induced increase in mean arterial pressure but not the increase of pulmonary arterial pressure, systemic vascular resistance, or pulmonary vascular resistance. Pretreatment with inhaled nitric oxide (80 ppm for 1 h) followed by breathing a lower concentration of nitric oxide (5 ppm) during and after HBOC-201 infusion prevented systemic and pulmonary vasoconstriction without increasing methemoglobin levels. CONCLUSIONS These findings demonstrate that pretreatment with inhaled nitric oxide followed by breathing a lower concentration of the gas during and after administration of HBOC-201 may enable administration of an acellular hemoglobin substitute without vasoconstriction while preserving its oxygen-carrying capacity.
Collapse
|
15
|
Wang QZ, Chen XG, Li ZX, Wang S, Liu CS, Meng XH, Liu CG, Lv YH, Yu LJ. Preparation and blood coagulation evaluation of chitosan microspheres. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1371-7. [PMID: 17914628 DOI: 10.1007/s10856-007-3243-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 07/26/2007] [Indexed: 05/17/2023]
Abstract
Cross-linked chitosan microspheres (40-100 microm) with smooth surface were prepared by the methods of emulsification and ethanol coagulant. FTIR results showed that the cross-linking reaction occurred on the amino groups of chitosan molecules. The swelling characteristic of chitosan microspheres was influenced by the environment pH, being generally greater at low rather than higher pH values. The coagulation properties of chitosan microspheres were evaluated by dynamic blood clotting, platelet adhesion and activation, erythrocyte adhesion, hemolysis, and protein absorption assays. Chitosan microspheres can shorten the clotting time and induce the adhesion and activation of platelets. But the shortening of clotting time by chitosan microspheres may be related to not only platelet aggregation, but also erythrocyte aggregation. Take together, chitosan microspheres may be potential use as thrombospheres.
Collapse
Affiliation(s)
- Qi Zhao Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|