1
|
Tanaka K, Kondo A, Hasunuma T. Minimized Dark Consumption of Calvin Cycle Intermediates Facilitates the Initiation of Photosynthesis in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2024; 65:1812-1820. [PMID: 39238237 DOI: 10.1093/pcp/pcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cyanobacteria intricately regulate their metabolic pathways during the diurnal cycle to ensure survival and growth. Under dark conditions, the breakdown of glycogen, an energy reserve, in these organisms replenishes Calvin cycle intermediates, especially downstream glycolytic metabolites, which are necessary for photosynthesis initiation upon light irradiation. However, it remains unclear how the accumulation of these intermediates is maintained in the dark despite limited glycogen availability. Therefore, in this study, we investigated the regulation of downstream glycolytic metabolites of the Calvin cycle under dark and light conditions using Synechocystis sp. PCC 6803. Our results showed that during the dark period, low pyruvate kinase (Pyk) activity ensured metabolite accumulation, while endogenous Pyk overexpression significantly lowered the accumulation of glycolytic intermediates. Remarkably, wild-type Synechocystis maintained oxygen evolution ability throughout dark treatment for over 2 d, while Pyk overexpression resulted in decreased oxygen evolution after 16 h of dark treatment. These results indicated that limiting Pyk activity via darkness treatment facilitates photosynthetic initiation by maintaining glycolytic intermediates. Similarly, phosphoenolpyruvate carboxylase (PepC) overexpression decreased oxygen evolution under dark treatment; however, its effect was lower than that of Pyk. Furthermore, we noted that as PepC overexpression decreased the levels of glycolytic intermediates in the dark, sugar phosphates in the Calvin-Benson-Bassham (CBB) cycle showed high accumulation, suggesting that sugar phosphates play important roles in supporting photosynthesis initiation. Therefore, our study highlights the importance of controlling the metabolic pathways through which glycolytic and CBB cycle intermediates are consumed (defined as cataplerosis of the CBB cycle) to ensure stable photosynthesis.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
3
|
Hatano J, Kusama S, Tanaka K, Kohara A, Miyake C, Nakanishi S, Shimakawa G. NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway. PHOTOSYNTHESIS RESEARCH 2022; 153:113-120. [PMID: 35182311 DOI: 10.1007/s11120-022-00903-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Live cyanobacteria and algae integrated onto an extracellular electrode can generate a light-induced current (i.e., a photocurrent). Although the photocurrent is expected to be correlated with the redox environment of the photosynthetic cells, the relationship between the photocurrent and the cellular redox state is poorly understood. Here, we investigated the effect of the reduced nicotinamide adenine dinucleotide phosphate [NADP(H)] redox level of cyanobacterial cells (before light exposure) on the photocurrent using several mutants (Δzwf, Δgnd, and ΔglgP) deficient in the oxidative pentose phosphate (OPP) pathway, which is the metabolic pathway that produces NADPH in darkness. The NAD(P)H redox level and photocurrent in the cyanobacterium Synechocystis sp. PCC 6803 were measured noninvasively. Dysfunction of the OPP pathway led to oxidation of the photosynthetic NADPH pool in darkness. In addition, photocurrent induction was retarded and the current density was lower in Δzwf, Δgnd, and ΔglgP than in wild-type cells. Exogenously added glucose compensated the phenotype of ΔglgP and drove the OPP pathway in the mutant, resulting in an increase in the photocurrent. The results indicated that NADPH accumulated by the OPP pathway before illumination is a key factor for the generation of a photocurrent. In addition, measuring the photocurrent can be a non-invasive approach to estimate the cellular redox level related to NADP(H) pool in cyanobacteria.
Collapse
Affiliation(s)
- Jiro Hatano
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Shoko Kusama
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Kenya Tanaka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Ayaka Kohara
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan.
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| |
Collapse
|
4
|
Dan Y, Sun J, Zhang S, Wu Y, Mao S, Luan G, Lu X. Manipulating the Expression of Glycogen Phosphorylase in Synechococcus elongatus PCC 7942 to Mobilize Glycogen Storage for Sucrose Synthesis. Front Bioeng Biotechnol 2022; 10:925311. [PMID: 35845416 PMCID: PMC9284946 DOI: 10.3389/fbioe.2022.925311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cyanobacteria are a promising photosynthetic chassis to produce biofuels, biochemicals, and pharmaceuticals at the expense of CO2 and light energy. Glycogen accumulation represents a universal carbon sink mechanism among cyanobacteria, storing excess carbon and energy from photosynthesis and may compete with product synthesis. Therefore, the glycogen synthesis pathway is often targeted to increase cyanobacterial production of desired carbon-based products. However, these manipulations caused severe physiological and metabolic impairments and often failed to optimize the overall performance of photosynthetic production. Here, in this work, we explored to mobilize the glycogen storage by strengthening glycogen degradation activities. In Synechococcus elongatus PCC 7942, we manipulated the abundances of glycogen phosphorylase (GlgP) with a theophylline dose-responsive riboswitch approach, which holds control over the cyanobacterial glycogen degradation process and successfully regulated the glycogen contents in the recombinant strain. Taking sucrose synthesis as a model, we explored the effects of enhanced glycogen degradation on sucrose production and glycogen storage. It is confirmed that under non-hypersaline conditions, the overexpressed glgP facilitated the effective mobilization of glycogen storage and resulted in increased secretory sucrose production. The findings in this work provided fresh insights into the area of cyanobacteria glycogen metabolism engineering and would inspire the development of novel metabolic engineering approaches for efficient photosynthetic biosynthesis.
Collapse
Affiliation(s)
- Yu Dan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jiahui Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Wu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shaoming Mao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- *Correspondence: Shaoming Mao, ; Guodong Luan, ; Xuefeng Lu,
| | - Guodong Luan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shaoming Mao, ; Guodong Luan, ; Xuefeng Lu,
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Shaoming Mao, ; Guodong Luan, ; Xuefeng Lu,
| |
Collapse
|
5
|
Kusama S, Miyake C, Nakanishi S, Shimakawa G. Dissection of respiratory and cyclic electron transport in Synechocystis sp. PCC 6803. JOURNAL OF PLANT RESEARCH 2022; 135:555-564. [PMID: 35680769 DOI: 10.1007/s10265-022-01401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Cyclic electron transport (CET) is an attractive hypothesis for regulating photosynthetic electron transport and producing the additional ATP in oxygenic phototrophs. The concept of CET has been established in the last decades, and it is proposed to function in the progenitor of oxygenic photosynthesis, cyanobacteria. The in vivo activity of CET is frequently evaluated either from the redox state of the reaction center chlorophyll in photosystem (PS) I, P700, in the absence of PSII activity or by comparing PSI and PSII activities through the P700 redox state and chlorophyll fluorescence, respectively. The evaluation of CET activity, however, is complicated especially in cyanobacteria, where CET shares the intersystem chain, including plastoquinone, cytochrome b6/f complex, plastocyanin, and cytochrome c6, with photosynthetic linear electron transport (LET) and respiratory electron transport (RET). Here we sought to distinguish the in vivo electron transport rates in RET and CET in the cyanobacterium Synechocystis sp. PCC 6803. The reduction rate of oxidized P700 (P700+) decreased to less than 10% when PSII was inhibited, indicating that PSII is the dominant electron source to PSI but P700+ is also reduced by electrons derived from other sources. The oxidative pentose phosphate (OPP) pathway functions as the dominant electron source for RET, which was found to be inhibited by glycolaldehyde (GA). In the condition where the OPP pathway and respiratory terminal oxidases were inhibited by GA and KCN, the P700+ reduction rate was less than 1% of that without any inhibitors. This study indicate that the electron transport to PSI when PSII is inhibited is dominantly derived from the OPP pathway in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Shoko Kusama
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| |
Collapse
|
6
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
7
|
Tanaka K, Shimakawa G, Kusama S, Harada T, Kato S, Nakanishi S. Ferrihydrite Reduction by Photosynthetic Synechocystis sp. PCC 6803 and Its Correlation With Electricity Generation. Front Microbiol 2021; 12:650832. [PMID: 33763051 PMCID: PMC7982531 DOI: 10.3389/fmicb.2021.650832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial extracellular electron transfer (EET) to solid-state electron acceptors such as anodes and metal oxides, which was originally identified in dissimilatory metal-reducing bacteria, is a key process in microbial electricity generation and the biogeochemical cycling of metals. Although it is now known that photosynthetic microorganisms can also generate (photo)currents via EET, which has attracted much interest in the field of biophotovoltaics, little is known about the reduction of metal (hydr)oxides via photosynthetic microbial EET. The present work quantitatively assessed the reduction of ferrihydrite in conjunction with the EET of the photosynthetic microbe Synechocystis sp. PCC 6803. Microbial reduction of ferrihydrite was found to be initiated in response to light but proceeded at higher rates when exogenous glucose was added, even under dark conditions. These results indicate that current generation from Synechocystis cells does not always need light irradiation. The qualitative trends exhibited by the ferrihydrite reduction rates under various conditions showed significant correlation with those of the microbial currents. Notably, the maximum concentration of Fe(II) generated by the cyanobacterial cells under dark conditions in the presence of glucose was comparable to the levels observed in the photic layers of Fe-rich microbial mats.
Collapse
Affiliation(s)
- Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Shoko Kusama
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Souichiro Kato
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| |
Collapse
|
8
|
Battaglino B, Arduino A, Pagliano C, Sforza E, Bertucco A. Optimization of Light and Nutrients Supply to Stabilize Long-Term Industrial Cultivation of Metabolically Engineered Cyanobacteria: A Model-Based Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatrice Battaglino
- BioSolar Lab, Applied Science and Technology Department, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy
| | - Alessandro Arduino
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Cristina Pagliano
- BioSolar Lab, Applied Science and Technology Department, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alberto Bertucco
- Department of Industrial Engineering, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
9
|
Characterization of Light-Enhanced Respiration in Cyanobacteria. Int J Mol Sci 2020; 22:ijms22010342. [PMID: 33396191 PMCID: PMC7796093 DOI: 10.3390/ijms22010342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
In eukaryotic algae, respiratory O2 uptake is enhanced after illumination, which is called light-enhanced respiration (LER). It is likely stimulated by an increase in respiratory substrates produced during photosynthetic CO2 assimilation and function in keeping the metabolic and redox homeostasis in the light in eukaryotic cells, based on the interactions among the cytosol, chloroplasts, and mitochondria. Here, we first characterize LER in photosynthetic prokaryote cyanobacteria, in which respiration and photosynthesis share their metabolisms and electron transport chains in one cell. From the physiological analysis, the cyanobacterium Synechocystis sp. PCC 6803 performs LER, similar to eukaryotic algae, which shows a capacity comparable to the net photosynthetic O2 evolution rate. Although the respiratory and photosynthetic electron transports share the interchain, LER was uncoupled from photosynthetic electron transport. Mutant analyses demonstrated that LER is motivated by the substrates directly provided by photosynthetic CO2 assimilation, but not by glycogen. Further, the light-dependent activation of LER was observed even with exogenously added glucose, implying a regulatory mechanism for LER in addition to the substrate amounts. Finally, we discuss the physiological significance of the large capacity of LER in cyanobacteria and eukaryotic algae compared to those in plants that normally show less LER.
Collapse
|
10
|
Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int J Mol Sci 2020; 21:E7204. [PMID: 33003478 PMCID: PMC7582838 DOI: 10.3390/ijms21197204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment. Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere and utilization of light energy, they are attractive hosts in a growing number of biotechnological processes. Biopolymer production is arguably one of the most critical areas where the transition from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or extracellular polymeric substances. These important biopolymers are synthesized using precursors derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of polymer biosynthesis and their relationship with central carbon metabolism are somehow different from those found in heterotrophic microorganisms. A greater understanding of the processes involved in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient production of these biopolymers.
Collapse
Affiliation(s)
- Maciej Ciebiada
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| |
Collapse
|
11
|
Ho SH, Zhang C, Tao F, Zhang C, Chen WH. Microalgal Torrefaction for Solid Biofuel Production. Trends Biotechnol 2020; 38:1023-1033. [DOI: 10.1016/j.tibtech.2020.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
|
12
|
Shimakawa G, Sétif P, Krieger-Liszkay A. Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer. PHOTOSYNTHESIS RESEARCH 2020; 144:63-72. [PMID: 32189186 DOI: 10.1007/s11120-020-00733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
In photosynthesis research, non-invasive in vivo spectroscopic analyses have been used as a practical tool for studying photosynthetic electron transport. Klas-NIR spectrophotometer has been recently developed by Klughammer and Schreiber (Photosynth Res 128:195-214, 2016) for in vivo measurements of redox changes of P700, plastocyanin (Pcy) and ferredoxin (Fd). Here we show examples using the Klas-NIR spectrophotometer for the evaluation of the redox states and quantities of these components in plant leaves and cyanobacterial suspensions. The redox poise under light of the electron transport components is different in leaves from higher plants compared with cyanobacteria. During a short illumination with an actinic light, P700, Pcy, and Fd are kept reduced in barley leaves but are oxidized in cyanobacteria. During far-red light illumination, P700 and Pcy are mostly oxidized in the leaves but are partially kept reduced in cyanobacteria. In the cyanobacterium, Thermosynechococcus elongatus, which has no Pcy but uses cytochrome c6 (cyt c6) as the electron donor to photosystem I, a cyt c6 signal was detected in vivo. To show the potential of Klas-NIR spectrophotometer for studying different developmental stages of a leaf, we performed measurements on fully mature and early senescing barley leaves. Pcy content in leaves decreased during senescence at an early stage. The Pcy loss was quantitatively analyzed using Klas-NIR spectrophotometer, giving absolute ratios of Pcy to PSI of 2.5 and 1.6 in younger and older leaves, respectively. For quantification of the signals in vivo, in vitro data (Sétif et al. in Photosynth Res142:307-319, 2019) obtained with Klas-NIR spectrophotometer were used.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
13
|
Luan G, Zhang S, Wang M, Lu X. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol Adv 2019; 37:771-786. [DOI: 10.1016/j.biotechadv.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/09/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022]
|
14
|
Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol 2019; 15:e1006692. [PMID: 30677028 PMCID: PMC6364703 DOI: 10.1371/journal.pcbi.1006692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/05/2019] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Phototrophic organisms such as cyanobacteria utilize the sun's energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell's metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.
Collapse
Affiliation(s)
- Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Thomas J. Mueller
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| |
Collapse
|
15
|
Shimakawa G, Miyake C. Oxidation of P700 Ensures Robust Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1617. [PMID: 30459798 PMCID: PMC6232666 DOI: 10.3389/fpls.2018.01617] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
In the light, photosynthetic cells can potentially suffer from oxidative damage derived from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs, including cyanobacteria, algae, and plants, manage their photosynthetic systems successfully. In the present article, we review previous research on how these photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in an oxidized state in response to excess light, under high light and low CO2 conditions, to tune the light utilization and dissipate the excess photo-excitation energy in PSI. Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized are diverse among a variety of photoautotrophs, which are evolutionarily optimized for their ecological niche.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
16
|
Shimakawa G, Kohara A, Miyake C. Medium-chain dehydrogenase/reductase and aldo-keto reductase scavenge reactive carbonyls in Synechocystis sp. PCC 6803. FEBS Lett 2018; 592:1010-1019. [PMID: 29430658 DOI: 10.1002/1873-3468.13003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/24/2023]
Abstract
Reactive carbonyls (RCs), which are inevitably produced during respiratory and photosynthetic metabolism, have the potential to cause oxidative damage to photosynthetic organisms. Previously, we proposed a scavenging model for RCs in the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). In the current study, we constructed mutants deficient in the enzymes medium-chain dehydrogenase/reductase (ΔMDR) and aldo-keto reductase (ΔAKR) to investigate their contributions to RC scavenging in vivo. We found that treatment with the lipid-derived RC acrolein causes growth inhibition and promotes greater protein carbonylation in ΔMDR, compared with the wild-type and ΔAKR. In both ΔMDR and ΔAKR, photosynthesis is severely inhibited in the presence of acrolein. These results suggest that these enzymes function as part of the scavenging systems for RCs in S. 6803 in vivo.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Ayaka Kohara
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan.,Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
17
|
Shimakawa G, Watanabe S, Miyake C. A Carbon Dioxide Limitation-Inducible Protein, ColA, Supports the Growth of Synechococcus sp. PCC 7002. Mar Drugs 2017; 15:md15120390. [PMID: 29244744 PMCID: PMC5742850 DOI: 10.3390/md15120390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022] Open
Abstract
A limitation in carbon dioxide (CO₂), which occurs as a result of natural environmental variation, suppresses photosynthesis and has the potential to cause photo-oxidative damage to photosynthetic cells. Oxygenic phototrophs have strategies to alleviate photo-oxidative damage to allow life in present atmospheric CO₂ conditions. However, the mechanisms for CO₂ limitation acclimation are diverse among the various oxygenic phototrophs, and many mechanisms remain to be discovered. In this study, we found that the gene encoding a CO₂ limitation-inducible protein, ColA, is required for the cyanobacterium Synechococcus sp. PCC 7002 (S. 7002) to acclimate to limited CO₂ conditions. An S. 7002 mutant deficient in ColA (ΔcolA) showed lower chlorophyll content, based on the amount of nitrogen, than that in S. 7002 wild-type (WT) under ambient air but not high CO₂ conditions. Both thermoluminescence and protein carbonylation detected in the ambient air grown cells indicated that the lack of ColA promotes oxidative stress in S. 7002. Alterations in the photosynthetic O₂ evolution rate and relative electron transport rate in the short-term response, within an hour, to CO₂ limitation were the same between the WT and ΔcolA. Conversely, these photosynthetic parameters were mostly lower in the long-term response of a few days in ΔcolA than in the WT. These data suggest that ColA is required to sustain photosynthetic activity for living under ambient air in S. 7002. The unique phylogeny of ColA revealed diverse strategies to acclimate to CO₂ limitation among cyanobacteria.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
18
|
Ohbayashi R, Yamamoto JY, Watanabe S, Kanesaki Y, Chibazakura T, Miyagishima SY, Yoshikawa H. Variety of DNA Replication Activity Among Cyanobacteria Correlates with Distinct Respiration Activity in the Dark. PLANT & CELL PHYSIOLOGY 2017; 58:279-286. [PMID: 27837093 DOI: 10.1093/pcp/pcw186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Cyanobacteria exhibit light-dependent cell growth since most of their cellular energy is obtained by photosynthesis. In Synechococcus elongatus PCC 7942, one of the model cyanobacteria, DNA replication depends on photosynthetic electron transport. However, the critical signal for the regulatory mechanism of DNA replication has not been identified. In addition, conservation of this regulatory mechanism has not been investigated among cyanobacteria. To understand this regulatory signal and its dependence on light, we examined the regulation of DNA replication under both light and dark conditions among three model cyanobacteria, S. elongatus PCC 7942, Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120. Interestingly, DNA replication activity in Synechocystis and Anabaena was retained when cells were transferred to the dark, although it was drastically decreased in S. elongatus. Glycogen metabolism and respiration were higher in Synechocystis and Anabaena than in S. elongatus in the dark. Moreover, DNA replication activity in Synechocystis and Anabaena was reduced to the same level as that in S. elongatus by inhibition of respiratory electron transport after transfer to the dark. These results demonstrate that there is disparity in DNA replication occurring in the dark among cyanobacteria, which is caused by the difference in activity of respiratory electron transport.
Collapse
Affiliation(s)
- Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Jun-Ya Yamamoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shin-Ya Miyagishima
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
19
|
Shimakawa G, Matsuda Y, Nakajima K, Tamoi M, Shigeoka S, Miyake C. Diverse strategies of O 2 usage for preventing photo-oxidative damage under CO 2 limitation during algal photosynthesis. Sci Rep 2017; 7:41022. [PMID: 28106164 PMCID: PMC5247695 DOI: 10.1038/srep41022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yusuke Matsuda
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kensuke Nakajima
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Holland SC, Artier J, Miller NT, Cano M, Yu J, Ghirardi ML, Burnap RL. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Shaku K, Shimakawa G, Hashiguchi M, Miyake C. Reduction-Induced Suppression of Electron Flow (RISE) in the Photosynthetic Electron Transport System of Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2016; 57:1443-1453. [PMID: 26707729 DOI: 10.1093/pcp/pcv198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/02/2015] [Indexed: 05/24/2023]
Abstract
Accumulation of electrons under conditions of environmental stress produces a reduced state in the photosynthetic electron transport (PET) system and causes the reduction of O2 by PSI in the thylakoid membranes to produce the reactive oxygen species superoxide radical, which irreversibly inactivates PSI. This study aims to elucidate the molecular mechanism for the oxidation of reaction center Chl of PSI, P700, after saturated pulse (SP) light illumination of the cyanobacterium Synechococcus elongatus PCC 7942 under steady-state photosynthetic conditions. Both P700 and NADPH were transiently oxidized after SP light illumination under CO2-depleted photosynthesis conditions. In contrast, the Chl fluorescence intensity transiently increased. Compared with the wild type, the increase in Chl fluorescence and the oxidations of P700 and NADPH were greatly enhanced in a mutant (Δflv1/3) deficient in the genes encoding FLAVODIIRON 1 (FLV1) and FLV3 proteins even under high photosynthetic conditions. Furthermore, oxidation of Cyt f was also observed in the mutant. After SP light illumination, a transient suppression of O2 evolution was also observed in Δflv1/3. From these observations, we propose that the reduction in the plastquinone (PQ) pool suppresses linear electron flow at the Cyt b6/f complex, which we call the reduction-induced suppression of electron flow (RISE) in the PET system. The accumulation of the reduced form of PQ probably suppresses turnover of the Q cycle in the Cyt b6/f complex.
Collapse
Affiliation(s)
- Keiichiro Shaku
- Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Ginga Shimakawa
- Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Masaki Hashiguchi
- Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
22
|
Burnap RL, Hagemann M, Kaplan A. Regulation of CO2 Concentrating Mechanism in Cyanobacteria. Life (Basel) 2015; 5:348-71. [PMID: 25636131 PMCID: PMC4390856 DOI: 10.3390/life5010348] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
In this chapter, we mainly focus on the acclimation of cyanobacteria to the changing ambient CO2 and discuss mechanisms of inorganic carbon (Ci) uptake, photorespiration, and the regulation among the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. The structural components for several of the transport and uptake mechanisms are described and the progress towards elucidating their regulation is discussed in the context of studies, which have documented metabolomic changes in response to changes in Ci availability. Genes for several of the transport and uptake mechanisms are regulated by transcriptional regulators that are in the LysR-transcriptional regulator family and are known to act in concert with small molecule effectors, which appear to be well-known metabolites. Signals that trigger changes in gene expression and enzyme activity correspond to specific "regulatory metabolites" whose concentrations depend on the ambient Ci availability. Finally, emerging evidence for an additional layer of regulatory complexity involving small non-coding RNAs is discussed.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Martin Hagemann
- Institute Biosciences, Department Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, Rostock D-18059, Germany.
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|