1
|
El Khayari A, Hakam SM, Malka G, Rochette L, El Fatimy R. New insights into the cardio-renal benefits of SGLT2 inhibitors and the coordinated role of miR-30 family. Genes Dis 2024; 11:101174. [PMID: 39224109 PMCID: PMC11367061 DOI: 10.1016/j.gendis.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose co-transporter inhibitors (SGLTis) are the latest class of anti-hyperglycemic agents. In addition to inhibiting the absorption of glucose by the kidney causing glycosuria, these drugs also demonstrate cardio-renal benefits in diabetic subjects. miR-30 family, one of the most abundant microRNAs in the heart, has recently been linked to a setting of cardiovascular diseases and has been proposed as novel biomarkers in kidney dysfunctions as well; their expression is consistently dysregulated in a variety of cardio-renal dysfunctions. The mechanistic involvement and the potential interplay between miR-30 and SGLT2i effects have yet to be thoroughly elucidated. Recent research has stressed the relevance of this cluster of microRNAs as modulators of several pathological processes in the heart and kidneys, raising the possibility of these small ncRNAs playing a central role in various cardiovascular complications, notably, endothelial dysfunction and pathological remodeling. Here, we review current evidence supporting the pleiotropic effects of SGLT2is in cardiovascular and renal outcomes and investigate the link and the coordinated implication of the miR-30 family in endothelial dysfunction and cardiac remodeling. We also discuss the emerging role of circulating miR-30 as non-invasive biomarkers and attractive therapeutic targets for cardiovascular diseases and kidney diseases. Clinical evidence, as well as metabolic, cellular, and molecular aspects, are comprehensively covered.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Soukaina Miya Hakam
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne – Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon 21000, France
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| |
Collapse
|
2
|
Guo Q, Wang X, Zhai Y, Dong Y, He Q. Oxaliplatin activates P53/miR-34a/survivin axis in inhibiting the progression of gastric cancer cells. Immun Inflamm Dis 2024; 12:e70004. [PMID: 39254476 PMCID: PMC11386343 DOI: 10.1002/iid3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION The purpose of this research was to determine how the P53/microRNA-34a (miR-34a)/survivin pathway contributes to oxaliplatin-induced (L-OHP) cell inhibition in gastric cancer. METHODS The BGC-823 gastric cancer cells were selected, and we examined their viability following treatment with L-OHP at different concentrations and time periods. The expression levels of miR-34a, P53, and survivin in the cells were determined. RESULTS In the 12- and 24-h groups, drug concentration of 15 μg/cm² (p < .005 in both) significantly lowered cell viability. In comparison to the control group, miR-34a mRNA expression, P53 mRNA expression, and protein expression were all significantly greater in the 24-h group (p = .0324, p = .0069, p = .0260, respectively), but survivin mRNA and protein expressions were significantly lower than those in the control group (p = .0338, p = .0032, respectively). There was a significant decrease in gastric cancer cells in the miR-34a overexpression group (p = .0020), a significant increase in P53 mRNA and protein expression compared to the control group (p = .0080, p = .0121, respectively), and a significant decrease in survivin mRNA and protein expression compared to the control group. (p = .0213, p = .0069, respectively). CONCLUSION Oxaliplatin inhibits tumor growth, invasion, and metastasis by upregulating miR-34a, activating the expression of the upstream P53 gene, and driving the downregulation of survivin (P53/miR-34a/survivin axis) in BGC-823 gastric cancer cells.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Baotou Medical CollegeBaotouChina
- Department of Gastrointestinal SurgeryQi Lu Hospital of Shandong UniversityJinanChina
| | - Xin‐Yuan Wang
- Department of General SurgeryHeNan RongJun HospitalXinxiangChina
| | - Yan‐Chang Zhai
- Department of Gastrointestinal SurgeryQi Lu Hospital of Shandong UniversityJinanChina
| | - Yong‐Wei Dong
- Department of Gastrointestinal SurgeryQi Lu Hospital of Shandong UniversityJinanChina
| | - Qing‐Si He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Baotou Medical CollegeBaotouChina
| |
Collapse
|
3
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Sánchez-Alarcón J, Milić M, Bonassi S, Gómez-Arroyo S, Cortés-Eslava J, Flores-Márquez AR, Valencia-Sánchez RA, Valencia-Quintana R. Occupational exposure to pesticides: DNA damage in horticulturist from Nativitas, Tlaxcala in Mexico. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104141. [PMID: 37146670 DOI: 10.1016/j.etap.2023.104141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Mexico is a country where agricultural activity is of great importance, but biomonitoring data are still scarce. With more intensive pesticides use per unit area/surface in horticultural productivity, there is a higher impact on environmental contamination and workers' health. Considering that exposure to various pesticide and pesticide mixtures represents an additional genotoxic risk, the appropriate characterization of exposure, confounding factors and the risk itself are very much needed. We compared genetic damage in 42 horticulturists and 46 unexposed controls (Nativitas, Tlaxcala) using alkaline comet (whole blood) and micronucleus (MN) test with nuclear abnormalities (NA) (buccal epithelial cells). Workers demonstrated significantly higher levels of damage (TI%=14.02 ± 2.49 vs. 5.37 ± 0.46; MN=10.14 ± 5.15 vs. 2.40 ± 0.20), with more than 90% of them not using protective clothing nor gloves during application. Combined DNA damage techniques and periodic monitoring together with educational programs for safe pesticide application is the best strategy to assess and prevent workers' health risks.
Collapse
Affiliation(s)
- Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10 000 Zagreb, Croatia.
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | - Josefina Cortés-Eslava
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | | | - Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico.
| |
Collapse
|
5
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Chen X, Wei C, Huang L, Syrigos K, Li Y, Li P. Non-coding RNAs regulate mitochondrial dynamics in the development of gastric cancer. Front Mol Biosci 2023; 10:1107651. [PMID: 36714260 PMCID: PMC9877238 DOI: 10.3389/fmolb.2023.1107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant cancer that reduces life expectancy worldwide. Although treatment strategies have improved, patients with GC still have poor prognoses. Hence, it is necessary to understand the molecular mechanisms of GC and to find new therapeutic targets. Mitochondrial dynamics and mitochondrial dysfunction are associated with cancer cell growth and progression. Numerous studies have reported that non-coding RNAs (ncRNAs) can participate in the occurrence and development of GC by regulating mitochondrial dynamics. Elucidating the crosstalk between ncRNAs and mitochondria would be helpful in preventing and treating GC. Herein, we review and summarize the functions of oncogenes and tumor suppressors in suppressing ncRNAs and regulating mitochondrial dynamics in GC tumor growth, proliferation, invasion and metastasis. This review provides new insights into the pathogenesis of and intervention for GC.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chuang Wei
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| |
Collapse
|
7
|
Wilkes MC, Scanlon V, Shibuya A, Celika AM, Eskin A, Chen Z, Narla A, Glader B, Roncarolo MG, Nelson SF, Sakamoto KM. Downregulation of SATB1 by miRNAs Reduces Megakaryocyte/Erythroid Progenitor Expansion in pre-clinical models of Diamond Blackfan Anemia. Exp Hematol 2022; 111:66-78. [PMID: 35460833 PMCID: PMC9255422 DOI: 10.1016/j.exphem.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
Diamond Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because over 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is predominantly due to a block and delay in early committed erythropoiesis with reduced Megakaryocyte/Erythroid Progenitors (MEPs). To understand the molecular pathways leading to pathogenesis of DBA, we performed RNA-seq on mRNA and miRNA from RPS19-deficient human hematopoietic stem and progenitor cells (HSPCs) and compared an existing database documenting transcript fluctuations across stages of early normal erythropoiesis. We determined the chromatin regulator, SATB1 was prematurely downregulated through the coordinated action of upregulated miR-34 and miR-30 during differentiation in ribosomal-insufficiency. Restoration of SATB1 rescued MEP expansion, leading to a modest improvement in erythroid and megakaryocyte expansion in RPS19-insufficiency. However, SATB1 expression did not impact expansion of committed erythroid progenitors, indicating ribosomal insufficiency impacts multiple stages during erythroid differentiation.
Collapse
Affiliation(s)
- Mark C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Vanessa Scanlon
- Yale Stem Cell Center, Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut 06509, USA
| | - Aya Shibuya
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Alma-Martina Celika
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, California 94305 USA
| | - Ascia Eskin
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zugen Chen
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Anupama Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Bert Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Maria Grazia Roncarolo
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, California 94305 USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
8
|
Platelet-derived microvesicles deliver miR-30e and promote VSMC apoptosis after balloon injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
9
|
Mesnage R, Ibragim M, Mandrioli D, Falcioni L, Tibaldi E, Belpoggi F, Brandsma I, Bourne E, Savage E, Mein CA, Antoniou MN. Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats. Toxicol Sci 2022; 186:83-101. [PMID: 34850229 PMCID: PMC8883356 DOI: 10.1093/toxsci/kfab143] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Mariam Ibragim
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | | | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Emanuel Savage
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| |
Collapse
|
10
|
Azimi M, Totonchi M, Ebrahimi M. Determining The Role of MicroRNAs in Self-Renewal, Metastasis and Resistance to Drugs in Human Gastric Cancer Based on Data Mining Approaches: A Systematic Review. CELL JOURNAL 2022; 24:1-6. [PMID: 35182058 PMCID: PMC8876259 DOI: 10.22074/cellj.2022.7173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. The major problems of patients
with GC are the lack of proper response to the treatment, drug resistance and metastasis attributed to the presence
of a subpopulation of cells inside the tumour that are called cancer stem cells (CSCs). In addition, deregulation of
microRNAs (miRNAs) has been reported in different stages of GC. The aim of the present study is to determine and
introduce miRNAs that contribute to regulation of stemness, metastasis and drug resistance in GC. A systematic
review, we conducted data mining of available datasets and a review of previous studies to select miRNAs that target
stemness, epithelial-mesenchymal transition (EMT) and drug resistance. All selected miRNAs were analysed by R
software to find a common miRNA target for all three processes. Then, the target prediction of miRNAs and their
related signalling pathways were obtained by using bioinformatics tools, ONCO.IO and KEGG databases, respectively.
We identified seven miRNAs (miR-34a, miR-23a, miR-27a, miR-30a, miR-19b, miR-107, miR-100) from our searching
approach. These miRNAs regulate pathways that contribute to stemness, EMT and drug resistance in GC. Four (miR-
34a, miR-23a, miR-30a, and miR-100) had significant interactions with each other and 52 target genes among them,
from which MYC, CDK6, NOTCH1, NOTCH2, SIRT1, CD44, CD24, and AXL were involved
in the regulation of several
biological processes. These data suggest that the three significant properties can be regulated by common miRNAs
(hsa-miR-34a, hsa-miR-23a, hsa-miR-30a and hsa-miR-100). Hence, targeting selected miRNAs or their targets might
be helpful to stop tumour growth and metastasis development, and increase tumour sensitivity to chemotherapy agents.
This signature can also be assumed for early detection of metastasis or drug resistance. However, there should be
additional experimentation to validate these results.
Collapse
Affiliation(s)
- Mahnaz Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedical Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
11
|
D'Souza LC, Mishra S, Chakraborty A, Shekher A, Sharma A, Gupta SC. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links? Antioxid Redox Signal 2020; 33:1209-1229. [PMID: 31891666 DOI: 10.1089/ars.2019.7987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: It is now clear that genetic changes underlie the basis of cancer, and alterations in functions of multiple genes are responsible for the process of tumorigenesis. Besides the classical genes that are usually implicated in cancer, the role of noncoding RNAs (ncRNAs) and reactive oxygen species (ROS) as independent entitites has also been investigated. Recent Advances: The microRNAs and long noncoding RNAs (lncRNAs), two main classes of ncRNAs, are known to regulate many aspects of tumor development. ROS, generated during oxidative stress and pathological conditions, are known to regulate every step of tumor development. Conversely, oxidative stress and ROS producing agents can suppress tumor development. The malignant cells normally produce high levels of ROS compared with normal cells. The interaction between ROS and ncRNAs regulates the expression of multiple genes and pathways implicated in cancer, suggesting a unique mechanistic relationship among ncRNA-ROS-cancer. The mechanistic relationship has been reported in hepatocellular carcinoma, glioma, and malignancies of blood, breast, colorectum, esophagus, kidney, lung, mouth, ovary, pancreas, prostate, and stomach. The ncRNA-ROS regulate several cancer-related cell signaling pathways, namely, protein kinase B (AKT), epidermal growth factor receptor (EGFR), forkhead box O3 (FOXO3), kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), p53, phosphatase and tensin homologue (PTEN), and wingless-related integration site (Wnt)/glycogen synthase kinase-3 beta (GSK3β). Critical Issues: To date, most of the reports about ncRNA-oxidative stress-carcinogenesis relationships are based on cell lines. The mechanistic basis for this relationship has not been completely elucidated. Future Directions: Attempts should be made to explore the association of lncRNAs with ROS. The significance of the ncRNA-oxidative stress-carcinogenesis interplay should also be explored through studies in animal models.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
HOTAIR contributes to the carcinogenesis of gastric cancer via modulating cellular and exosomal miRNAs level. Cell Death Dis 2020; 11:780. [PMID: 32951010 PMCID: PMC7502082 DOI: 10.1038/s41419-020-02946-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
Gastric cancer (GC) is one of the most leading malignancies. Long noncoding RNA is related to GC. In this study, 11 miRNAs in the exosomes and six lncRNAs in the tissues was examined by qRT-PCR. Correlation analysis was used to analyze the relationship between miRNAs in exosome and lncRNAs in the tissues. Four miRNAs level in GC tissues were examined by qRT-PCR. MTT was used to determine cell viability. Flow cytometry was used to quantify the apoptotic cells. Transwell assay was used to examine the migration and invasion capacity. Dual-luciferase assay was used to examine the interaction between HOTAIR and miR-30a or -b. Capillary formation was used to determine the capillary formation capacity. Weak negative correlations were found between HOTAIR and miR-30a or -b in GC tissue samples. Interestingly, strong negative correlations were identified between the HOTAIR level in GC tissue samples and the miR-30a or -b levels in plasma exosomes. HOTAIR knockdown GC cells exhibited decreased migration, invasion, proliferation, and upregulated apoptosis, which released more miR-30a and -b into the exosomes. KRAS was upregulated when co-cultured with exosomes from HOTAIR overexpressed cells, and promoted GC cells proliferation, migration, and invasion. Meanwhile, HUVEC cells expressed increased VEGF-A and formatted more capillaries. Subsequently, we identified a 10mer target site of miR-30a or -b in HOTAIR sequence, and the overexpression of HOTAIR induced the degradation of miR-30a or -b, indicating a ceRNA role of HOTAIR. We report the negative correlation between the plasma miRNAs level and GC tissue HOTAIR expression for the first time and unveiled the ceRNA role of HOTAIR in GC. HOTAIR functions as an onco-lncRNA regulating the level of miR-30a and -b in both GC cells and exosomes. These findings may give insight into understanding the mechanism of GC pathogenesis and provide new biomarkers for clinical diagnosis.
Collapse
|
13
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
14
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
15
|
MiR-30b-5p inhibits proliferation and promotes apoptosis of medulloblastoma cells via targeting MYB proto-oncogene like 2 (MYBL2). J Investig Med 2020; 68:1179-1185. [DOI: 10.1136/jim-2020-001354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumors among children. MiR-30b-5p is a potential tumor suppressor in a variety of human cancers. However, its expression and function in MB remain poorly understood. This study aimed to investigate the expression, role and regulatory mechanism of miR-30b-5p in MB. The expression of miR-30b-5p in MB tissues and cell lines was detected by real-time PCR. The effects of miR-30b-5p on cell proliferation and apoptosis were monitored by CCK-8 (Cell Counting Kit-8) assay, colony formation assay and flow cytometry, respectively. Bioinformatics database TargetScan predicted the target genes of miR-30b-5p. The interaction between miR-30b-5p and MYB proto-oncogene Like 2 (MYBL2) was determined by luciferase reporter gene assay. We demonstrated that the expression of miR-30b-5p was significantly downregulated in MB. Upregulated miR-30b-5p could inhibit the proliferation and induce apoptosis of MB.Moreover, overexpressed miR-30b-5p could increase the expression of BAX but decrease that of Bcl-2. Downregulated miR-30b-5p exerted the opposite effect. MYBL2 was proved to be the target gene of miR-30b-5p and was negatively regulated by miR-30b-5p. These results indicate that miR-30b-5p inhibits the progression of MB via targeting the expression of MYBL2.
Collapse
|
16
|
An Y, Li J, Yuan Q, Fan M. MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway. AMB Express 2020; 10:113. [PMID: 32542430 PMCID: PMC7295889 DOI: 10.1186/s13568-020-01033-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is involved with abnormal expression of miRNAs (miRs) which are responsible for some IIry injury responses which include apoptosis, inflammation and oxidative stress. Mechanisms involving miRs induced apoptosis still needs to be investigated. In the present work we developed a rat model of SCI, followed by microarray analysis for expression of miRs at various time points after SCI. The locomotor activity was assessed by Basso, Beattie and Bresnahan score, lesion volume was analyzed by cresyl violet staining and TUNEL staining for extent of apoptosis at various time points of post SCI. Numbers of miRs were altered after 2 weeks of SCI among which miR-466c-3p was the most significantly down-regulated. Transfection with miR-466c-3p mimics caused overexpression of miR-466c-3p, also improvement in functional recovery, decrease in apoptosis of neuronal cells and lesion size was observed in SCI rats. The Luciferase assay suggested that miR-466c-3p suppressed the expression of Bcl-2 (apoptosis regulator). It was also evidenced that upon restoring the levels of Bcl-2 with the help of pc-DNA3-Bcl-2 halted the attenuating action of miR-466c-3p in hydrogen peroxide exposed N9 microglia cells. The findings suggested that miR-466c-3p may inhibit mitochondrial apoptotic pathway via blocking Bcl-2 and cleaved capase-9/-3in rats after SCI. Altogether, the results suggested that miR-466c-3p may exert attenuating effect on functional recovery and inhibit the apoptosis of neuronal cells via halting the mitochondrial apoptosis cascade in SCI rats indicating that miR-466c-3p can be attractive therapeutic candidate in treating SCI.
Collapse
|
17
|
Zheng J, Kuang J, Zhang X, Luo D, Liao W. miR-142-3p suppresses apoptosis in spinal cord-injured rats. Transl Neurosci 2020; 11:105-115. [PMID: 33335754 PMCID: PMC7712094 DOI: 10.1515/tnsci-2020-0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Spinal cord injury (SCI) leads to abnormal expression of miRs, leading to secondary responses such as oxidative stress, inflammation and apoptosis. In the present work, we screened the miRs involved and the associated pathway. Methods In a rat model of SCI, the microarray analysis for expression of miRs at various time points post-SCI was done. The locomotor analysis was done by Basso, Beattie and Bresnahan score, and Cresyl violet staining was done for lesion volume and TUNEL assay was done for apoptosis in neuronal cells. The expression of apoptotic proteins was done by the western blot study. Results It was evidenced that the expression of the number of miRs was altered on the 14th day post-SCI, and miR-142-3p was found to be the most significantly suppressed miR. The results suggested that overexpression of miR-142-3p by its agomir-attenuated functional recovery decreased lesion size and apoptosis of neuronal cells in rats subjected to SCI. The luciferase assay indicated that miR-142-3p blocked the levels of Bax, which is a significant activator of the mitochondrial apoptotic pathway (MAP) via targeting the 3'UTR region of BV-2 cells, and in addition, pc-DNA-Bax restored Bax and inhibited the correcting role of miR-142-3p in hydrogen peroxide-treated BV-2 cells. The findings suggested that miR-142-3p may inhibit the MAP by inhibiting the expression of cleaved-caspase-3/-9 and Bax in SCI rats. Conclusion This study concludes that miR-142-3p may attenuate the functional recovery and decrease apoptosis in neuronal cells via inhibiting the MAP in the spinal cord-injured rats, confirming miR-142-3p as a potential therapeutic target in treating SCI.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jing Kuang
- Department of Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Xianyu Zhang
- Orthopedics Department, ShangRao People’s Hospital, Shangrao, Jiangxi, 334000, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Weijing Liao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
18
|
Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol 2020; 235:8812-8825. [PMID: 32394436 DOI: 10.1002/jcp.29724] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023]
Abstract
Oxidative stress refers to elevated levels of intracellular reactive oxygen species (ROS). ROS homeostasis functions as a signaling pathway for normal cell survival and appropriate cell signaling. Chronic inflammation induced by imbalanced levels of ROS contributes to many diseases and different types of cancer. ROS can alter the expression of oncogenes and tumor suppressor genes through epigenetic modifications, transcription factors, and non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that play a key role in most biological pathways. Each miRNA regulates hundreds of target genes by inhibiting protein translation and/or promoting messenger RNA degradation. In normal conditions, miRNAs play a physiological role in cell proliferation, differentiation, and apoptosis. However, different factors that can dysregulate cell signaling and cellular homeostasis can also affect miRNA expression. The alteration of miRNA expression can work against disturbing factors or mediate their effects. Oxidative stress is one of these factors. Considering the complex interplay between ROS level and miRNA regulation and both of these with cancer development, we review the role of miRNAs in cancer, focusing on their function in oxidative stress.
Collapse
Affiliation(s)
- Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of Medical Laboratory Science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| |
Collapse
|
19
|
Genomewide Expression Profiling Identifies a Novel miRNA-Based Signature for the Detection of Peritoneal Metastasis in Patients With Gastric Cancer. Ann Surg 2019; 274:e425-e434. [PMID: 31663973 DOI: 10.1097/sla.0000000000003647] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study aimed to conduct a genomewide transcriptomic profiling to develop a microRNA (miRNA)-based signature for the identification of peritoneal metastasis (PM) in patients with gastric cancer (GC). SUMMARY BACKGROUND DATA Even though PM in patients with GC has long been recognized to associate with poor prognosis, currently there is lack of availability of molecular biomarkers for its robust diagnosis. METHODS We performed a systematic biomarker discovery by analyzing miRNA expression profiles in primary tumors from GC patients with and without PM, and subsequently validated the expression of candidate miRNA biomarkers in 3 independent clinical cohorts of 354 patients with advanced GC. RESULTS Five miRNAs (miR-30a-5p, -134-5p, -337-3p, -659-3p, and -3917) were identified during the initial discovery phase; three of which (miR-30a-5p, -659-3p, and -3917) were significantly overexpressed in the primary tumors from PM-positive patients in the testing cohort (P = 0.002, 0.04, and 0.007, respectively), and distinguished patients with versus without peritoneal metastasis with the value of area under the curve (AUC) of 0.82. Furthermore, high expression of these miRNAs also associated with poor prognosis (hazard ratio = 2.18, P = 0.04). The efficacy of the combination miRNA signature was subsequently validated in an independent validation cohort (AUC = 0.74). Finally, our miRNA signature when combined together with the macroscopic Borrmann's type score offered a much superior diagnostic in all 3 cohorts (AUC = 0.87, 0.76, and 0.79, respectively). CONCLUSIONS We have established an miRNA-based signature that have a potential to identify peritoneal metastasis in GC patients.
Collapse
|
20
|
The microRNA in ventricular remodeling: the miR-30 family. Biosci Rep 2019; 39:BSR20190788. [PMID: 31320543 PMCID: PMC6680373 DOI: 10.1042/bsr20190788] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Ventricular remodeling (VR) is a complex pathological process of cardiomyocyte apoptosis, cardiac hypertrophy, and myocardial fibrosis, which is often caused by various cardiovascular diseases (CVDs) such as hypertension, acute myocardial infarction, heart failure (HF), etc. It is also an independent risk factor for a variety of CVDs, which will eventually to damage the heart function, promote cardiovascular events, and lead to an increase in mortality. MicroRNAs (miRNAs) can participate in a variety of CVDs through post-transcriptional regulation of target gene proteins. Among them, microRNA-30 (miR-30) is one of the most abundant miRNAs in the heart. In recent years, the study found that the miR-30 family can participate in VR through a variety of mechanisms, including autophagy, apoptosis, oxidative stress, and inflammation. VR is commonly found in ischemic heart disease (IHD), hypertensive heart disease (HHD), diabetic cardiomyopathy (DCM), antineoplastic drug cardiotoxicity (CTX), and other CVDs. Therefore, we will review the relevant mechanisms of the miR-30 in VR induced by various diseases.
Collapse
|
21
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Rother M, Teixeira da Costa AR, Zietlow R, Meyer TF, Rudel T. Modulation of Host Cell Metabolism by Chlamydia trachomatis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0012-2019. [PMID: 31111817 PMCID: PMC11026074 DOI: 10.1128/microbiolspec.bai-0012-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/20/2022] Open
Abstract
Propagation of the intracellular bacterial pathogen Chlamydia trachomatis is strictly bound to its host cells. The bacterium has evolved by minimizing its genome size at the cost of being completely dependent on its host. Many of the vital nutrients are synthesized only by the host, and this has complex implications. Recent advances in loss-of-function analyses and the metabolomics of human infected versus noninfected cells have provided comprehensive insight into the molecular changes that host cells undergo during the stage of infection. Strikingly, infected cells acquire a stage of high metabolic activity, featuring distinct aspects of the Warburg effect, a condition originally assigned to cancer cells. This condition is characterized by aerobic glycolysis and an accumulation of certain metabolites, altogether promoting the synthesis of crucial cellular building blocks, such as nucleotides required for DNA and RNA synthesis. The altered metabolic program enables tumor cells to rapidly proliferate as well as C. trachomatis-infected cells to feed their occupants and still survive. This program is largely orchestrated by a central control board, the tumor suppressor protein p53. Its downregulation in C. trachomatis-infected cells or mutation in cancer cells not only alters the metabolic state of cells but also conveys the prevention of programmed cell death involving mitochondrial pathways. While this points toward common features in the metabolic reprogramming of infected and rapidly proliferating cells, it also forwards novel treatment options against chronic intracellular infections involving well-characterized host cell targets and established drugs.
Collapse
Affiliation(s)
- Marion Rother
- Steinbeis Innovation Center for Systems Biomedicine, 14612 Berlin-Falkensee, Germany
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | | | - Rike Zietlow
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
23
|
Wu X, Shen J, Xiao Z, Li J, Zhao Y, Zhao Q, Cho CH, Li M. An overview of the multifaceted roles of miRNAs in gastric cancer: Spotlight on novel biomarkers and therapeutic targets. Biochem Pharmacol 2019; 163:425-439. [PMID: 30857828 DOI: 10.1016/j.bcp.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that have displayed strong association with gastric cancer (GC). Through the repression of target mRNAs, miRNAs regulate many biological pathways that are involved in cell proliferation, apoptosis, migration, invasion, metastasis as well as drug resistance. The detection of miRNAs in tissues and in body fluids emerges as a promising method in the diagnosis and prognosis of GC, due to their unique expression pattern in correlation with GC. Notably, miRNAs are also identified as potential therapeutic targets for GC therapy. The present review is thus to highlight the multifaceted roles of miRNAs in GC and in GC therapies, which would give indications for future research.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
24
|
Xu Z, Zhang K, Wang Q, Zheng Y. MicroRNA‑124 improves functional recovery and suppresses Bax‑dependent apoptosis in rats following spinal cord injury. Mol Med Rep 2019; 19:2551-2560. [PMID: 30720072 PMCID: PMC6423616 DOI: 10.3892/mmr.2019.9904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) induces aberrant expression of microRNAs (miRNAs), causing various secondary injury responses, including inflammation, apoptosis and oxidative stress. However, the mechanisms underlying miRNA-mediated apoptosis have not been fully elucidated. In the present study, a rat SCI model was established and a miRNA microarray was analyzed to detect miRNA expression profiles at different times post-SCI. The Basso, Beattie and Bresnahan score, cresyl violet staining and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining were used to evaluate locomotor activity, lesion volume and neuronal cell apoptosis, respectively, at different time points post-SCI. It was observed that numerous miRNAs were altered at 14 days post-SCI and miR-124 was one of the most notably downregulated miRNAs. The present results demonstrated that overexpression of miR-124 by agomir-124 improves functional recovery, decreases lesion size and suppresses neuronal cell apoptosis in a rat SCI model. Luciferase reporter assay demonstrated that miR-124 inhibited apoptosis regulator BAX (Bax) expression, a key molecule in the activation of the mitochondrial apoptotic pathway, by targeting its 3′-untranslated region in BV-2 cells. Furthermore, restoration of Bax by pc-DNA-Bax inhibits the protective effect of miR-124 in H2O2-treated BV-2 cells. Notably, the present results demonstrated that miR-124 may block the mitochondrial apoptotic pathway by inhibiting Bax, cleaved-caspase-9 and cleaved-caspase-3 expression in rats following SCI. Collectively, the present results suggested that miR-124 may improve functional recovery and supress neuronal cell apoptosis by blocking the mitochondrial apoptotic pathway in SCI rats, suggesting that miR-124 may serve as a potential therapeutic target in SCI treatment.
Collapse
Affiliation(s)
- Zhongyang Xu
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Kefeng Zhang
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qian Wang
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yanping Zheng
- Department of Orthopedics, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Zhang Y, Coarfa C, Dong X, Jiang W, Hayward-Piatkovskyi B, Gleghorn JP, Lingappan K. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD. Am J Physiol Lung Cell Mol Physiol 2019; 316:L144-L156. [PMID: 30382766 PMCID: PMC6383497 DOI: 10.1152/ajplung.00372.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Premature male neonates are at a greater risk of developing bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. The role of miRNAs in mediating sex biases in BPD is understudied. Analysis of the pulmonary transcriptome revealed that a large percentage of angiogenesis-related differentially expressed genes are miR-30a targets. We tested the hypothesis that there is differential expression of miR-30a in vivo and in vitro in neonatal human pulmonary microvascular endothelial cells (HPMECs) upon exposure to hyperoxia. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% fraction of inspired oxygen (FiO2), postnatal day ( PND) 1-5] and euthanized on PND 7 and 21. HPMECs (18-24-wk gestation donors) were subjected to hyperoxia (95% O2 and 5% CO2) or normoxia (air and 5% CO2) up to 72 h. miR-30a expression was increased in both males and females in the acute phase ( PND 7) after hyperoxia exposure. However, at PND 21 (recovery phase), female mice showed significantly higher miR-30a expression in the lungs compared with male mice. Female HPMECs showed greater expression of miR-30a in vitro upon exposure to hyperoxia. Delta-like ligand 4 (Dll4) was an miR-30a target in HPMECs and showed sex-specific differential expression. miR-30a increased angiogenic sprouting in vitro in female HPMECs. Lastly, we show decreased expression of miR-30a and increased expression of DLL4 in human BPD lung samples compared with controls. These results support the hypothesis that miR-30a could, in part, contribute to the sex-specific molecular mechanisms in play that lead to the sexual dimorphism in BPD.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine , Houston, Texas
| | - Xiaoyu Dong
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | | | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware , Newark, Delaware
- Department of Biomedical Engineering, University of Delaware , Newark, Delaware
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
26
|
Qi B, Wang Y, Chen ZJ, Li XN, Qi Y, Yang Y, Cui GH, Guo HZ, Li WH, Zhao S. Down-regulation of miR-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway. World J Gastroenterol 2017; 23:7965-7977. [PMID: 29259372 PMCID: PMC5725291 DOI: 10.3748/wjg.v23.i45.7965] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential role of microRNA-30a (miR-30a) in esophageal squamous cell carcinoma (ESCC).
METHODS Expression of miR-30a-3p/5p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of miR-30a-3p/5p on ESCC cell proliferation. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC, and then, assays were carried out to verify the potential molecular mechanism of miR-30a in ESCC.
RESULTS Low expression of miR-30a-3p/5p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of miR-30a-3p/5p promoted ESCC cell proliferation. Increased miR-30a-3p/5p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2.
CONCLUSION Down-regulation of miR-30a-3p/5p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.
Collapse
Affiliation(s)
- Bo Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yan Wang
- Periodicals Publishing House, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Xiang-Nan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Guang-Hui Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hai-Zhou Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Hao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
27
|
Virgilio E, Giarnieri E, Giovagnoli MR, Montagnini M, Proietti A, D'Urso R, Nigri G, Mercantini P, Ramacciato G, Cavallini M, Balducci G. Presence of cancer cells in gastric lavage of gastric cancer patients as an indicator of advanced disease, predictor of tumour aggressive phenotype and independent prognostic factor for poor survival: The endoluminal metastatic pathway of gastric cancer and GL0/GL1 classification. Cytopathology 2017; 29:41-48. [PMID: 29063636 DOI: 10.1111/cyt.12484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE As of 2017, the pathobiology of gastric cancer (GC) is far from fully understood; consequently, new methods of basic and advanced research have been proposed and tested. The presence (GL1) vs absence (GL0) of malignant cells exfoliated in gastric lavage (GL) of GC patients was formerly evaluated with diagnostic intent but not for staging or prognostic assessment. We investigated this hitherto unreported application of cytopathology. METHODS GL was preoperatively and prospectively collected from 80 GC patients and cytologically analysed. The results were compared with the classic clinicopathological features of GC and related to survival. The prognostic value of GL1 was assessed through univariate and multivariate analyses. RESULTS GL1 was detected in 36 samples (45%) and correlated with advanced tumour depth (T3-T4), lymphatic metastasis (N+), distant metastasis (M1) and lymphovascular invasion (LVI1; P=.0317, .0024, .003 and .0028, respectively). Overall survival (OS) was significantly shorter for GL1 (23 months) vs GL0 patients (42 months; P=.005) and GL1 vs GL0 T1 subjects (12.6 vs 47.8 months, P=.0029). Univariate analysis revealed that GL1, N+, M1, LVI1 and advanced stage were significantly associated with OS. Multivariate analysis assessed GL1 as the only independent prognostic factor for worse OS and progression-free survival (P=.0013 and .0107). CONCLUSIONS In the present study, GL1 was correlated with advanced disease, aggressive tumour behaviour and poor prognosis. Although additional studies are needed to confirm these findings, the GL0/GL1 classification can be applied to GC patients to achieve higher accuracy in staging, prognostic stratification and treatment selection.
Collapse
Affiliation(s)
- E Virgilio
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - E Giarnieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - M R Giovagnoli
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - M Montagnini
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - A Proietti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - R D'Urso
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - G Nigri
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - P Mercantini
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - G Ramacciato
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - M Cavallini
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - G Balducci
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| |
Collapse
|
28
|
The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res 2017. [DOI: 10.1016/j.brainres.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|