1
|
Boehm RD, Skoog SA, Diaz-Diestra DM, Goering PL, Dair BJ. Influence of titanium nanoscale surface roughness on fibrinogen and albumin protein adsorption kinetics and platelet responses. J Biomed Mater Res A 2024; 112:373-389. [PMID: 37902409 DOI: 10.1002/jbm.a.37635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Biomaterials with nanoscale topography have been increasingly investigated for medical device applications to improve tissue-material interactions. This study assessed the impact of nanoengineered titanium surface domain sizes on early biological responses that can significantly affect tissue interactions. Nanostructured titanium coatings with distinct nanoscale surface roughness were deposited on quartz crystal microbalance with dissipation (QCM-D) sensors by physical vapor deposition. Physico-chemical characterization was conducted to assess nanoscale surface roughness, nano-topographical morphology, wettability, and atomic composition. The results demonstrated increased projected surface area and hydrophilicity with increasing nanoscale surface roughness. The adsorption properties of albumin and fibrinogen, two major plasma proteins that readily encounter implanted surfaces, on the nanostructured surfaces were measured using QCM-D. Significant differences in the amounts and viscoelastic properties of adsorbed proteins were observed, dependent on the surface roughness, protein type, protein concentration, and protein binding affinity. The impact of protein adsorption on subsequent biological responses was also examined using qualitative and quantitative in vitro evaluation of human platelet adhesion, aggregation, and activation. Qualitative platelet morphology assessment indicated increased platelet activation/aggregation on titanium surfaces with increased roughness. These data suggest that nanoscale differences in titanium surface roughness influence biological responses that may affect implant integration.
Collapse
Affiliation(s)
- Ryan D Boehm
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shelby A Skoog
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Daysi M Diaz-Diestra
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Peter L Goering
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Benita J Dair
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Yin S, Siahaan EA, Niu L, Shibata M, Liu Y, Hagiwara T. Real time monitoring and evaluation of the inhibition effect of fucoxanthin against α-amylase activity by using QCM-A. Front Nutr 2023; 9:1110615. [PMID: 36712503 PMCID: PMC9877462 DOI: 10.3389/fnut.2022.1110615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The main symptoms of diabetes are hyperglycemia and insulin resistance. The inhibition of the starch digestion enzymes could effectively regulate starch digestion and glucose absorption, thereby slowing or treating the symptoms of postprandial hyperglycemia. Herein, we used fucoxanthin isolated from Undaria pinnatifida stems, as α-amylase inhibitor, and monitored the interactions of both biomolecules by using quartz crystal microbalance-admittance (QCM-A) instrument. All the processes of α-amylase hydrolysis of starch were also dynamically tracked by using amylose-immobilized QCM technology. In our work, we found that the kinetic parameter (k off, k on, and k cat) values obtained by the QCM-A analysis were relatively consistent compared to the kinetic parameter values obtained by the conventional Michaelis-Menten analysis. For the inhibitory reactions, the results showed that fucoxanthin significantly reduced the activity of α-amylase in a dose-dependent manner. The QCM-A technology shown to be an excellent approach in obtaining comprehensive and accurate kinetic parameters, thereby providing real and accurate data for kinetic studies. It is helpful to clarify the mechanism of action of fucoxanthin on α-amylase, which further proved the potential of fucoxanthin to improve and treat postprandial hyperglycemia.
Collapse
Affiliation(s)
- Shipeng Yin
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Evi Amelia Siahaan
- Research Centre for Marine and Land Bioindustry, National Research and Innovation Agency, Bogor, Indonesia
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Label-Free Protein Detection by Micro-Acoustic Biosensor Coupled with Electrical Field Sorting. Theoretical Study in Urine Models. SENSORS 2021; 21:s21072555. [PMID: 33917374 PMCID: PMC8038679 DOI: 10.3390/s21072555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
Diagnostic devices for point-of-care (POC) urine analysis (urinalysis) based on microfluidic technology have been actively developing for several decades as an alternative to laboratory based biochemical assays. Urine proteins (albumin, immunoglobulins, uromodulin, haemoglobin etc.) are important biomarkers of various pathological conditions and should be selectively detected by urinalysis sensors. The challenge is a determination of different oligomeric forms of the same protein, e.g., uromodulin, which have similar bio-chemical affinity but different physical properties. For the selective detection of different types of proteins, we propose to use a shear bulk acoustic resonator sensor with an additional electrode on the upper part of the bioliquid-filled channel for protein electric field manipulation. It causes modulation of the protein concentration over time in the near-surface region of the acoustic sensor, that allows to distinguish proteins based on their differences in diffusion coefficients (or sizes) and zeta-potentials. Moreover, in order to improve the sensitivity to density, we propose to use structured sensor interface. A numerical study of this approach for the detection of proteins was carried out using the example of albumin, immunoglobulin, and oligomeric forms of uromodulin in model urine solutions. In this contribution we prove the proposed concept with numerical studies for the detection of albumin, immunoglobulin, and oligomeric forms of uromodulin in urine models.
Collapse
|
4
|
Samarentsis AG, Pantazis AK, Tsortos A, Friedt JM, Gizeli E. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements. SENSORS 2020; 20:s20216177. [PMID: 33138312 PMCID: PMC7662402 DOI: 10.3390/s20216177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
Surface plasmon resonance (SPR) and Love wave (LW) surface acoustic wave (SAW) sensors have been established as reliable biosensing technologies for label-free, real-time monitoring of biomolecular interactions. This work reports the development of a combined SPR/LW-SAW platform to facilitate simultaneous optical and acoustic measurements for the investigation of biomolecules binding on a single surface. The system’s output provides recordings of two acoustic parameters, phase and amplitude of a Love wave, synchronized with SPR readings. We present the design and manufacturing of a novel experimental set-up employing, in addition to the SPR/LW-SAW device, a 3D-printed plastic holder combined with a PDMS microfluidic cell so that the platform can be used in a flow-through mode. The system was evaluated in a systematic study of the optical and acoustic responses for different surface perturbations, i.e., rigid mass loading (Au deposition), pure viscous loading (glycerol and sucrose solutions) and protein adsorption (BSA). Our results provide the theoretical and experimental basis for future application of the combined system to other biochemical and biophysical studies.
Collapse
Affiliation(s)
- Anastasios G. Samarentsis
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece; (A.G.S.); (A.T.)
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece;
| | - Alexandros K. Pantazis
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece;
- Institute of Electronic Structure & Laser, FO.R.T.H, Vassilika Vouton, 71409 Heraklion, Greece
| | - Achilleas Tsortos
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece; (A.G.S.); (A.T.)
| | - Jean-Michel Friedt
- SENSeOR SAS, Time and Frequency Department, FEMTO-ST Institute, 15B Avenue des Montboucons, 25030 Besançon, France;
| | - Electra Gizeli
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece; (A.G.S.); (A.T.)
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece;
- Correspondence: ; Tel.: +30-2810-394373
| |
Collapse
|
5
|
Sone Y, Nogawa M, Asayama S. Designing a Bioinert Surface by Simple Coating with Cholesterol End-Modified Poly(ethylene glycol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12045-12052. [PMID: 33002363 DOI: 10.1021/acs.langmuir.0c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bioinert surface has been designed by simple coating with cholesterol end-modified poly(ethylene glycol), Chol-U-Pr-mPEG, using a cholesterol anchor. A poly(propylene) (PP) surface was immersed into the Chol-U-Pr-mPEG aqueous solution, where control mPEGs without cholesterol were not suitable for the design of bioinert surfaces. The resulting surfaces coated with Chol-U-Pr-mPEG above and below its critical micelle concentration were swollen and less swollen, respectively. Chol-U-Pr-mPEG with a molecular weight of 2000, Chol-U-Pr-mPEG (2k), formed a swollen layer with a thickness of 10-15 nm and adhered to the PP surface with an estimated Kd value of 4.4×10-7 M. The resulting Chol-U-Pr-mPEG (2k)-coated surface with the swollen layer suppressed the adsorption of γ-globulin proteins and the adhesion of platelets in plasma. Although the PP surface coated with Chol-U-Pr-mPEG with a molecular weight of 5000, Chol-U-Pr-mPEG (5k), also suppressed the adsorption of γ-globulin proteins, the Chol-U-Pr-mPEG (5k)-coated PP surface did not suppress the adhesion of the platelets in plasma despite the existence of a swollen layer with a thickness of 20-25 nm. These results suggest that the Chol-U-Pr-mPEG-coated PP surface with an optimized swollen layer has been established as a bioinert surface by a facile method.
Collapse
Affiliation(s)
- Yuya Sone
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masayuki Nogawa
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, 2-1-67 Tatsumi, Koto-ku, Tokyo 135-8521, Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
6
|
Hertaeg MJ, Tabor RF, Berry JD, Garnier G. Radial Wicking of Biological Fluids in Paper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8209-8217. [PMID: 32574068 DOI: 10.1021/acs.langmuir.0c01318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we analyze stain growth kinetics from droplets of biological fluids such as blood, plasma, and protein solutions on paper both experimentally and numerically. The primary difference of biological fluids from a simple fluid is a significant wetting/dewetting hysteresis in paper. This becomes important in later stages of droplet wicking, after the droplet has been completely absorbed into paper. This is shown by anomalous power dependence of area with time in the later stages of radial wicking. At early stages, current numerical wicking models can predict stain growth of biological fluids. However, at later stages, the introduction of hysteresis complicates modeling significantly. We show that the cause of the observed hysteresis is due to contact angle effects and that this is the dominant mechanism that leads to the anomalous stain growth kinetics measured uniquely in biological fluids. Results presented will streamline the design process of paper-based diagnostics, allowing a modeling approach instead of a trial and error method.
Collapse
Affiliation(s)
- Michael J Hertaeg
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Joseph D Berry
- Department of Chemical and Biomolecular Engineering and the Particulate Fluids Processing Centre, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gil Garnier
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Maruno T, Ohkubo T, Uchiyama S. Stirring rate affects thermodynamics and unfolding kinetics in isothermal titration calorimetry. J Biochem 2020; 168:53-62. [PMID: 32134445 DOI: 10.1093/jb/mvaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Isothermal titration calorimetry (ITC) directly provides thermodynamic parameters depicting the energetics of intermolecular interactions in solution. During ITC experiments, a titration syringe with a paddle is continuously rotating to promote a homogeneous mixing. Here, we clarified that the shape of the paddles (flat, corkscrew and small-pitched corkscrew) and the stirring rates influence on the thermodynamic parameters of protein-ligand interaction. Stirring with the flat paddle at lower and higher rate both yielded a lower exothermic heat due to different reasons. The complete reaction with no incompetent fractions was achieved only when the stirring was performed at 500 or 750 rpm using the small-pitched corkscrew paddle. The evaluation of the protein solution after 1,500 rpm stirring indicated that proteins in the soluble fraction decreased to 94% of the initial amount, among which 6% was at an unfolded state. In addition, a significant increase of micron aggregates was confirmed. Furthermore, a new approach for the determination of the unfolding kinetics based on the time dependence of the total reaction heat was developed. This study demonstrates that a proper stirring rate and paddle shape are essential for the reliable estimation of thermodynamic parameters in ITC experiments.
Collapse
Affiliation(s)
- Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
8
|
Latza VM, Rodriguez-Loureiro I, Fragneto G, Schneck E. End Point Versus Backbone Specificity Governs Characteristics of Antibody Binding to Poly(ethylene glycol) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13946-13955. [PMID: 30354149 DOI: 10.1021/acs.langmuir.8b02774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
End-grafted poly(ethylene glycol) (PEG) brushes are widely used in order to suppress undesired protein adsorption to surfaces exposed to blood or other biological fluids. The specific adsorption of antibodies (Abs) to PEG brushes associated with PEG's antigenicity is drawing increasing attention because it can affect clinical applications. Here, the adsorption to PEG brushes of two Ab types, specifically binding the polymer backbone and the polymer endpoints, is structurally characterized by neutron reflectometry. The measurements yield volume fraction profiles of PEG and of the adsorbed Abs with sub-nanometer resolution perpendicular to the surface. For all brush parameters in terms of grafting density and polymerization degree, the Ab profiles clearly differ between backbone binders and endpoint binders. The adsorbed Ab amount per unit area is substantial for both Ab types and for all brush parameters investigated, even for dense brushes, which impose a considerable osmotic barrier to Ab insertion. The results therefore indicate that variation of brush parameters alone is insufficient to prevent undesired Ab adsorption. Instead, our work motivates further efforts in the search for nonantigenic brush chemistry.
Collapse
Affiliation(s)
- Victoria M Latza
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | | | - Giovanna Fragneto
- Institut Laue-Langevin , 71 Avenue des Martyrs , 38042 Grenoble Cedex 9 , France
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
9
|
Latza VM, Rodriguez-Loureiro I, Kiesel I, Halperin A, Fragneto G, Schneck E. Neutron Reflectometry Elucidates Protein Adsorption from Human Blood Serum onto PEG Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12708-12718. [PMID: 29023130 DOI: 10.1021/acs.langmuir.7b03048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly(ethylene glycol) (PEG) brushes are reputed for their ability to prevent undesired protein adsorption to material surfaces exposed to biological fluids. Here, protein adsorption out of human blood serum onto PEG brushes anchored to solid-supported lipid monolayers was characterized by neutron reflectometry, yielding volume fraction profiles of lipid headgroups, PEG, and adsorbed proteins at subnanometer resolution. For both PEGylated and non-PEGylated lipid surfaces, serum proteins adsorb as a thin layer of approximately 10 Å, overlapping with the headgroup region. This layer corresponds to primary adsorption at the grafting surface and resists rinsing. A second diffuse protein layer overlaps with the periphery of the PEG brush and is attributed to ternary adsorption due to protein-PEG attraction. This second layer disappears upon rinsing, thus providing a first observation of the structural effect of rinsing on protein adsorption to PEG brushes.
Collapse
Affiliation(s)
- Victoria M Latza
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Irena Kiesel
- Institut Laue-Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
- TU Dortmund University , Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | | | - Giovanna Fragneto
- Institut Laue-Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|