1
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10354-9. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Tan YC, Gan CY, Shafie MH, Yap PG, Mohd Rodhi A, Ahmad A, Murugaiyah V, Abdulla MH, Johns EJ. A comprehensive review on the pancreatic lipase inhibitory peptides: A future anti-obesity strategy. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dysregulation of lipid homeostasis contributes to obesity and can directly lead to several critical public health concerns globally. This paper aimed to present a brief review of related properties and the use of pancreatic lipase inhibitors as the future weight loss drug discovery and development procured from a wide range of natural sources. A total of 176 pancreatic lipase inhibitory peptides were identified from recent publications and peptide databases. These peptides were classified into three categories according to their peptide length and further analyzed using bioinformatic approaches to identify their structural activity relationship. Molecular docking analyses were conducted for each amino acid at the terminal position of the peptides to predict the binding affinity between peptide-enzyme protein complexes based on intermolecular contact interactions. Overall, the observations revealed the features of the inhibitory peptides and their inhibitory mechanisms and interactions. These findings strived to benefit scientists whose research may be relevant to anti-obesity drug development and/or discovery thereby support effective translation of preclinical research for humans’ health being.
Collapse
Affiliation(s)
- Yong Chia Tan
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Pei Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Ainolsyakira Mohd Rodhi
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Ashfaq Ahmad
- College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, SAUDI ARABIA
| | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
- Center for Drug Research, Universiti Sains Malaysia, Penang, MALAYSIA
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, University College of Cork, Cork, IRELAND
| | - Edward James Johns
- Department of Physiology, School of Medicine, University College of Cork, Cork, IRELAND
| |
Collapse
|
3
|
A Novel Symbiotic Formulation Reduces Obesity and Concomitant Metabolic Syndrome in Rats by Raising the Relative Abundance of Blautia. Nutrients 2023; 15:nu15040956. [PMID: 36839314 PMCID: PMC9960556 DOI: 10.3390/nu15040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Obesity is regarded as an abnormal or excessive buildup of fat that may be bad for health and is influenced by a combination of intestinal flora, genetic background, physical activity level and environment. Symbiotic supplementation may be a realistic and easy therapy for the reversal of obesity and associated metabolic problems. In this study, we chose two Bifidobacterium species, three Lactobacilli species and four prebiotics to make a new symbiotic formulation. High or low doses of the symbiotic were administered to rats, and biochemical indicators were recorded to assess the biological effects in a high-fat-diet-induced rat model. The underlying mechanisms were explored by integrating 16S rRNA sequencing with an extensively targeted metabolome. High-dose symbiotic supplementation was effective in reducing obesity and concomitant metabolic syndrome. The high-dose symbiotic also significantly increased the abundance of Blautia, which was negatively correlated with taurocholic acid and the main differential metabolites involved in amino acid and bile acid metabolism. While the low-dose symbiotic had some therapeutic effects, they were not as strong as those at the high dose, demonstrating that the effects were dose-dependent. Overall, our novel symbiotic combination improved plasma glucose and lipid levels, shrunk adipocyte size, restored liver function, increased the abundance of Blautia and adjusted bile acid and amino acid metabolism.
Collapse
|
4
|
Santos-Sánchez G, Cruz-Chamorro I, Bollati C, Bartolomei M, Pedroche J, Millán F, Millán-Linares MDC, Capriotti AL, Cerrato A, Laganà A, Arnoldi A, Carrillo-Vico A, Lammi C. A Lupinus angustifolius protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE -/- mice through the modulation of LDLR and PCSK9 pathways. Food Funct 2022; 13:4158-4170. [PMID: 35316320 DOI: 10.1039/d1fo03847h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
5
|
Amin M, Chondra U, Mostafa E, Alam M. Green seaweed Ulva lactuca, a potential source of bioactive peptides revealed by in silico analysis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Plaszkó T, Szűcs Z, Cziáky Z, Ács-Szabó L, Csoma H, Géczi L, Vasas G, Gonda S. Correlations Between the Metabolome and the Endophytic Fungal Metagenome Suggests Importance of Various Metabolite Classes in Community Assembly in Horseradish ( Armoracia rusticana, Brassicaceae) Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:921008. [PMID: 35783967 PMCID: PMC9247618 DOI: 10.3389/fpls.2022.921008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/27/2022] [Indexed: 05/07/2023]
Abstract
The plant microbiome is an increasingly intensive research area, with significance in agriculture, general plant health, and production of bioactive natural products. Correlations between the fungal endophytic communities and plant chemistry can provide insight into these interactions, and suggest key contributors on both the chemical and fungal side. In this study, roots of various horseradish (Armoracia rusticana) accessions grown under the same conditions were sampled in two consecutive years and chemically characterized using a quality controlled, untargeted metabolomics approach by LC-ESI-MS/MS. Sinigrin, gluconasturtiin, glucoiberin, and glucobrassicin were also quantified. Thereafter, a subset of roots from eight accessions (n = 64) with considerable chemical variability was assessed for their endophytic fungal community, using an ITS2 amplicon-based metagenomic approach using a custom primer with high coverage on fungi, but no amplification of host internal transcribed spacer (ITS). A set of 335 chemical features, including putatively identified flavonoids, phospholipids, peptides, amino acid derivatives, indolic phytoalexins, a glucosinolate, and a glucosinolate downstream product was detected. Major taxa in horseradish roots belonged to Cantharellales, Glomerellales, Hypocreales, Pleosporales, Saccharomycetales, and Sordariales. Most abundant genera included typical endophytes such as Plectosphaerella, Thanatephorus, Podospora, Monosporascus, Exophiala, and Setophoma. A surprising dominance of single taxa was observed for many samples. In summary, 35.23% of reads of the plant endophytic fungal microbiome correlated with changes in the plant metabolome. While the concentration of flavonoid kaempferol glycosides positively correlated with the abundance of many fungal strains, many compounds showed negative correlations with fungi including indolic phytoalexins, a putative glucosinolate but not major glucosinolates and a glutathione isothiocyanate adduct. The latter is likely an in vivo glucosinolate decomposition product important in fungal arrest. Our results show the potency of the untargeted metabolomics approach in deciphering plant-microbe interactions and depicts a complex array of various metabolite classes in shaping the endophytic fungal community.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Csoma
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Géczi
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- *Correspondence: Sándor Gonda, ,
| |
Collapse
|
7
|
Hypolipidemic Activities of Two Pentapeptides (VIAPW and IRWWW) from Miiuy Croaker (Miichthys miiuy) Muscle on Lipid Accumulation in HepG2 Cells through Regulation of AMPK Pathway. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, the hypolipidemic activities of two pentapeptides (VIAPW and IRWWW) from miiuy croaker (Miichthys miiuy) muscle on oleic acid (OA)-induced lipid accumulation in HepG2 cells were investigated. VIAPW and IRWWW could significantly inhibit lipid accumulation induced by OA and decreased intracellular levels of intracellular triglyceride (TG) and total cholesterol (TC) in a dose-effect dependence manner. At the concentration of 100 μm, the TG levels of VIAPW (0.201 ± 0.006 mm) and IRWWW (0.186 ± 0.005 mm) were very (p < 0.01) and extremely (p < 0.001) significantly lower than those (0.247 ± 0.004 mm) of the OA model group; the levels of TC of VIAPW (45.88 ± 0.74 μg/mg protein) and IRWWW (41.02 ± 0.14 μg/mg protein) were very (p < 0.01) and extremely (p < 0.001) significantly lower than that (53.45 ± 0.10μg/mg protein) of the OA model group (p < 0.01). The hypolipidemic mechanisms of VIAPW and IRWWW were to down-regulate the expression levels of genes of SREBP-1c, SREBP-2, FAS, ACC, and HMGR in lipid synthesis and to up-regulate the expression levels of genes of PPARα, ACOX-1, and CPT-1 in lipid oxidation. These results suggested that VIAPW and IRWWW could play their hypolipidemic activities in HepG2 cells through regulation of AMPK pathway and act as hypolipidemic nutrient ingredients applied in public healthy and functional foods.
Collapse
|
8
|
Samad N, Saleem A. Administration of Allium cepa L. bulb attenuates stress-produced anxiety and depression and improves memory in male mice. Metab Brain Dis 2018; 33:271-281. [PMID: 29178012 DOI: 10.1007/s11011-017-0159-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022]
Abstract
In view of anxiolytic, antidepressant and memory strengthen properties of Allium cepa (AC; onion) bulb in various investigations; we aimed to evaluate the useful effects of onion on single immobilization stress -induced biochemical and behavioral changes. Mice in test group were treated with AC powder (200 mg/kg/day), dissolved in water, while the control group were received drinking water for 14 days. After 14 days control and AC treated mice were further divided into unstressed and stressed groups. Animals in the stressed group were subjected to immobilization stress for 2 h. 24-h after the immobilization stress, behavioral activities were monitored. Immobilization stress-induced an anxiogenic behavior in mice subjected to elevated plus maze test (EPM) and light dark activity test (LDA). 2-h immobilization stress-induced depressive behavior in animals measured by forced swim test (FST). Administration of AC attenuated the immobilization stress-induced behavioral deficits. Highest memory performance was observed in stressed mice that were pre-treated with AC in Morris water maze (MWM). Brain lipid peroxidation, antioxidant enzymes (SOD, CAT, GPx) and acetylcholinesterase (AChE) activities were also estimated. Present study suggests a role of antioxidant enzymes in the attenuation of 2-h stress induced anxiety and depression, and enhanced cognitive function as well by AC. The findings therefore suggest that supplementation of AC may be beneficial in the treatment of anxiety, depression and enhancement of memory function.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Ayesha Saleem
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
9
|
Zhang M, Xu J, Wang T, Wan X, Zhang F, Wang L, Zhu X, Gao P, Shu G, Jiang Q, Wang S. The Dipeptide Pro-Gly Promotes IGF-1 Expression and Secretion in HepG2 and Female Mice via PepT1-JAK2/STAT5 Pathway. Front Endocrinol (Lausanne) 2018; 9:424. [PMID: 30140255 PMCID: PMC6094964 DOI: 10.3389/fendo.2018.00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 01/29/2023] Open
Abstract
It has been shown that IGF-1 secretion is influenced by dietary protein or amino acid. However, whether the dipeptides elicit regulatory effects on IGF-1 secretion remains largely unclear. Thus, this study aimed to investigate the effects of the dipeptide Pro-Gly on IGF-1 expression and secretion in HepG2 cells and mice, and explore the underlying mechanisms. The in vitro results indicated that Pro-Gly, but not Pro plus Gly, promoted the expression and secretion of IGF-1 in HepG2. Meanwhile, the expression of the peptide transporter 1 (PepT1) was elevated by Pro-Gly, whereas knockdown of PepT1 with siRNA eliminated the increase of IGF-1 expression induced by Pro-Gly. In addition, Pro-Gly activated JAK2/STAT5 signaling pathway in a PepT1-dependent manner. Furthermore, Pro-Gly enhanced the interaction between JAK2 and STAT5, and the translocation of phospho-STAT5 to nuclei. Moreover, inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Gly on IGF-1 expression and secretion. In agreement with the in vitro results, the in vivo findings demonstrated that Pro-Gly, but not Pro plus Gly, stimulated the expression and secretion of IGF-1 and activated JAK2/STAT5 signaling pathway in the liver of mice injected with Pro-Gly or Pro+Gly acutely or chronically. Besides, acute injection of JAK2/STAT5 inhibitor abolished the elevation of IGF-1 expression and secretion induced by Pro-Gly in mice. Collectively, these findings suggested that the dipeptide Pro-Gly promoted IGF-1 expression and secretion in HepG2 cells and mice by activating JAK2/STAT5 signaling pathway through PepT1. These data provided new insights to the regulation of IGF-1 expression and secretion by the dipeptides.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Jingren Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Wan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingyan Jiang
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
- Songbo Wang
| |
Collapse
|