1
|
Zheleva-Dimitrova D, Petrova A, Savov Y, Gevrenova R, Balabanova V, Momekov G, Simeonova R. Protective Potential of Cicerbita alpina Leaf Extract on Metabolic Disorders and Oxidative Stress in Model Animals. Int J Mol Sci 2024; 25:10851. [PMID: 39409180 PMCID: PMC11477542 DOI: 10.3390/ijms251910851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Metabolic disorders (MDs) include disease states such as diabetes mellitus, obesity, dyslipidemia, hyperuricemia, etc., affecting about 30% of the planet's population. The purpose of the present study was to investigate the protective potential of Cicerbita alpina leaf extract (ECA) against chemically induced type 2 diabetes in Wistar rats. Additionally, some biochemical parameters in the blood serum and liver, as well as histopathological investigation, were also performed. Quantitative analysis of the major compounds in the used extract was performed using ultrahigh-performance liquid chromatography-diode array detection (UHPLC-DAD) analyses using the external standard method. C. alpina extract revealed a beneficial effect on MDs, lowering blood sugar levels and MDA quantity in the liver, increasing the reduced glutathione level, and increasing antioxidant enzyme activity. Cichoric acid (CA) (91.93 mg/g dry extract (de) ± 4.64 mg/g de) was found to be the dominant compound in the extract, followed by caftaric (11.36 ± 2.10 mg/g de), and chlorogenic acid (CGA) (9.25 ± 0.05 mg/g de). In conclusion, C. alpina leaf extract (ECA) is rich in caffeoyltartaric and caffeoylquinic acids and provides beneficial effects on the diabetic animal model.
Collapse
Affiliation(s)
- Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| | - Yonko Savov
- Institute of Emergency Medicine “N. I. Pirogov”, Bul. Totleben 21, 1000 Sofia, Bulgaria;
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| |
Collapse
|
2
|
Kim JS, Lee H, Yoo A, Jeong HY, Jung CH, Ahn J, Ha TY. Gromwell ( Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis. J Microbiol Biotechnol 2024; 34:495-505. [PMID: 38247215 PMCID: PMC11016769 DOI: 10.4014/jmb.2311.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- BK21 FOUR Institute of Precision Public Health, Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Ahyoung Yoo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hang Yeon Jeong
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Tae-Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
3
|
Mthembu SXH, Mazibuko-Mbeje SE, Ziqubu K, Muvhulawa N, Marcheggiani F, Cirilli I, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Potential regulatory role of PGC-1α within the skeletal muscle during metabolic adaptations in response to high-fat diet feeding in animal models. Pflugers Arch 2024; 476:283-293. [PMID: 38044359 PMCID: PMC10847180 DOI: 10.1007/s00424-023-02890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
4
|
Goyal A, Dubey N, Agrawal A, Sharma R, Verma A. An Insight into the Promising Therapeutic Potential of Chicoric Acid. Curr Pharm Biotechnol 2024; 25:1708-1718. [PMID: 38083896 DOI: 10.2174/0113892010280616231127075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 09/04/2024]
Abstract
The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
5
|
Zhang W, Zhao M, Pu Z, Yin Q, Shui Y. Chicoric Acid Presented NLRP3-Mediated Pyroptosis through Mitochondrial Damage by PDPK1 Ubiquitination in an Acute Lung Injury Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1431-1457. [PMID: 37530505 DOI: 10.1142/s0192415x23500659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. C57BL/6 mice were given injections of liposaccharide (LPS) to establish the in vivo model. Meanwhile, BMDM cells were stimulated with LPS+ATP to build the in vitro model. CA significantly alleviated inflammation and oxidative stress in both the in vivo and in vitro models of ALI through the inhibition of NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis. In addition, CA attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis in the in vivo and in vitro models of ALI by suppressing the production of reactive oxygen species (ROS) via inhibiting the Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. CA inhibited the interaction between Akt at T308 and phosphoinositide-dependent kinase-1 (PDPK1) at S549, thus promoting the phosphorylation of the Akt protein. Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, P. R. China
- Graduate School, Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| | - Min Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian, P. R. China
| | - Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| | - Qin Yin
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, P. R. China
- Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| | - Yinping Shui
- Graduate School, Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| |
Collapse
|
6
|
Jeong JH, Lee HL, Park HJ, Yoon YE, Shin J, Jeong MY, Park SH, Kim DH, Han SW, Kang CG, Hong KJ, Lee SJ. Effects of tomato ketchup and tomato paste extract on hepatic lipid accumulation and adipogenesis. Food Sci Biotechnol 2023; 32:1111-1122. [PMID: 37215254 PMCID: PMC10195947 DOI: 10.1007/s10068-023-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
Tomatoes include high levels of lycopene, which is a potent antioxidative, hypolipidemic, and antidiabetic phytochemical. The intake of lycopene is associated with a reduced risk of insulin resistance and metabolic syndrome. The aim of this study was to investigate whether tomato ketchup and tomato paste, major dietary sources for tomato and lycopene, could regulate hepatic lipid metabolism and adipogenesis. To investigate the regulatory effects of tomato ketchup and tomato paste, we prepared a tomato ketchup extract (TKE) and a tomato paste extract (TPE) in 80% (v/v) ethyl acetate for the experiment. TKE and TPE reduced lipid accumulation and key markers for gluconeogenesis and induced a higher rate of fatty acid oxidation in HepG2 hepatocytes. In 3T3-L1 adipocytes, TKE and TPE increased adipogenesis and intracellular triglyceride accumulation, and stimulated glucose uptake. Peroxisome proliferator-activated receptor alpha and gamma expression levels were increased by TKE and TPE treatment. A single oral dose of tomato ketchup and tomato paste (9.28 g/kg) significantly improved glucose and insulin tolerance in mice. These findings suggest that lycopene-containing tomato ketchup and tomato paste may have beneficial regulatory effects in terms of energy metabolism in hepatocytes and adipocytes, and thus may improve blood glucose metabolism.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Lim Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyun Ji Park
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jaeeun Shin
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung Hoon Park
- Department of Food & Nutrition, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Da-hye Kim
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Seung-Woo Han
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Choon-Gil Kang
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Ki-Ju Hong
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University, Seoul, South Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul, South Korea
| |
Collapse
|
7
|
Luo D, Zhao Y, Fang Z, Zhao Y, Han Y, Piao J, Rong X, Guo J. Tianhuang formula regulates adipocyte mitochondrial function by AMPK/MICU1 pathway in HFD/STZ-induced T2DM mice. BMC Complement Med Ther 2023; 23:202. [PMID: 37337224 DOI: 10.1186/s12906-023-04009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Tianhuang formula (THF) is a Chinese medicine prescription that is patented and clinically approved, and has been shown to improve energy metabolism, but the underlying mechanism remains poorly understood. The purpose of this study is to clarify the potential mechanisms of THF in the treatment of type 2 diabetes mellitus (T2DM). METHODS A murine model of T2DM was induced by high-fat diet (HFD) feeding combined with low-dose streptozocin (STZ) injections, and the diabetic mice were treated with THF by gavaging for consecutive 10 weeks. Fasting blood glucose (FBG), serum insulin, blood lipid, mitochondrial Ca2+ (mCa2+) levels and mitochondrial membrane potential (MMP), as well as ATP production were analyzed. The target genes and proteins expression of visceral adipose tissue (Vat) was tested by RT-PCR and western blot, respectively. The underlying mechanism of the regulating energy metabolism effect of THF was further explored in the insulin resistance model of 3T3-L1 adipocytes cultured with dexamethasone (DXM). RESULTS THF restored impaired glucose tolerance and insulin resistance in diabetic mice. Serum levels of lipids were significantly decreased, as well as fasting blood glucose and insulin in THF-treated mice. THF regulated mCa2+ uptake, increased MMP and ATP content in VAT. THF increased the mRNA and protein expression of AMPK, phosphorylated AMPK (p-AMPK), MICU1, sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). THF could increase the mCa2+ level of 3T3-L1 adipocytes and regulate mitochondrial function. The protein expression of AMPK, p-AMPK, mCa2+ uniporter (MCU) and MICU1 decreased upon adding AMPK inhibitor compound C to 3T3-L1 adipocytes and the protein expression of MCU and MICU1 decreased upon adding the MCU inhibitor ruthenium red. CONCLUSIONS These results demonstrated that THF ameliorated glucose and lipid metabolism disorders in T2DM mice through the improvement of AMPK/MICU1 pathway-dependent mitochondrial function in adipose tissue.
Collapse
Affiliation(s)
- Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Yaru Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Zhaoyan Fang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Yating Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Yi Han
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Jingyu Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Pu Z, Sui B, Wang X, Wang W, Li L, Xie H. The effects and mechanisms of the anti-COVID-19 traditional Chinese medicine, Dehydroandrographolide from Andrographis paniculata (Burm.f.) Wall, on acute lung injury by the inhibition of NLRP3-mediated pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154753. [PMID: 37084628 PMCID: PMC10060206 DOI: 10.1016/j.phymed.2023.154753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China; State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Bangzhi Sui
- Department of Pediatric surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xingwen Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wusuan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Lingling Li
- Department of Pulmonary and Critical Care Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
9
|
Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Chicoric acid does not restore palmitate-induced decrease in irisin levels in PBMCs of newly diagnosed patients with T2D and healthy subjects. Arch Physiol Biochem 2022; 128:532-538. [PMID: 31855067 DOI: 10.1080/13813455.2019.1702060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Targeting irisin as a myokine/adipokine is a new therapeutic approach in the improvement of insulin-resistance (IR) during type 2 diabetes (T2D). In present study we evaluated the effects of palmitate and chicoric acid (CA) on irisin production in peripheral blood mononuclear cells (PBMCs) of patients with T2D. This study performed on 20 newly diagnosed patients with T2D and 20 healthy subjects. PBMCs treated with palmitate and CA. PPARGC1A and FNDC5 genes expression assessed using qRT-PCR. Irisin levels in cell culture medium measured by ELISA. Palmitate decreased PPARGC1A and FNDC5 genes expression, as well as irisin levels in PBMCs from T2D and healthy volunteers. CA significantly restored palmitate-induced decrease in PPARGC1A gene expression in PBMCs of healthy subjects. Although, FNDC5 gene expression and irisin levels were not induced significantly by CA. In conclusion, palmitate decreases irisin production through down-regulation of PPARGC1A and FNDC5 expressions. However, CA does not effect on irisin pathway.Key pointsPalmitate reduced PPARGC1A and FNDC5 genes expression, as well as irisin secretion in PBMCs.Palmitate-induced decrease in PPARGC1A gene expression significantly has been reversed by CA in PBMCs of healthy subjects.CA did not return palmitate-decreased in FNDC5 gene expression and irisin levels in PBMCs.
Collapse
Affiliation(s)
- Zahra Arab Sadeghabadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
10
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Experimental models of lipid overload and their relevance in understanding skeletal muscle insulin resistance and pathological changes in mitochondrial oxidative capacity. Biochimie 2021; 196:182-193. [PMID: 34563603 DOI: 10.1016/j.biochi.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
It remains essential to decipher some of the pathological mechanisms that link obesity with deteriorating human health. Insulin resistance, due to enhanced free fatty acid substrate delivery, results in disrupted glucose homeostasis and altered mitochondrial oxidative capacity, which is a characteristic feature of an obese state. In fact, as a major site for regulating glucose homeostasis and energy production in response to insulin, the skeletal muscle has become an interesting target tissue to understand the impact of lipid overload on the development of insulin resistance and impaired mitochondrial respiratory function. In addition to systematically retrieving the discussed data, the current review brings an essential perspective in understanding the relevance of experimental models of lipid overload such as high fat diets in understanding the pathological link between insulin resistance and pathological changes in mitochondrial oxidative capacity. Importantly, inclusion of evidence from transgenic model highlights some of the unique molecular targets that are implicated in the development of insulin resistance and inefficient mitochondrial respiration processes within an obese state. Importantly, saturation with lipid products such as ceramides and diacylglycerols, especially within the skeletal muscle, appears to be instrumental in paving the path leading to worsening of metabolic complications. These metabolic consequences mostly interfere with the efficiency of the mitochondrial electron transport chain, leading to overproduction of toxic reactive oxygen species. Therefore, therapeutic agents that reverse the effects of lipid overload by improving insulin sensitivity and mitochondrial oxidative capacity are crucial for the management or even treatment of metabolic diseases.
Collapse
|
12
|
Choi BR, Cho IJ, Jung SJ, Kim JK, Park SM, Lee DG, Ku SK, Park KM. Lemon balm and dandelion leaf extract synergistically alleviate ethanol-induced hepatotoxicity by enhancing antioxidant and anti-inflammatory activity. J Food Biochem 2020; 44:e13232. [PMID: 32497278 DOI: 10.1111/jfbc.13232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
We investigated the effect of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (LD) on ethanol (EtOH)-mediated liver injury and explored the underlying mechanisms. Administration of LD synergistically reduced relative liver weight and decreased the levels of serum biomarkers of hepatic injury. Histopathological and biochemical analyses indicated that LD synergistically attenuated hepatic accumulation of triacylglycerides (TGs) and restored the levels of mRNAs related to fatty acid metabolism. In addition, LD significantly reduced EtOH-induced hepatic oxidative stress by attenuating the reduction in levels of nuclear factor E2-related factor 2 (Nrf2) mRNA and enhancing antioxidant activity. Moreover, LD decreased the EtOH-mediated increase in levels of hepatic tumor necrosis factor-α (TNF-α) mRNA. In vitro, LD significantly scavenged free radicals, increased cell viability against tert-butylhydroperoxide (tBHP), and transactivated Nrf2 target genes in HepG2 cells. Furthermore, LD decreased levels of pro-inflammatory mediators in lipopolysaccharide-stimulated Raw264.7 cells. Therefore, LD shows promise for preventing EtOH-mediated liver injury. PRACTICAL APPLICATIONS: There were no approved therapeutic agents for preventing and/or treating alcoholic liver diseases. In this study, a 2:1 (w/w) mixture of lemon balm and dandelion leaf extract (DL) synergistically ameliorated EtOH-induced hepatic injury by inhibiting lipid accumulation, oxidative stress, and inflammation. Our findings will enable the development of a novel food supplement for the prevention or treatment of alcohol-mediated liver injury.
Collapse
Affiliation(s)
- Beom-Rak Choi
- Department of Foodscience and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.,Nutracore Co., Ltd, Suwon, Republic of Korea
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Su-Jin Jung
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jae Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sang Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Dae Geon Lee
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Ki-Moon Park
- Department of Foodscience and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Li Z, Feng H, Han L, Ding L, Shen B, Tian Y, Zhao L, Jin M, Wang Q, Qin H, Cheng J, Liu G. Chicoric acid ameliorate inflammation and oxidative stress in Lipopolysaccharide and d-galactosamine induced acute liver injury. J Cell Mol Med 2020; 24:3022-3033. [PMID: 31989756 PMCID: PMC7077529 DOI: 10.1111/jcmm.14935] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Chicoric acid is polyphenol of natural plant and has a variety of bioactivity. Caused by various kinds of stimulating factors, acute liver injury has high fatality rate. The effect of chicoric acid in acute liver injury induced by Lipopolysaccharide (LPS) and d‐galactosamine (d‐GalN) was investigated in this study. The results showed that CA decreased the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and reduced the mortality induced by LPS/d‐GalN. CA can restrain mitogen‐activated protein kinases (MAPKs) and nuclear factor‐kappa B (NF‐κB) to alleviate inflammation. Meanwhile, the results indicated CA can active nuclear factor‐erythroid 2‐related factor 2 (Nrf2) pathway with increasing the level of AMP‐activated protein kinase (AMPK). And with the treatment of CA, protein levels of autophagy genes were obvious improved. The results of experiments indicate that CA has protective effect in liver injury, and the activation of AMPK and autophagy may make sense.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bingyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ye Tian
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lilei Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meiyu Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qi Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haiyan Qin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
14
|
Biological Activity of New Cichoric Acid-Metal Complexes in Bacterial Strains, Yeast-Like Fungi, and Human Cell Cultures In Vitro. Nutrients 2020; 12:nu12010154. [PMID: 31935840 PMCID: PMC7019225 DOI: 10.3390/nu12010154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/23/2022] Open
Abstract
Cichoric acid (CA) belongs to the group of polyphenols, which occurs in a variety of plant species and it is characterized by anticancer, antibacterial, and antiviral properties. Selected polyphenols have the ability to combine with metal ions to form chelate complexes that reveal greater biological activity than free compounds. In order to study possible antimicrobial and anticancer effect of CA and its complexes with copper(II)/zinc(II)/nickel(II)/cobalt(II) we decided to conduct cytotoxicity tests to estimate the most effective concentrations of tested compounds. The results of the presented study demonstrated, for the first time, that the treatment with newly synthesized CA-metal complexes has anticancer and antimicrobial effects, which were examined in seven different cell lines: MCF-7, MDA-MB-231, and ZR-75-1 breast cancer cell lines, A375 melanoma cell line, DLD-1 cell line, LN-229 cell line, FN cell line; five bacterial strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Proteus vulgaris, Lactobacillus rhamnosus, yeast Sacchcaromyces boulardii, and pathogenic yeast-like fungi Candida albicans. The presented study indicates that CA-metal complexes could be considered as a potential supplementary tool in anticancer therapy, however, because of their possible toxic activity on fibroblasts, they should be used with caution. Some of the tested complexes have also preservative properties and positive influence on normal non-pathogenic microorganisms, which was demonstrated in selected microbial strains, therefore they may serve as food preservatives of natural origin with cytoprotective properties.
Collapse
|
15
|
Chicoric acid prevents methotrexate-induced kidney injury by suppressing NF-κB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. Inflamm Res 2019; 68:511-523. [DOI: 10.1007/s00011-019-01241-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
|