1
|
Takata T, Inoue S, Kunii K, Masauji T, Moriya J, Motoo Y, Miyazawa K. Advanced Glycation End-Product-Modified Heat Shock Protein 90 May Be Associated with Urinary Stones. Diseases 2025; 13:7. [PMID: 39851471 PMCID: PMC11764404 DOI: 10.3390/diseases13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity. Further, HSP90 in human pancreatic and breast cells can be modified by various advanced glycation end-products (AGEs), thus affecting their function. Hypothesis 1: We hypothesized that HSP90s on/in human proximal tubular epithelium cells can be modified by various types of AGEs, and that they may affect their functions and it may be a key to reveal that LSRDs are associated with urolithiasis. Hypothesis 2: We considered the possibility that Japanese traditional medicines for urolithiasis may inhibit AGE generation. Of Choreito and Urocalun (the extract of Quercus salicina Blume/Quercus stenophylla Makino) used in the clinic, Choreito is a Kampo medicine, while Urocalun is a characteristic Japanese traditional medicine. As Urocalun contains quercetin, hesperidin, and p-hydroxy cinnamic acid, which can inhibit AGE generation, we hypothesized that Urocalun may inhibit the generation of AGE-modified HSP90s in human proximal tubular epithelium cells.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Junji Moriya
- Department of General Internal Medicine, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan;
- General Medical Center, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka 918-8503, Fukui, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
| |
Collapse
|
2
|
Takata T, Inoue S, Kunii K, Masauji T, Miyazawa K. Slot Blot- and Electrospray Ionization-Mass Spectrometry/Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry-Based Novel Analysis Methods for the Identification and Quantification of Advanced Glycation End-Products in the Urine. Int J Mol Sci 2024; 25:9632. [PMID: 39273579 PMCID: PMC11395049 DOI: 10.3390/ijms25179632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
3
|
Takata T, Inoue S, Masauji T, Miyazawa K, Motoo Y. Generation and Accumulation of Various Advanced Glycation End-Products in Cardiomyocytes May Induce Cardiovascular Disease. Int J Mol Sci 2024; 25:7319. [PMID: 39000424 PMCID: PMC11242264 DOI: 10.3390/ijms25137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka, Fukui 918-8503, Japan
| |
Collapse
|
4
|
Takata T, Masauji T, Motoo Y. Analysis of Crude, Diverse, and Multiple Advanced Glycation End-Product Patterns May Be Important and Beneficial. Metabolites 2023; 14:3. [PMID: 38276293 PMCID: PMC10819149 DOI: 10.3390/metabo14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Lifestyle-related diseases (LSRDs), such as diabetes mellitus, cardiovascular disease, and nonalcoholic steatohepatitis, are a global crisis. Advanced glycation end-products (AGEs) have been extensively researched because they trigger or promote LSRDs. Recently, techniques such as fluorimetry, immunostaining, Western blotting, slot blotting, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry, matrix-assisted laser desorption-mass spectrometry (MALDI-MS), and electrospray ionization-mass spectrometry (ESI-MS) have helped prove the existence of intra/extracellular AGEs and revealed novel AGE structures and their modifications against peptide sequences. Therefore, we propose modifications to the existing categorization of AGEs, which was based on the original compounds identified by researchers in the 20th century. In this investigation, we introduce the (i) crude, (ii) diverse, and (iii) multiple AGE patterns. The crude AGE pattern is based on the fact that one type of saccharide or its metabolites or derivatives can generate various AGEs. Diverse and multiple AGE patterns were introduced based on the possibility of combining various AGE structures and proteins and were proven through mass analysis technologies such as MALDI-MS and ESI-MS. Kampo medicines are typically used to treat LSRDs. Because various compounds are contained in Kampo medicines and metabolized to exert effects on various organs or tissues, they may be suitable against various AGEs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|
5
|
Toriumi K, Iino K, Ozawa A, Miyashita M, Yamasaki S, Suzuki K, Sugawa H, Tabata K, Yamaguchi S, Usami S, Itokawa M, Nishida A, Nagai R, Kamiguchi H, Arai M. Glucuronic acid is a novel source of pentosidine, associated with schizophrenia. Redox Biol 2023; 67:102876. [PMID: 37703666 PMCID: PMC10502438 DOI: 10.1016/j.redox.2023.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Pentosidine (PEN) is an advanced glycation end-product (AGEs), where a fluorescent cross-link is formed between lysine and arginine residues in proteins. Accumulation of PEN is associated with aging and various diseases. We previously reported that a subpopulation of patients with schizophrenia showed PEN accumulation in the blood, having severe clinical features. PEN is thought to be produced from glucose, fructose, pentoses, or ascorbate. However, patients with schizophrenia with high PEN levels present no elevation of these precursors of PEN in their blood. Therefore, the molecular mechanisms underlying PEN accumulation and the molecular pathogenesis of schizophrenia associated with PEN accumulation remain unclear. Here, we identified glucuronic acid (GlcA) as a novel precursor of PEN from the plasma of subjects with high PEN levels. We demonstrated that PEN can be generated from GlcA, both in vitro and in vivo. Furthermore, we found that GlcA was associated with the diagnosis of schizophrenia. Among patients with high PEN, the proportion of those who also have high GlcA is 25.6%. We also showed that Aldo-keto reductase (AKR) activity to degrade GlcA was decreased in patients with schizophrenia, and its activity was negatively correlated with GlcA levels in the plasma. This is the first report to show that PEN is generated from GlcA. In the future, this finding will contribute to understanding the molecular pathogenesis of not only schizophrenia but also other diseases with PEN accumulation.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Azuna Ozawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, 156-0057, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Community Mental Health, School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, 862-0970, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, 113-8510, Japan
| | - Satoshi Yamaguchi
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, 156-0057, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, 862-0970, Japan
| | | | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
6
|
Takata T, Motoo Y. Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites 2023; 13:878. [PMID: 37512585 PMCID: PMC10385496 DOI: 10.3390/metabo13070878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Kampo medicines are Japanese traditional medicines developed from Chinese traditional medicines. The action mechanisms of the numerous known compounds have been studied for approximately 100 years; however, many remain unclear. While components are normally affected through digestion, absorption, and metabolism, in vitro oral, esophageal, and gastric epithelial cell models avoid these influences and, thus, represent superior assay systems for Kampo medicines. We focused on two areas of the strong performance of this assay system: intracellular and extracellular advanced glycation end-products (AGEs). AGEs are generated from glucose, fructose, and their metabolites, and promote lifestyle-related diseases such as diabetes and cancer. While current technology cannot analyze whole intracellular AGEs in cells in some organs, some AGEs can be generated for 1-2 days, and the turnover time of oral and gastric epithelial cells is 7-14 days. Therefore, we hypothesized that we could detect these rapidly generated intracellular AGEs in such cells. Extracellular AEGs (e.g., dietary or in the saliva) bind to the receptor for AGEs (RAGE) and the toll-like receptor 4 (TLR4) on the surface of the epithelial cells and can induce cytotoxicity such as inflammation. The analysis of Kampo medicine effects against intra/extracellular AGEs in vitro is a novel model.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Yoshiharu Motoo
- Department of Medical Oncology and Kampo Medicines, Komatsu Sophia Hospital, Komatsu 923-0861, Ishikawa, Japan
| |
Collapse
|
7
|
Takata T. Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products? Metabolites 2023; 13:metabo13040564. [PMID: 37110222 PMCID: PMC10144988 DOI: 10.3390/metabo13040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been used for the detection and quantification of RNA, DNA, and proteins since around 1980 and is one of the more commonly used analog technologies to date. However, the novel slot blot analysis has been used to quantify AGEs from 2017 to 2022. Its characteristics include (i) use of a lysis buffer containing tris-(hydroxymethyl)-aminomethane, urea, thiourea, and 3-[3-(cholamidopropyl)-dimetyl-ammonio]-1-propane sulfonate (a lysis buffer with a composition similar to that used in two-dimensional gel electrophoresis-based proteomics analysis); (ii) probing of AGE-modified bovine serum albumin (e.g., standard AGE aliquots); and (iii) use of polyvinylidene difluoride membranes. In this review, the previously used quantification methods of slot blot, western blot, immunostaining, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry (MS), matrix-associated laser desorption/ionization-MS, and liquid chromatography-electrospray ionization-MS are described. Lastly, the advantages and disadvantages of the novel slot blot compared to the above methods are discussed.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
8
|
Jiang T, Zhang Y, Dai F, Liu C, Hu H, Zhang Q. Advanced glycation end products and diabetes and other metabolic indicators. Diabetol Metab Syndr 2022; 14:104. [PMID: 35879776 PMCID: PMC9310394 DOI: 10.1186/s13098-022-00873-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes is a global concern among adults. Previous studies have suggested an association between different screening methods and diabetes; however, increasing evidence has suggested the importance of early screening for diabetes mellitus (DM) and its influencing factors. In this study, we aimed to explore whether the non-invasive detection of advanced glycation end products (AGEs) in the early screening of DM in the Chinese community and whether body mass index (BMI) and metabolic indexes could moderate this relationship. METHODS Three community health service centers in Hefei that signed the medical consortium agreement with the First Affiliated Hospital of Anhui Medical University were selected to screen the population aged 30-90 years in each community using a multi-stage cluster sampling method from January 2018 to January 2019. Univariate analysis of variance was used to compare the differences in general data, biochemical indexes, skin AGEs levels, and blood glucose among groups. In addition, a multivariable logistic regression analysis was performed. RESULTS A total of 912 patients with a community health physical examination and no history of diabetes were selected, excluding those with missing values > 5%. Finally, 906 samples were included in the study with an effective rate of 99.3%. The prevalence in the normal, impaired glucose tolerance, and DM groups were 79.8%, 10.0%, and 10.2%, respectively. By dividing AGE by quartile, AGE accumulation was classified as ≤ P25, P25-P50, P50-P75, and > P75. Higher AGE accumulation (χ2 = 37.95), BMI (χ2 = 12.20), systolic blood pressure (SBP) (χ2 = 8.46), triglyceride (TG) (χ2 = 6.23), and older age (χ2 = 20.11) were more likely to have a higher prevalence of fasting blood glucose (FBG). The analyses revealed significant correlations between AGE accumulation, BMI, TG, total cholesterol (TC), and FBG (P < 0.05). CONCLUSION As the findings indicate, priority should be given to the quality of metabolic-related indicators, such as BMI, TG, and TC, employed to effectively reduce the FBG of Chinese participants with high AGE accumulation. Skin autofluorescence may prove to be a rapid and non-invasive method for assessing the metabolic progression of all glucose level layers.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Chao Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Honglin Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
9
|
Rau R, Glomb MA. Novel Pyridinium Cross-Link Structures Derived from Glycolaldehyde and Glyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4434-4444. [PMID: 35348319 DOI: 10.1021/acs.jafc.2c00906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Short-chained α-hydroxycarbonyl compounds such as glycolaldehyde (GA) and its oxidized counterpart glyoxal (GX) are known as potent glycating agents. Here, a novel fluorescent lysine-lysine cross-link 1-(5-amino-5-carboxypentyl)-3-(5-amino-5-carboxy-pentylamino)pyridinium salt (meta-DLP) was synthesized and its structure unequivocally proven by 1H NMR, 13C-NMR attached proton test, and 2D NMR. Further characterization of chemical properties and mechanistic background was obtained in comparison to the known monovalent protein modification 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine). Identification and quantitation in various sugar incubations with N2-t-Boc-lysine revealed a novel alternative formation pathway for both advanced glycation end products (AGEs) by the interplay of both carbonyl compounds, GA and GX, which was confirmed by isotope labeling experiments. The concentration of pyridinium AGEs was about 1000-fold lower compared to the well-established N6-carboxymethyl lysine. However, pyridinium AGEs were shown to lead to the photosensitized generation of singlet oxygen in irradiation experiments, which was verified by the detection of 3,3'-(naphthalene-1,4-diyl)-dipropionate endoperoxide. Furthermore, meta-DLP was identified in hydrolyzed potato chip proteins by collision-induced dissociation mass spectrometry after HPLC enrichment.
Collapse
Affiliation(s)
- Robert Rau
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle/Saale 06120, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle/Saale 06120, Germany
| |
Collapse
|
10
|
Shigeta T, Sasamoto K, Yamamoto T. A novel crosslinked type of advanced glycation end-product derived from lactaldehyde. Heliyon 2020; 6:e05337. [PMID: 33204871 PMCID: PMC7653286 DOI: 10.1016/j.heliyon.2020.e05337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Glycation of amino or guanidino groups of proteins with glucose and glucose-derived reactive aldehydes, such as α-hydroxyaldehydes, leads to accumulation of advanced glycation end-products (AGEs) in the body, resulting in diabetic complications and age-related pathology. Although molecular structures of glycolaldehyde- and glyceraldehyde-derived AGEs have been described in previous studies, little is known about lactaldehyde-derived AGEs of α-hydroxyaldehydes. Here, we report a novel crosslinked type of AGE, named as lactaldehyde-derived lysine dimer (LAK2), which is produced due to non-enzymatic glycation of Nα-acetyl-L-lysine with lactaldehyde under physiological conditions. We have identified the molecular structure of LAK2 by extensive mass spectrometry and nuclear magnetic resonance analyses. Furthermore, we propose a reaction pathway to produce LAK2, in which it is formed through an intermediate common with the recently reported lactaldehyde-derived pyridinium-type lysine adduct (LAPL). Since lactaldehyde is known to be produced from L-threonine in a myeloperoxidase (MPO)-mediated reaction at sites of inflammation, LAK2 has the potential to be an oxidative stress marker of MPO-mediated reactions induced in inflammation.
Collapse
Affiliation(s)
- Tomoaki Shigeta
- Bloom Technology Corporation, 3-14-3 Minamikumamoto, Kumamoto 860-0812, Japan
| | - Kazumi Sasamoto
- Bloom Technology Corporation, 3-14-3 Minamikumamoto, Kumamoto 860-0812, Japan
| | - Tetsuro Yamamoto
- Bloom Technology Corporation, 3-14-3 Minamikumamoto, Kumamoto 860-0812, Japan
| |
Collapse
|
11
|
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf 2020; 19:2559-2587. [DOI: 10.1111/1541-4337.12593] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|