1
|
Hosseinipour A, Heydari M, Mohebbinejad A, Mosavat SH, Parkhah M, Hashempur MH. Prophylactic effect of chamomile on post-dural puncture headache in women undergoing elective cesarean section: A randomized, double blind, placebo-controlled clinical trial. Explore (NY) 2024; 20:424-429. [PMID: 37926605 DOI: 10.1016/j.explore.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Post-dural puncture headache (PDPH) is a common complication after spinal anesthesia, affecting patient recovery. This study evaluated the prophylactic effect of topical chamomile ointment on PDPH in women undergoing elective cesarean section. METHODS In a randomized, double-blind, placebo-controlled clinical trial 148 pregnant women were randomized into two parallel groups and received 3cc of the chamomile or the placebo ointment on the forehead of the participants 20 minutes before the start of spinal anesthesia, and then 2 and 4 hours after that. The primary outcomes were the incidence rate of headache, and its severity assessed by a numeric rating scale (NRS), while secondary outcomes included analgesic consumption, frequency of nausea/vomiting, and adverse events. RESULTS Chamomile ointment exhibited significant preventive effects on PDPH incidence compared to placebo. The chamomile group demonstrated lower rates of PDPH at 6 hours (3.5% vs. 7.18%, p = 0.021) and 12 hours (7.6% vs. 20%, p = 0.028) after spinal anesthesia. Analgesic consumption, frequency of nausea/vomiting, and adverse events were comparable between the groups. CONCLUSION Topical chamomile ointment demonstrated significant preventive effects on PDPH incidence compared to placebo. Chamomile ointment could be a promising adjunctive approach to prevent PDPH, enhancing patient comfort and potentially reducing the need for analgesics. Further investigation is needed to explore its mechanisms and broader applications.
Collapse
Affiliation(s)
| | - Mojtaba Heydari
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Hamdollah Mosavat
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Parkhah
- Department of Anesthesiology, Kowsar Hospital, Fars Heart Foundation, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Ji R, Yang L, Shi G, Sun J, Cao P. Correlation of serum matrix metalloproteinase 3 with osteoporosis in patients of postmenopausal rheumatoid arthritis. Hum Immunol 2024; 85:110807. [PMID: 38701721 DOI: 10.1016/j.humimm.2024.110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Osteoporosis (OP) is a common complication of postmenopausal women with rheumatoid arthritis (RA). Herein, the objective of our study was to explore the correlation between serum matrix metalloproteinase 3 (MMP3) and OP among postmenopausal women with RA to foster better diagnosis and treatment. A total of 208 elderly postmenopausal women with RA were included in this study, with 83 patients diagnosed with OP after RA diagnosis and 125 patients without OP. Serum MMP3 levels and bone mineral density (BMD) were measured and compared. The predictive value of serum MMP3 for OP in this population was also analyzed using receiver operating curve (ROC) analysis. Postmenopausal women with RA and OP diagnosis had markedly higher serum MMP3 levels, compared to those without OP. ROC analysis showed that serum MMP3 had predictive value for OP. Additionally, a negative correlation was observed between serum MMP3 levels and BMD. High serum MMP3 levels were also found to be associated with high abnormal bone metabolism. We found that serum MMP3 levels are strongly correlated with OP in postmenopausal women with RA and that elevated levels of serum MMP3 are linked to low BMD and high abnormal bone metabolism. Serum MMP3 may be a useful biomarker for predicting OP in this population, and could potentially aid in the development of targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Rong Ji
- Department of Rheumatology, Jiangnan University Medical Center, Wuxi 214000, Jiangsu, China
| | - Lei Yang
- Department of Geriatrics, Jiangnan University Medical Center, Wuxi 214000, Jiangsu, China
| | - Guoxun Shi
- Department of Rheumatology, Jiangnan University Medical Center, Wuxi 214000, Jiangsu, China
| | - Jianming Sun
- Urology Surgery, the 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214000, Jiangsu, China
| | - Pei Cao
- Department of Geriatrics, Jiangnan University Medical Center, Wuxi 214000, Jiangsu, China.
| |
Collapse
|
3
|
Ahmed HS, Mohamed EIA, Amin E, Moawad AS, Sadek Abdel-Bakky M, Almahmoud SA, Afifi N. Phytochemical investigation and anti-inflammatory potential of Atriplex leucoclada Boiss. BMC Complement Med Ther 2023; 23:464. [PMID: 38104070 PMCID: PMC10725009 DOI: 10.1186/s12906-023-04281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The plant kingdom has long been considered a valuable source for therapeutic agents, however, some plant species still untapped and need to be phytochemically and biologically explored. Although several Atriplex species have been investigated in depth, A. leucoclada, a halophytic plant native to Saudi Arabian desert, remains to be explored for its phytochemical content and biological potentials. Herein, the current study investigated the metabolic content and the anti-inflammatory potential of A. leucoclada. METHODS Powdered aerial parts of the plant were defatted with n-hexane then the defatted powder was extracted with 80% methanol. n-Hexane extract (ATH) was analyzed using GC-MS, while the defatted extract (ATD) was subjected to different chromatographic methods to isolate the major phytoconstituents. The structures of the purified compounds were elucidated using different spectroscopic methods including advanced NMR techniques. Anti-inflammatory activity of both extracts against COX-1 and COX-2 enzymes were examined in vitro. Molecular docking of the identified compounds into the active sites of COX-1 and COX-2 enzymes was conducted using pdb entries 6Y3C and 5IKV, respectively. RESULTS Phytochemical investigation of ATD extract led to purification and identification of nine compounds. Interestingly, all the compounds, except for 20-hydroxy ecdysone (1), are reported for the first time from A. leucoclada, also luteolin (6) and pallidol (8) are isolated for the first time from genus Atriplex. Inhibitory activity of ATD and ATH extracts against COX-1 and COX-2 enzymes revealed concentration dependent activity of both fractions with IC50 41.22, 14.40 μg/ml for ATD and 16.74 and 5.96 μg/ml for ATH against COX-1 and COX-2, respectively. Both extracts displayed selectivity indices of 2.86 and 2.80, respectively as compared to 2.56 for Ibuprofen indicating a promising selectivity towards COX-2. Molecular docking study supported in vitro testing results, where purified metabolites showed binding affinity scores ranged from -9 to -6.4 and -8.5 to -6.6 kcal/mol for COX-1 and 2, respectively, in addition the binding energies of GC-MS detected compounds ranged from -8.9 to -5.5 and -8.3 to -5.1 kcal/mol for COX-1 and 2, respectively as compared to Ibuprofen (-6.9 and -7.5 kcal/mol, respectively), indicating high binding affinities of most of the compounds. Analysis of the binding orientations revealed variable binding patterns depending on the nature of the compounds. Our study suggested A. leucoclada as a generous source for anti-inflammatory agents.
Collapse
Affiliation(s)
- Hayam S Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Enas I A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Abeer S Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
4
|
Akram W, Tagde P, Ahmed S, Arora S, Emran TB, Babalghith AO, Sweilam SH, Simal-Gandara J. Guaiazulene and related compounds: A review of current perspective on biomedical applications. Life Sci 2023; 316:121389. [PMID: 36646376 DOI: 10.1016/j.lfs.2023.121389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Thousands of people worldwide pass away yearly due to neurological disorders, cardiovascular illnesses, cancer, metabolic disorders, and microbial infections. Additionally, a sizable population has also been impacted by hepatotoxicity, ulcers, gastroesophageal reflux disease, and breast fissure. These ailments are likewise steadily increasing along with the increase in life expectancy. Finding innovative therapies to cure and consequently lessen the impact of these ailments is, therefore, a global concern. METHODS AND MATERIALS All provided literature on Guaiazulene (GA) and its related compounds were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, CNKI, and books via the keywords Guaiazulene, Matricaria chamomilla, GA-related compounds, and Guaiazulene analogous. RESULTS The FDA has approved the bicyclic sesquiterpene GA, commonly referred to as azulon or 1,4-dimethyl-7-isopropylazulene, as a component in cosmetic colorants. The pleiotropic health advantages of GA and related substances, especially their antioxidant and anti-inflammatory effects, attracted a lot of research. Numerous studies have found that GA can help to manage various conditions, including bacterial infections, tumors, immunomodulation, expectorants, diuretics, diaphoresis, ulcers, dermatitis, proliferation, and gastritis. These conditions all involve lipid peroxidation and inflammatory response. In this review, we have covered the biomedical applications of GA. Moreover, we also emphasize the therapeutic potential of guaiazulene derivatives in pre-clinical and clinical settings, along with their underlying mechanism(s). CONCLUSION GA and its related compounds exhibit therapeutic potential in several diseases. Still, it is necessary to investigate their potential in animal models for various other ailments and establish their safety profile. They might be a good candidate to advance to clinical trials.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University Campus, Sector 125, Noida 201313, UP, India; PRISAL Foundation (Pharmaceutical Royal International Society), India.
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Swamita Arora
- Amity Institute of Pharmacy, Amity University Campus, Sector 125, Noida 201313, UP, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
5
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
6
|
Zhou Y, He L, Zhang N, Ma L, Yao L. Photoprotective Effect of Artemisia sieversiana Ehrhart Essential Oil Against UVB-induced Photoaging in Mice. Photochem Photobiol 2021; 98:958-968. [PMID: 34767631 DOI: 10.1111/php.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Photoaging refers to the extrinsic aging resulting from ultraviolet (UV) irradiation, which impacts skin appearance and is accompanied by the risk of skin carcinoma. Developing natural products as photoprotective agents is of great interest in cosmetic industry nowadays. The present study aimed at investigating the possible use of Artemisia sieversiana Ehrhart essential oil (AEO) for the prevention of photoaging induced by UVB. AEO was characterized by chamazulene, which accounted for 38.92% among total 51 identified compounds. In in vitro assays, AEO was found to be a moderate antioxidant and good UVB filter with photostability. A UVB-induced photoaging mice model was established with three AEO formulations (0.1%, 0.5% and 1.5%, w/w) topically applied prior to UVB irradiation. The activities of catalase, particularly superoxide dismutase of skin increased, while malondialdehyde content decreased in AEO groups as compared with model controls. The production of matrix metalloproteinases (MMP-1 and MMP-3) and depletion of hydroxyproline in skin were inhibited by AEO in a dose-dependent manner. Histological evaluation indicated that AEO decreased epidermal thickness, inflammatory cell infiltration, collagen degradation and elastin aberrance. These findings indicated that AEO could be a promising sunscreen agent in protecting the skin against photoaging.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| | - Lei He
- R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China.,Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Yao
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Bayliak MM, Dmytriv TR, Melnychuk AV, Strilets NV, Storey KB, Lushchak VI. Chamomile as a potential remedy for obesity and metabolic syndrome. EXCLI JOURNAL 2021; 20:1261-1286. [PMID: 34602925 PMCID: PMC8481792 DOI: 10.17179/excli2021-4013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Obesity is an increasing health concern related to many metabolic disorders, including metabolic syndrome, diabetes type 2 and cardiovascular diseases. Many studies suggest that herbal products can be useful dietary supplements for weight management due to the presence of numerous biologically active compounds, including antioxidant polyphenols that can counteract obesity-related oxidative stress. In this review we focus on Matricaria chamomilla, commonly known as chamomile, and one of the most popular medicinal plants in the world. Thanks to a high content of phenolic compounds and essential oils, preparations from chamomile flowers demonstrate a number of pharmacological effects, including antioxidant, anti-inflammatory, antimicrobial and sedative actions as well as improving gastrointestinal function. Several recent studies have shown certain positive effects of chamomile preparations in the prevention of obesity and complications of diabetes. These effects were associated with modulation of signaling pathways involving the AMP-activated protein kinase, NF-κB, Nrf2 and PPARγ transcription factors. However, the potential of chamomile in the management of obesity seems to be underestimated. This review summarizes current data on the use of chamomile and its individual components (apigenin, luteolin, essential oils) to treat obesity and related metabolic disorders in cell and animal models and in human studies. Special attention is paid to molecular mechanisms that can be involved in the anti-obesity effects of chamomile preparations. Limitation of chamomile usage is also analyzed.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Antonina V Melnychuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia V Strilets
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,I. Horbachevsky Ternopil National Medical University, 46002, Ternopil, Ukraine.,Research and Development University, Shota Rustaveli Str., 76018, Ivano-Frankivsk, Ukraine
| |
Collapse
|
9
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
10
|
Orhan C, Juturu V, Sahin E, Tuzcu M, Ozercan IH, Durmus AS, Sahin N, Sahin K. Undenatured Type II Collagen Ameliorates Inflammatory Responses and Articular Cartilage Damage in the Rat Model of Osteoarthritis. Front Vet Sci 2021; 8:617789. [PMID: 33748207 PMCID: PMC7970046 DOI: 10.3389/fvets.2021.617789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease that includes gradual disruption of the articular cartilage and the resulting pain. The present study was designed to test the effects of undenatured type II collagen (UC-II®) on joint inflammation in the monoiodoacetate (MIA) OA model. We also investigated possible mechanisms underlying these effects. Female Wistar rats were divided into three groups: (i) Control; (ii) MIA-induced rats treated with vehicle; (iii) MIA-induced rats treated with UC-II (4 mg/kg BW). OA was induced in rats by intra-articular injection of MIA (1 mg) after seven days of UC-II treatment. UC-II reduced MIA-induced Kellgren-Lawrence scoring (53.3%, P < 0.05). The serum levels of inflammatory cytokines [IL-1β (7.8%), IL-6 (18.0%), TNF-α (25.9%), COMP (16.4%), CRP (32.4%)] were reduced in UC-II supplemented group (P < 0.0001). In the articular cartilage, UC-II inhibited the production of PGE2 (19.6%) and the expression of IL-1β, IL-6, TNF-a, COX-2, MCP-1, NF-κB, MMP-3, RANKL (P < 0.001). The COL-1 and OPG levels were increased, and MDA decreased in UC-II supplemented rats (P < 0.001). UC-II could be useful to alleviate joint inflammation and pain in OA joints by reducing the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Vijaya Juturu
- Research and Development, Lonza, Morristown, NJ, United States
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Ali Said Durmus
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
11
|
Stappen I, Wanner J, Tabanca N, Bernier UR, Kendra PE. Blue Tansy Essential Oil: Chemical Composition, Repellent Activity Against Aedes aegypti and Attractant Activity for Ceratitis capitata. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21990194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Blue tansy essential oil (BTEO) ( Tanacetum annuum L.) was analyzed by GC-MS and GC-FID using two different capillary column stationary phases. Sabinene (14.0%), camphor (13.6%), myrcene (8.0%), β-pinene (7.7%), and chamazulene (6.9%) were the main components using an SE52 column (non-polar). On a polar CW20M phase column, sabinene (15.1%), camphor (14.4%), α-phellandrene (7.9%), β-pinene (7.7%), and myrcene (6.9%) were the most abundant compounds. To assess the oil for potential applications in integrated pest management strategies, behavioral bioassays were conducted to test for repellency against yellow fever mosquito Aedes aegypti, and for attractant activity for Mediterranean fruit fly Ceratitis capitata. Results showed that BTEO was not effective in repelling Ae. aegypti (minimum effective dosage [MED]: 0.625 ± 0.109 mg/cm2 compared with the standard insect repellent DEET (N,N-diethyl-3-methylbenzamide). In assays with male C. capitata, BTEO displayed mild attraction compared with two positive controls (essential oils from tea tree Melaleuca alternifolia and African ginger bush Tetradenia riparia). Additional studies are needed to identify the specific attractant chemicals in BTEO and to determine if they confer a synergistic effect when combined with other known attractants for C. capitata. To the best of our knowledge, this study represents the first investigation of BTEO for repellency against the mosquito vector Ae. aegypti and for attractancy to C. capitata, a major agricultural pest worldwide.
Collapse
Affiliation(s)
- Iris Stappen
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| | - Juergen Wanner
- Kurt Kitzing GmbH, Hinterm Alten Schloss 21, Wallerstein, Germany
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Ulrich R. Bernier
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Paul E. Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| |
Collapse
|
12
|
Bakun P, Czarczynska-Goslinska B, Goslinski T, Lijewski S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med Chem Res 2021; 30:834-846. [PMID: 33551629 PMCID: PMC7847300 DOI: 10.1007/s00044-021-02701-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
Azulene is an aromatic hydrocarbon that possesses a unique chemical structure and interesting biological properties. Azulene derivatives, including guaiazulene or chamazulene, occur in nature as components of many plants and mushrooms, such as Matricaria chamomilla, Artemisia absinthium, Achillea millefolium, and Lactarius indigo. Due to physicochemical properties, azulene and its derivatives have found many potential applications in technology, especially in optoelectronic devices. In medicine, the ingredients of these plants have been widely used for hundreds of years in antiallergic, antibacterial, and anti-inflammatory therapies. Herein, the applications of azulene, its derivatives and their conjugates with biologically active compounds are presented. The potential use of these compounds concerns various areas of medicine, including anti-inflammatory with peptic ulcers, antineoplastic with leukemia, antidiabetes, antiretroviral with HIV-1, antimicrobial, including antimicrobial photodynamic therapy, and antifungal. ![]()
Collapse
Affiliation(s)
- Paweł Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Sebastian Lijewski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
13
|
Lu PJ, Wang G, Cai XD, Zhang P, Wang HK. Sequencing analysis of matrix metalloproteinase 7-induced genetic changes in Schwann cells. Neural Regen Res 2020; 15:2116-2122. [PMID: 32394970 PMCID: PMC7716050 DOI: 10.4103/1673-5374.282263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous research revealed the positive activity of matrix metalloproteinase 7 (MMP7) on migration and myelin regeneration of Schwann cells (SCs). However, understanding of the molecular changes and biological activities induced by increased amounts of MMP7 in SCs remains limited. To better understand the underlying molecular events, primary SCs were isolated from the sciatic nerve stump of newborn rats and cultured with 10 nM human MMP7 for 24 hours. The results of genetic testing were analyzed at a relatively relaxed threshold value (fold change ≥ 1.5 and P-value < 0.05). Upon MMP7 exposure, 149 genes were found to be upregulated in SCs, whereas 133 genes were downregulated. Gene Ontology analysis suggested that many differentially expressed molecules were related to cellular processes, single-organism processes, and metabolic processes. Kyoto Enrichment of Genes and Genomes pathway analysis further indicated the critical involvement of cell signaling and metabolism in MMP7-induced molecular regulation of SCs. Results of Ingenuity Pathway Analysis (IPA) also revealed that MMP7 regulates biological processes, molecular functions, cellular components, diseases and functions, biosynthesis, material metabolism, cell movement, and axon guidance. The outcomes of further analysis will deepen our comprehension of MMP7-induced biological changes in SCs. This study was approved by the Laboratory Animal Ethics Committee of Nantong University, China (approval No. 20190225-004) on February 27, 2019.
Collapse
Affiliation(s)
- Pan-Jian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Dong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Kui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|