1
|
Sedans KA, Stiegler Jurkevicz C, Silva BCC, Blener Lopes V, Lopes GFM, Schmitt EFP, Portes DB, Fronza M, Endringer DC, Tischer CA, Cabeça LF, Ferreira JMS, Ribeiro-Viana RM. Development of a cationic bacterial cellulose film loaded with anionic liposomes for prolonged release of oxacillin in wound dressing applications. Int J Pharm 2024; 665:124649. [PMID: 39236774 DOI: 10.1016/j.ijpharm.2024.124649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Dressings should protect wounds, promote healing, absorb fluids, and maintain moisture. Bacterial cellulose is a biopolymer that stands out in biomaterials due to its high biocompatibility in several applications. In the area of dressings, it is already marketed as an alternative to traditional dressings. However, it lacks any intrinsic activity; among these, the need for antimicrobial activity in infected wounds stands out. We developed a cationic cellulose film by modifying cellulose with 1-(5-carboxypentyl)pyridin-1-ium bromide, enhancing its wettability (contact angle: 26.6°) and water retention capacity (2714.37 %). This modified film effectively retained oxacillin compared to the unmodified control. Liposomal encapsulation further prolonged oxacillin release up to 11 days. Both oxacillin-loaded films and liposomal formulations demonstrated antimicrobial activity against Staphylococcus aureus. Our findings demonstrate the potential of chemically modified cellulose as a platform for controlled anionic antibiotics and/or their formulations delivery in wound care.
Collapse
Affiliation(s)
- Karina Andressa Sedans
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Carolina Stiegler Jurkevicz
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Bruna Conceição Costa Silva
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Viviany Blener Lopes
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | - Gabriela Francine Martins Lopes
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | | | - Danielle Braga Portes
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Marcio Fronza
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Denise Coutinho Endringer
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Cesar Augusto Tischer
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Luis Fernando Cabeça
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | - Renato Márcio Ribeiro-Viana
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
2
|
Diken-Gür S, Avcioglu NH, Bakhshpour-Yücel M, Denizli A. Antimicrobial assay and controlled drug release studies with novel eugenol imprinted p(HEMA)-bacterial cellulose nanocomposite, designed for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2137-2152. [PMID: 38965881 DOI: 10.1080/09205063.2024.2366646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
In this study, a novel bio-composite material that allow sustained release of plant derived antimicrobial compound was developed for the biomedical applications to prevent the infections caused by microorganisms resistant to commercial antimicrobials agents. With this aim, bacterial cellulose (BC)-p(HEMA) nanocomposite film that imprinted with eugenol (EU) via metal chelated monomer, MAH was prepared. Firstly, characterization studies were utilized by FTIR, SEM and BET analysis. Then antimicrobial assays, drug release studies and in vitro cytotoxicity test were performed. A significant antimicrobial effect against both Gram (+) Staphylococcus aureus and Gram (-) Escherichia coli bacteria and a yeast Candida albicans were observed even in low exposure time periods. When antimicrobial effect of EU compared with commercially used agents, both antifungal and antibacterial activity of EU were found to be higher. Then, sustained drug release studies showed that approximately 55% of EU was released up to 50 h. This result proved the achievement of the molecular imprinting for an immobilization of molecules that desired to release on an area in a long-time interval. Finally, the in vitro cytotoxicity experiment performed with the mouse L929 cell line determined that the synthesized EU-imprinted BC nanocomposite was biocompatible.
Collapse
Affiliation(s)
- Sinem Diken-Gür
- Department of Biology, Hacettepe University, Ankara, Türkiye
| | | | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Diken-Gür S. Investigation of anti-adherence and antimicrobial properties of prodigiosin-functionalized bacterial cellulose membrane for biomedical applications. J Biotechnol 2024; 385:58-64. [PMID: 38458539 DOI: 10.1016/j.jbiotec.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
In this study, novel biomaterial that consisted entirely of bacterial products was developed with the approach of designing cost effective material for biomedical applications. With this aim, bacterial cellulose membranes (BCMs) which synthesized by Komagataeibacter intermedius were produced. Moreover, to impart antimicrobial properties to enhance the capacity of BCMs for biomedical usage, prodigiosin (PG) pigment of Serratia marcescens which presents wide range of antimicrobial activities was loaded to BCMs. Firstly, high yield of PG production was achieved, and then crude pigment was purified with silica gel column. The purified PG was characterized with thin layer chromatography and UV-visible spectrometry. The antimicrobial effect of the produced pigment on Gram-positive and negative bacteria and a yeast was investigated. The success of modification in PG-modified BCMs has been demonstrated by FTIR and SEM. Moreover, antimicrobial and antiadhesive ability of novel PG-BCMs were examined with disc diffusion and plate counting methods. As a result, it was established that PG-BCMs were able to inhibit the growth of all tested microorganisms. Furthermore, excellent antiadhesive effect was observed for the tested microorganisms with the inhibition rates of 82.05-96.25 %. Finally, cytotoxicity test with L929 cell line demonstrated that PG-BCM is biocompatible at a level that can be applied in in vivo studies.
Collapse
Affiliation(s)
- Sinem Diken-Gür
- Hacettepe University, Faculty of Science, Department of Biology, Ankara, Turkey.
| |
Collapse
|
4
|
Galván-Romero V, Gonzalez-Salazar F, Vargas-Berrones K, Alcantara-Quintana LE, Martinez-Gutierrez F, Zarazua-Guzman S, Flores-Ramírez R. Development and evaluation of ciprofloxacin local controlled release materials based on molecularly imprinted polymers. Eur J Pharm Biopharm 2024; 195:114178. [PMID: 38195049 DOI: 10.1016/j.ejpb.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The aim of this study was the molecular imprinting polymers (MIPs) assessment as a controlled release system of ciprofloxacin. The MIPs synthesis was performed by three different methods: emulsion, bulk, and co-precipitation. Lactic acid (LA) and methacrylic acid (MA) were used as functional monomers and ethylene glycol dimethacrylate as crosslinker. Also, nonimprinted polymers (NIPs) were synthesized. MIPs and NIPs were characterized by scanning electron microscopy, Fourier Transform Infrared Reflection, specific surface area, pore size, and release kinetics. Their efficiency against Staphylococcus aureus and Escherichia coli, and their cytotoxicity in dermal fibroblast cells were proven. Results show that MIPs are mesoporous materials with a pore size between 10 and 20 nm. A higher adsorption with the co-precipitation MIP with MA as a monomer was found. The release kinetics proved that a non-Fickian process occurred and that the co-precipitation MIP with LA presented the highest release rate (90.51 mg/L) in 8 h. The minimum inhibitory concentration was found between 0.031 and 0.016 mg/L for Staphylococcus aureus and between 0.004 and 0.031 mg/L for the Escherichia coli. No cytotoxicity in cellular cultures was found; also, cellular growth was favored. This study demonstrated that MIPs present promising properties for drug administration and their application in clinical practice.
Collapse
Affiliation(s)
- Vanessa Galván-Romero
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección CP 78210, San Luis Potosí, SLP, Mexico
| | - Fernando Gonzalez-Salazar
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección CP 78210, San Luis Potosí, SLP, Mexico
| | - Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Carretera Rioverde-San Ciro Km 4.5, Rioverde CP. 79610, San Luis Potosi, Mexico
| | - Luz Eugenia Alcantara-Quintana
- Unidad de Innovación en Diagnostico Celular y Molecular, Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a sección 78120, San Luis Potosí, Mexico
| | - Fidel Martinez-Gutierrez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas CP 28210, San Luis Potosí, SLP, Mexico
| | - Sergio Zarazua-Guzman
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, SLP 78210, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
5
|
Taşkonak B, Aylaz G, Andac M, Güven E, Ozkahraman B, Perçin I, Kılıç Süloğlu A. Hypericin-Loaded Chitosan Nanoparticles for Enhanced Photodynamic Therapy in A549 Lung Cancer Cells. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
7
|
Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater. Polymers (Basel) 2023; 15:polym15051201. [PMID: 36904442 PMCID: PMC10007569 DOI: 10.3390/polym15051201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Estradiol, a phenolic steroid oestrogen, is one of the endocrine-disrupting chemicals (EDCs) found in natural and tap waters. The detection and removal of EDCs is attracting attention daily as they negatively affect animals' and humans' endocrine functions and physiological conditions. Therefore, developing a fast and practical method for the selective removal of EDCs from waters is essential. In this study, we prepared 17β-estradiol (E2)-imprinted HEMA-based nanoparticles onto bacterial cellulose nanofibres (E2-NP/BC-NFs) to use for the removal of E2 from wastewater. FT-IR and NMR confirmed the structure of the functional monomer. The composite system was characterised by BET, SEM, µCT, contact angle, and swelling tests. Additionally, the non-imprinted bacterial cellulose nanofibres (NIP/BC-NFs) were prepared to compare the results of E2-NP/BC-NFs. Adsorption of E2 from aqueous solutions was performed in batch mode and investigated via several parameters for optimisation conditions. The effect of pH studies was examined in the 4.0-8.0 range using acetate and phosphate buffers and a concentration of E2 of 0.5 mg/mL. The maximum E2 adsorption amount was 254 µg/g phosphate buffer at 45 °C. The experimental data show that the Langmuir is a relevant isotherm model for E2 adsorption. Additionally, the relevant kinetic model was the pseudo-second-order kinetic model. It was observed that the adsorption process reached equilibrium in less than 20 min. The E2 adsorption decreased with the increase in salt at varying salt concentrations. The selectivity studies were performed using cholesterol and stigmasterol as competing steroids. The results show that E2 is 46.0 times more selective than cholesterol and 21.0 times more selective than stigmasterol. According to the results, the relative selectivity coefficients for E2/cholesterol and E2/stigmasterol were 8.38 and 86.6 times greater for E2-NP/BC-NFs than for E2-NP/BC-NFs, respectively. The synthesised composite systems were repeated ten times to assess the reusability of E2-NP/BC-NFs.
Collapse
|
8
|
Ramirez CAB, Carriero MM, Leomil FSC, Moro de Sousa RL, de Miranda A, Mertins O, Mathews PD. Complexation of a Polypeptide-Polyelectrolytes Bioparticle as a Biomaterial of Antibacterial Activity. Pharmaceutics 2022; 14:2746. [PMID: 36559240 PMCID: PMC9786851 DOI: 10.3390/pharmaceutics14122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The development of biomaterials to enable application of antimicrobial peptides represents a strategy of high and current interest. In this study, a bioparticle was produced by the complexation between an antimicrobial polypeptide and the biocompatible and biodegradable polysaccharides chitosan-N-arginine and alginate, giving rise to a colloidal polyelectrolytic complex of pH-responsive properties. The inclusion of the polypeptide in the bioparticle structure largely increases the binding sites of complexation during the bioparticles production, leading to its effective incorporation. After lyophilization, detailed evaluation of colloidal structure of redispersed bioparticles evidenced nano or microparticles with size, polydispersity and zeta potential dependent on pH and ionic strength, and the dependence was not withdrawn with the polypeptide inclusion. Significant increase of pore edge tension in giant vesicles evidenced effective interaction of the polypeptide-bioparticle with lipid model membrane. Antibacterial activity against Aeromonas dhakensis was effective at 0.1% and equal for the isolated polypeptide and the same complexed in bioparticle, which opens perspectives to the composite material as an applicable antibacterial system.
Collapse
Affiliation(s)
- Carlos A. B. Ramirez
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Mateus M. Carriero
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Fernanda S. C. Leomil
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Ricardo L. Moro de Sousa
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Antonio de Miranda
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Patrick D. Mathews
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| |
Collapse
|
9
|
Qian H, Liu J, Wang X, Pei W, Fu C, Ma M, Huang C. The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields. Carbohydr Polym 2022; 300:120252. [DOI: 10.1016/j.carbpol.2022.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
10
|
Donato L, Nasser II, Majdoub M, Drioli E. Green Chemistry and Molecularly Imprinted Membranes. MEMBRANES 2022; 12:472. [PMID: 35629798 PMCID: PMC9144692 DOI: 10.3390/membranes12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Technological progress has made chemistry assume a role of primary importance in our daily life. However, the worsening of the level of environmental pollution is increasingly leading to the realization of more eco-friendly chemical processes due to the advent of green chemistry. The challenge of green chemistry is to produce more and better while consuming and rejecting less. It represents a profitable approach to address environmental problems and the new demands of industrial competitiveness. The concept of green chemistry finds application in several material syntheses such as organic, inorganic, and coordination materials and nanomaterials. One of the different goals pursued in the field of materials science is the application of GC for producing sustainable green polymers and membranes. In this context, extremely relevant is the application of green chemistry in the production of imprinted materials by means of its combination with molecular imprinting technology. Referring to this issue, in the present review, the application of the concept of green chemistry in the production of polymeric materials is discussed. In addition, the principles of green molecular imprinting as well as their application in developing greenificated, imprinted polymers and membranes are presented. In particular, green actions (e.g., the use of harmless chemicals, natural polymers, ultrasound-assisted synthesis and extraction, supercritical CO2, etc.) characterizing the imprinting and the post-imprinting process for producing green molecularly imprinted membranes are highlighted.
Collapse
Affiliation(s)
- Laura Donato
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
| | - Imen Iben Nasser
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Mustapha Majdoub
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Enrico Drioli
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
- Department of Engineering and of the Environment, University of Calabria, 87030 Rende, CS, Italy
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
12
|
Zabihi S, Bakhshpour M, Çalışır M, Topçu AA, Denizli A. Preparation of molecular imprinted injectable polymeric micro cryogels for control release of mitomycin C. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Volova TG, Prudnikova SV, Kiselev EG, Nemtsev IV, Vasiliev AD, Kuzmin AP, Shishatskaya EI. Bacterial Cellulose (BC) and BC Composites: Production and Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:192. [PMID: 35055211 PMCID: PMC8780924 DOI: 10.3390/nano12020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
The synthesis of bacterial cellulose (BC) by Komagataeibacter xylinus strain B-12068 was investigated on various C-substrates, under submerged conditions with stirring and in static surface cultures. We implemented the synthesis of BC on glycerol, glucose, beet molasses, sprat oil, and a mixture of glucose with sunflower oil. The most productive process was obtained during the production of inoculum in submerged culture and subsequent growth of large BC films (up to 0.2 m2 and more) in a static surface culture. The highest productivity of the BC synthesis process was obtained with the growth of bacteria on molasses and glycerol, 1.20 and 1.45 g/L per day, respectively. We obtained BC composites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin, cefotaxime, and doripenem), and investigated the structure, physicochemical, and mechanical properties of composites. The disc-diffusion method showed pronounced antibacterial activity of BC composites against E. coli ATCC 25922 and S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Tatiana G. Volova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Svetlana V. Prudnikova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
| | - Evgeniy G. Kiselev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexander D. Vasiliev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Andrey P. Kuzmin
- School of Petroleum and Gas Engineering, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Ekaterina I. Shishatskaya
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
14
|
Nahhas AF, Webster TJ. The promising use of nano-molecular imprinted templates for improved SARS-CoV-2 detection, drug delivery and research. J Nanobiotechnology 2021; 19:305. [PMID: 34615526 PMCID: PMC8492821 DOI: 10.1186/s12951-021-01032-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
Molecular imprinting (MI) is a technique that creates a template of a molecule for improving complementary binding sites in terms of size and shape to a peptide, protein, bacteria, mammalian cell, or virus on soft materials (such as polymers, hydrogels, or self-assembled materials). MI has been widely investigated for over 90 years in various industries but is now focused on improved tissue engineering, regenerative medicine, drug delivery, sensors, diagnostics, therapeutics and other medical applications. Molecular targets that have been studied so far in MI include those for the major antigenic determinants of microorganisms (like bacteria or viruses) leading to innovations in disease diagnosis via solid-phase extraction separation and biomimetic sensors. As such, although not widely investigated yet, MI demonstrates much promise for improving the detection of and treatment for the current Coronavirus Disease of 2019 (COVID-2019) pandemic as well as future pandemics. In this manner, this review will introduce the numerous applications of MI polymers, particularly using proteins and peptides, and how these MI polymers can be used as improved diagnostic and therapeutic tools for COVID-19.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
15
|
Del Sole R, Mele G, Bloise E, Mergola L. Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization. Polymers (Basel) 2021; 13:2430. [PMID: 34372030 PMCID: PMC8348058 DOI: 10.3390/polym13152430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km1, 73100 Lecce, Italy; (G.M.); (E.B.); (L.M.)
| | | | | | | |
Collapse
|
16
|
Fabrication of amphotericin B-loaded electrospun core-shell nanofibers as a novel dressing for superficial mycoses and cutaneous leishmaniasis. Int J Pharm 2021; 606:120911. [PMID: 34298105 DOI: 10.1016/j.ijpharm.2021.120911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
Amphotericin B (AmB) is an antifungal and antiparasitic agent that is the main drug used for the treatment of mycoses infections and leishmaniasis. However, its high toxicity and side effects are the main difficulties attributed to its application. In this study, to minimize its harmful effects, AmB-loaded core-shell nanofibers were fabricated, using polyvinyl alcohol, chitosan, and AmB as the core, and polyethylene oxide and gelatin as the shell-forming components. The nanofibers were characterized, using scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, tensile test, drug release, and MTT assay. The results showed that the prepared nanofibers were smooth and had a core-shell structure with almost no cytotoxicity against fibroblast cells and the release study suggested that the core-shell structure decreased the burst release. The disk diffusion assay revealed that the nanofibrous mats at different AmB concentrations exhibited significant activity against all the eight evaluated fungal species with the inhibition zones of 1.4-2.6 cm. The flow cytometry assay also showed that the prepared nanofibrous mat significantly killed Leishmania major promastigotes up to 84%. The obtained results indicated that this AmB-loaded nanofibrous system could be a suitable candidate for a topical drug delivery system for the treatment of both superficial mycoses and cutaneous leishmaniasis.
Collapse
|
17
|
Azimi B, Milazzo M, Danti S. Cellulose-Based Fibrous Materials From Bacteria to Repair Tympanic Membrane Perforations. Front Bioeng Biotechnol 2021; 9:669863. [PMID: 34164386 PMCID: PMC8215662 DOI: 10.3389/fbioe.2021.669863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Perforation is the most common illness of the tympanic membrane (TM), which is commonly treated with surgical procedures. The success rate of the treatment could be improved by novel bioengineering approaches. In fact, a successful restoration of a damaged TM needs a supporting biomaterial or scaffold able to meet mechano-acoustic properties similar to those of the native TM, along with optimal biocompatibility. Traditionally, a large number of biological-based materials, including paper, silk, Gelfoam®, hyaluronic acid, collagen, and chitosan, have been used for TM repair. A novel biopolymer with promising features for tissue engineering applications is cellulose. It is a highly biocompatible, mechanically and chemically strong polysaccharide, abundant in the environment, with the ability to promote cellular growth and differentiation. Bacterial cellulose (BC), in particular, is produced by microorganisms as a nanofibrous three-dimensional structure of highly pure cellulose, which has thus become a popular graft material for wound healing due to a number of remarkable properties, such as water retention, elasticity, mechanical strength, thermal stability, and transparency. This review paper provides a comprehensive overview of the current experimental studies of BC, focusing on the application of BC patches in the treatment of TM perforations. In addition, computational approaches to model cellulose and TM are summarized, with the aim to synergize the available tools toward the best design and exploitation of BC patches and scaffolds for TM repair and regeneration.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Serena Danti
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| |
Collapse
|
18
|
Tamahkar E. Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01631-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Özkahraman B, Tamahkar E, İdil N, Kılıç Suloglu A, Perçin I. Evaluation of hyaluronic acid nanoparticle embedded chitosan-gelatin hydrogels for antibiotic release. Drug Dev Res 2021; 82:241-250. [PMID: 33009868 DOI: 10.1002/ddr.21747] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
The development of chitosan-gelatin (CS-G) hydrogels embedded with ampicillin-loaded hyaluronic acid nanoparticles (HA-NPs) for wound dressing is proposed. It was aimed to provide controlled ampicillin delivery by incorporation of HA-NPs into biocompatible CS-G hydrogel structure. According to in vitro ampicillin release studies, 55% of ampicillin was released from CS-G/HA-NPs hydrogels after 5 days. Antibacterial performance of CS-G/HA-NPs hydrogels was proven with agar disc diffusion test. For cytotoxicity assay, fibroblast cell viability increased in CS-G/HA-NPs hydrogels compared with CS-G group after 24 hr incubation. Consequently, the potential ability of CS-G/HA-NPs hydrogels as a controlled drug delivery system has been verified.
Collapse
Affiliation(s)
- Bengi Özkahraman
- Department of Polymer Engineering, Hitit University, Çorum, Turkey
| | - Emel Tamahkar
- Department of Chemical Engineering, Hitit University, Çorum, Turkey
- Department of Food Engineering, Balıkesir University, Balıkesir, Turkey
| | - Neslihan İdil
- Department of Biology, Hacettepe University, Ankara, Turkey
| | | | - Işık Perçin
- Department of Biology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Diken Gür S, Bakhshpour M, Bereli N, Denizli A. Antibacterial effect against both Gram-positive and Gram-negative bacteria via lysozyme imprinted cryogel membranes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1024-1039. [PMID: 33704023 DOI: 10.1080/09205063.2021.1892472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of novel biocompatible and cost effective cryogel membrane which shows enhanced antimicrobial properties in order to use for several approaches such as wound dressing, scaffold or food packaging was aimed in this study. A super macro porous lysozyme imprinted cryogel membranes showing antibacterial effect against both Gram-positive and Gram-negative bacteria were prepared by using molecular imprinting technique. N-methacryloyl-(L)-histidine methyl ester (MAH) was used as the pseudo specific ligand and complexed with Cu++ in order to provide metal ion coordination between MAH and template molecule (lysozyme). Comparing the antibacterial activity of different lysozyme concentrations, cryogel membranes were prepared in three different concentrations. To synthesize Poly (hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methylester) P(HEMA-MAH) cryogel membrane, free radical polymerization initiated by N, N, N', N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) was carried out at -12 °C. The characterization of the lysozyme imprinted cryogel membrane was accomplished by using scanning electron microscopy (SEM), swelling degree measurements and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) spectroscopy. The cytotoxicity test of produced membrane was performed by using mouse fibroblast cell line L929. The antibacterial activity of P(HEMA-MAH) lysozyme molecular imprinted [P(HEMA-MAH) Lyz-MIP] cryogel membranes against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were determined by Kirby-Bauer membranes diffusion and viable cell counting methods. When the antibacterial effect of P(HEMA-MAH) Lyz-MIP cryogel membranes were evaluated, it was found that P(HEMA-MAH) Lyz-MIP cryogel membranes had stronger antibacterial effects against Gram-negative E. coli bacteria even in low lysozyme concentrations. In addition, 100% bacterial inhibition was detected for both of two bacteria at increasing lysozyme concentrations.
Collapse
Affiliation(s)
| | | | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers (Basel) 2021; 13:412. [PMID: 33525406 PMCID: PMC7865233 DOI: 10.3390/polym13030412] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial cellulose (BC) is an extracellular polymer produced by Komagateibacter xylinus, which has been shown to possess a multitude of properties, which makes it innately useful as a next-generation biopolymer. The structure of BC is comprised of glucose monomer units polymerised by cellulose synthase in β-1-4 glucan chains which form uniaxially orientated BC fibril bundles which measure 3-8 nm in diameter. BC is chemically identical to vegetal cellulose. However, when BC is compared with other natural or synthetic analogues, it shows a much higher performance in biomedical applications, potable treatment, nano-filters and functional applications. The main reason for this superiority is due to the high level of chemical purity, nano-fibrillar matrix and crystallinity. Upon using BC as a carrier or scaffold with other materials, unique and novel characteristics can be observed, which are all relatable to the features of BC. These properties, which include high tensile strength, high water holding capabilities and microfibrillar matrices, coupled with the overall physicochemical assets of bacterial cellulose makes it an ideal candidate for further scientific research into biopolymer development. This review thoroughly explores several areas in which BC is being investigated, ranging from biomedical applications to electronic applications, with a focus on the use as a next-generation wound dressing. The purpose of this review is to consolidate and discuss the most recent advancements in the applications of bacterial cellulose, primarily in biomedicine, but also in biotechnology.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland;
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| |
Collapse
|
22
|
Akbulut Söylemez M, Kemaloğulları BÖ. Surface modification of magnetic nanoparticles via admicellar polymerization for selective removal of tetracycline from real water samples. NEW J CHEM 2021. [DOI: 10.1039/d1nj00494h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Production of imprinted thin membranes via admicellar polymerization
Collapse
|
23
|
Çetin K, Aslıyüce S, Idil N, Denizli A. Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:189-204. [PMID: 32962559 DOI: 10.1080/09205063.2020.1825303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibacterial micron-sized cryogels, so-called microcryogels, were prepared by cryogelation of gelatin and integration of lysozyme. Gelation yield, specific surface area, macro-porosity and swelling degree of the microcryogels were examined in order to characterize their physical properties. MTT method was utilized to measure cell viability of the gelatin microcryogels with a period of 24, 48, and 72 h and no significant decrease was observed at 72 h. Apoptotic staining assay also showed high viability at 24, 48, 72 h in parallel with the control group. The antibacterial performances of the gelatin microcryogels against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli were examined. The results showed that the incorporation of lysozyme into gelatin microcryogels exhibited the antibacterial activity against S. aureus, B. subtilis, and E. coli, that may provide great potential for various applications in the biomedical industry.
Collapse
Affiliation(s)
- Kemal Çetin
- Department of Biomedical Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Aslıyüce
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Neslihan Idil
- Department of Biology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Abstract
Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.
Collapse
|
25
|
|
26
|
Jantarat C, Attakitmongkol K, Nichsapa S, Sirathanarun P, Srivaro S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1961-1976. [PMID: 32586219 DOI: 10.1080/09205063.2020.1787602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cellulose (BC) has been used in the combination with molecularly imprinted polymer (MIP) for controlled-release drug delivery. In the present study, the molecular imprinting was directly performed on BC to avoid the use of synthetic materials for sustained-release of quercetin, which was used as the template molecule. The phase inversion method was successfully used to prepare molecularly imprinted BC (MI-BC). The molecular recognition ability and controlled drug release behavior of MI-BC were then evaluated. MI-BC was found to have approximately 1.6 times higher ability to bind quercetin than the non-imprinted BC (NI-BC) did. The composite membrane containing MI-BC and quercetin (MI-BC-com) delayed and sustained drug release more effectively than the composite membrane containing NI-BC and quercetin (NI-BC-com). MI-BC-com released quercetin approximately two times more slowly than NI-BC-com did at the final hour of the drug release study. The mechanism of quercetin release followed the Higuchi model. Due to the relatively simple method of preparing the drug delivery system without using synthetic MIP, the application of MI-BC may be of great interest in medicine and pharmaceutics.
Collapse
Affiliation(s)
- Chutima Jantarat
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80160, Thailand.,School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Supirada Nichsapa
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Suthon Srivaro
- Petrochemical and Polymer Program, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand.,Materials Science and Innovation Program, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
27
|
Glucantime-loaded electrospun core-shell nanofibers composed of poly(ethylene oxide)/gelatin-poly(vinyl alcohol)/chitosan as dressing for cutaneous leishmaniasis. Int J Biol Macromol 2020; 163:288-297. [PMID: 32610052 DOI: 10.1016/j.ijbiomac.2020.06.240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/18/2023]
Abstract
Leishmaniasis, one of the main concerns of the World Health Organization, is a parasitic disease caused by Leishmania species. The main objective of this study was to prepare a topical drug delivery system that can deliver glucantime to the site of cutaneous Leishmania wounds. Using the electrospinning method, a core-shell nanofibrous mat composed of macromolecules including polyethylene oxide, gelatin, poly (vinyl alcohol) and chitosan was prepared. The prepared nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), tensile test and in vitro drug release test. The anti-Leishmania activities of drug-loaded nanofibers against Leishmania promastigotes and its cytotoxicity on fibroblasts were determined respectively by flow-cytometry and indirect MTT methods. Results of morphological studies showed that uniform nanofibers were prepared without any bead with average diameter of 404 nm. The TEM investigation confirmed the core-shell structure of the fibers. The in-vitro drug release assay was executed using Franz diffusion cell, which indicted 84% of glucantime was released during the first 9 h. The results indicated that 4 and 6 cm2 of nanofibers mat were significantly killed promatigotes up to 78%. Moreover, the MTT assay also showed that the fabricated nanofibers do not possess any cytotoxicity towards fibroblast cells.
Collapse
|
28
|
Abstract
Microbial contaminations and infections are hazardous and pose crucial concerns for humans. They result in severe morbidity and mortality around the globe. Even though dish-culturing, polymerase chain reaction (PCR), an enzyme-linked immunosorbent assay (ELISA) exhibits accurate and reliable detection of bacteria but these methods are time-consuming, laborious, and expensive. This warrants early detection and quantification of bacteria for timely diagnosis and treatment. Bacteria imprinting ensures a solution for selective and early detection of bacteria by snagging them inside their imprinted cavities. This review provides an insight into MIPs based bacterial detection strategies, challenges, and future perspectives.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
29
|
Xie Z, Chen Y, Zhang L, Hu X. Magnetic molecularly imprinted polymer combined with high performance liquid chromatography for selective extraction and determination of the metabolic content of quercetin in rat plasma. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:53-71. [DOI: 10.1080/09205063.2019.1675224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zenghui Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Yanli Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Lanyun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| |
Collapse
|
30
|
The influence of cross-linking agent onto adsorption properties, release behavior and cytotoxicity of doxorubicin-imprinted microparticles. Colloids Surf B Biointerfaces 2019; 182:110379. [PMID: 31351269 DOI: 10.1016/j.colsurfb.2019.110379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers that possess cavities selective towards their molecular templates and have found many applications in separation science, drug delivery, and catalysis. Here, we report the synthesis of doxorubicin-imprinted microparticles cross-linked with two different compounds (ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate) and examination of their physicochemical properties. During the synthesis methacrylic acid was used as functional monomer and 2-hydroxyethyl methacrylate was added into polymerization mixture to increase hydrophilicity of the obtained materials and therefore improve interactions with aqueous release medium. The influence of initial concentration and contact time onto doxorubicin adsorption by obtained MIPs microparticles have been investigated. The microparticles obtained using ethylene glycol dimethacrylate as a cross-linker showed 3 times higher adsorption properties towards doxorubicin, than the ones obtained using trimethylolpropane trimethacrylate cross-linker. The release kinetics of doxorubicin from drug-loaded MIPs microparticles has been proven to be dependent upon cross-linker used and pH of the release medium. For drug-loaded MIPs microparticles obtained using both cross-linkers the IC50 values measured for cancer cell were comparable to the ones measured for pure doxorubicin, whereas the cytotoxicity towards normal HDF cell lines was lower.
Collapse
|