1
|
Bendas G, Gobec M, Schlesinger M. Modulating Immune Responses: The Double-Edged Sword of Platelet CD40L. Semin Thromb Hemost 2024. [PMID: 39379039 DOI: 10.1055/s-0044-1791512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The CD40-CD40L receptor ligand pair plays a fundamental role in the modulation of the innate as well as the adaptive immune response, regulating monocyte, T and B cell activation, and antibody isotype switching. Although the expression and function of the CD40-CD40L dyad is mainly attributed to the classical immune cells, the majority of CD40L is expressed by activated platelets, either in a membrane-bound form or shed as soluble molecules in the circulation. Platelet-derived CD40L is involved in the communication with different immune cell subpopulations and regulates their functions effectively. Thus, platelet CD40L contributes to the containment and clearance of bacterial and viral infections, and additionally guides leukocytes to sites of infection. However, platelet CD40L promotes inflammatory cellular responses also in a pathophysiological context. For example, in HIV infections, platelet CD40L is supportive of neuronal inflammation, damage, and finally HIV-related dementia. In sepsis, platelet CD40L can induce extensive endothelial and epithelial damage resulting in barrier dysfunction of the gut, whereby the translocation of microbiota into the circulation further aggravates the uncontrolled systemic inflammation. Nevertheless, a distinct platelet subpopulation expressing CD40L under septic conditions can attenuate systemic inflammation and reduce mortality in mice. This review focuses on recent findings in the field of platelet CD40L biology and its physiological and pathophysiological implications, and thereby highlights platelets as vital immune cells that are essential for a proper immune surveillance. In this context, platelet CD40L proves to be an interesting target for various inflammatory diseases. However, either an agonism or a blockade of CD40L needs to be well balanced since both the approaches can cause severe adverse events, ranging from hyperinflammation to immune deficiency. Thus, an interference in CD40L activities should be likely done in a context-dependent and timely restricted manner.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
2
|
Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. Int J Mol Sci 2020; 21:ijms21249585. [PMID: 33339204 PMCID: PMC7765591 DOI: 10.3390/ijms21249585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell-cell communication. In particular, their interaction with cancer cells can enhance their malignancy and facilitate the invasion and colonization of distant organs. These findings suggest the use of antiplatelet agents to restrain cancer development and progression. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer-patient platelets show specific proteomic and transcriptomic expression patterns, a phenomenon called tumor-educated platelets (TEP). The transcriptomic/proteomic profile of platelets can provide information for the early detection of cancer and disease monitoring. Platelet ability to interact with tumor cells and transfer their molecular cargo has been exploited to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity often associated with traditional chemotherapy. Platelets are extraordinary cells with many functions whose exploitation will improve cancer diagnosis and treatment.
Collapse
|
3
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Couldwell G, Machlus KR. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb Res 2019; 179:114-120. [PMID: 31128560 DOI: 10.1016/j.thromres.2019.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
Abstract
Megakaryocytes (MKs) are widely known as the progenitor cells of platelets. These large, polyploid cells are a derivative of the hematopoietic stem cell (HSC), and reside in the bone marrow, lining blood vessel walls where they release their platelet progeny into circulation. Although little is known about how MKs differ under various environmental stressors, both chronic and acute inflammation alter the differentiation and molecular content of MKs. Furthermore, evidence suggests that the release of inflammatory cytokines may induce MK rupture and rapid release of platelets as a mechanism to quickly replenish diminished platelet counts in response to inflammation. Similarities between MKs and their close relatives, white blood cells, have introduced the notion that MKs may play a role in combating infection by engulfing and presenting antigens, and passing this information to circulating platelets. In addition, MKs exposed to varying bone marrow environments produce different platelets which enter circulation primed to respond to and combat inflammation, infection, or injury. This review focuses on how inflammation alters MK production, maturation, and platelet production. In addition, it introduces the idea that inflammation reprograms MKs to create different, more pathogenic platelets and leads them to take on different roles as responders to deleterious conditions. In the future, studies determining how platelets are altered in disease states may lead to novel MK- and platelet-based therapeutic targets to mitigate inflammation-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J Thromb Haemost 2018; 16:1187-1197. [PMID: 29350833 DOI: 10.1111/jth.13955] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 12/15/2022]
Abstract
Essentials Human platelets specifically interact with IgG opsonized bacteria through FcγRIIA. Platelet factor 4 (PF4) binds to polyanions (P) and undergoes a conformational change. Anti-PF4/P IgG opsonizes PF4-coated Gram-positive and Gram-negative bacteria. Platelets specifically kill E.coli opsonized with PF4 and human anti-PF4/P IgG. SUMMARY Background Activated platelets release the chemokine platelet factor 4 (PF4) stored in their granules. PF4 binds to polyanions (P) on bacteria, undergoes a conformational change and exposes neoepitopes. These neoepitopes induce production of anti-PF4/P antibodies. As PF4 binds to a variety of bacteria, anti-PF4/P IgG can bind and opsonize several bacterial species. Objective Here we investigated whether platelets are able to kill bacteria directly after recognizing anti-PF4/P IgG opsonized bacteria in the presence of PF4 via their FcγRIIA. Methods Using platelet-bacteria suspension co-culture experiments and micropatterns with immobilized viable bacteria, in combination with pharmacological inhibitors and human anti- PF4/P IgG we analyzed the role of platelet-mediated killing of bacteria. Results In the presence of PF4, human anti-PF4/P IgG and platelets, E. coli killing (> 50%) with colony forming units (CFU mL-1 ) 0.71 × 104 ± 0.19 was observed compared with controls incubated only with anti-PF4/P IgG (CFU mL-1 3.4 × 104 ± 0.38). Blocking of platelet FcγRIIA using mAb IV.3 (CFU mL-1 2.5 × 104 ± 0.45), or integrin αIIbβ3 (CFU mL-1 2.26 × 104 ± 0.31), or disruption of cytoskeletal functions (CFU mL-1 2.7 × 104 ± 0.4) markedly reduced E. coli killing by this mechanism. Our observation of E. coli killing by platelets on micropatterned arrays is compatible with the model that platelets kill bacteria by covering them, actively concentrating them into the area under their granulomere and then releasing antimicrobial substances of platelet α-granules site directed towards bacteria. Conclusion These findings collectively indicate that by bridging of innate and adaptive immune mechanisms, platelets and anti-PF4/polyanion antibodies cooperate in an antibacterial host response.
Collapse
Affiliation(s)
- R Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - T P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - K Krauel
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - J Wesche
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - A Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Sut C, Tariket S, Aubron C, Aloui C, Hamzeh-Cognasse H, Berthelot P, Laradi S, Greinacher A, Garraud O, Cognasse F. The Non-Hemostatic Aspects of Transfused Platelets. Front Med (Lausanne) 2018. [PMID: 29536007 PMCID: PMC5835084 DOI: 10.3389/fmed.2018.00042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets transfusion is a safe process, but during or after the process, the recipient may experience an adverse reaction and occasionally a serious adverse reaction (SAR). In this review, we focus on the inflammatory potential of platelet components (PCs) and their involvement in SARs. Recent evidence has highlighted a central role for platelets in the host inflammatory and immune responses. Blood platelets are involved in inflammation and various other aspects of innate immunity through the release of a plethora of immunomodulatory cytokines, chemokines, and associated molecules, collectively termed biological response modifiers that behave like ligands for endothelial and leukocyte receptors and for platelets themselves. The involvement of PCs in SARs—particularly on a critically ill patient’s context—could be related, at least in part, to the inflammatory functions of platelets, acquired during storage lesions. Moreover, we focus on causal link between platelet activation and immune-mediated disorders (transfusion-associated immunomodulation, platelets, polyanions, and bacterial defense and alloimmunization). This is linked to the platelets’ propensity to be activated even in the absence of deliberate stimuli and to the occurrence of time-dependent storage lesions.
Collapse
Affiliation(s)
- Caroline Sut
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Sofiane Tariket
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Cécile Aubron
- Médecine Intensive Réanimation, Centre Hospitalier Régionale et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Chaker Aloui
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | | | | | - Sandrine Laradi
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Institut National de Transfusion Sanguine (INTS), Paris, France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| |
Collapse
|
7
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
8
|
Nagasawa T, Somamoto T, Nakao M. Carp thrombocyte phagocytosis requires activation factors secreted from other leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:107-111. [PMID: 25978929 DOI: 10.1016/j.dci.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Thrombocytes are nucleated blood cells in non-mammalian vertebrates, which were recently focused on not only as hemostatic cells but also as immune cells with potent phagocytic activities. We have analyzed the phagocytic activation mechanisms in common carp (Cyprinus carpio) thrombocytes. MACS-sorted mAb(+) thrombocytes showed no phagocytic activity even in the presence of several stimulants. However, remixing these thrombocytes with other anti-thrombocyte mAb(-) leukocyte populations restored their phagocytic activities, indicating that carp thrombocyte phagocytosis requires an appropriate exogenous stimulation. Culture supernatant from anti-thrombocyte mAb(-) leukocytes harvested after PMA or LPS stimulation, but not culture supernatant from unstimulated leukocytes, could activate thrombocyte phagocytosis. This proposed mechanism of thrombocyte phagocytosis activation involving soluble factors produced by activated leukocytes suggests that thrombocyte activation is restricted to areas proximal to injured tissues, ensuring suppression of excessive thrombocyte activation and a balance between inflammation and tissue repair.
Collapse
Affiliation(s)
- Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
9
|
Abstract
Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This article reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions.
Collapse
Affiliation(s)
- Fong W Lam
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
10
|
Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6:82. [PMID: 25767472 PMCID: PMC4341565 DOI: 10.3389/fimmu.2015.00082] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response.
Collapse
Affiliation(s)
| | - Pauline Damien
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Adrien Chabert
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Bruno Pozzetto
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Institut National de la Transfusion Sanguine , Paris , France
| |
Collapse
|
11
|
Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol 2015; 6:70. [PMID: 25750642 PMCID: PMC4335469 DOI: 10.3389/fimmu.2015.00070] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Small fragments circulating in the blood were formally identified by the end of the nineteenth century, and it was suggested that they assisted coagulation via interactions with vessel endothelia. Wright, at the beginning of the twentieth century, identified their bone-marrow origin. For long, platelets have been considered sticky assistants of hemostasis and pollutants of blood or tissue samples; they were just cell fragments. As such, however, they were acknowledged as immunizing (to specific HPA and HLA markers): the platelet’s dark face. The enlightened face showed that besides hemostasis, platelets contained factors involved in healing. As early as 1930s, platelets entered the arsenal of medicines were transfused, and were soon manipulated to become a kind of glue to repair damaged tissues. Some gladly categorized platelets as cells but they were certainly not fully licensed as such for cell physiologists. Actually, platelets possess almost every characteristic of cells, apart from being capable of organizing their genes: they have neither a nucleus nor genes. This view prevailed until it became evident that platelets play a role in homeostasis and interact with cells other than with vascular endothelial cells; then began the era of physiological and also pathological inflammation. Platelets have now entered the field of immunity as inflammatory cells. Does assistance to immune cells itself suffice to license a cell as an “immune cell”? Platelets prove capable of sensing different types of signals and organizing an appropriate response. Many cells can do that. However, platelets can use a complete signalosome (apart from the last transcription step, though it is likely that this step can be circumvented by retrotranscribing RNA messages). The question has also arisen as to whether platelets can present antigen via their abundantly expressed MHC class I molecules. In combination, these properties argue in favor of allowing platelets the title of immune cells.
Collapse
Affiliation(s)
- Olivier Garraud
- Institut National de la Transfusion Sanguine , Paris , France ; EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| |
Collapse
|
12
|
Nagasawa T, Nakayasu C, Rieger AM, Barreda DR, Somamoto T, Nakao M. Phagocytosis by Thrombocytes is a Conserved Innate Immune Mechanism in Lower Vertebrates. Front Immunol 2014; 5:445. [PMID: 25278940 PMCID: PMC4165319 DOI: 10.3389/fimmu.2014.00445] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/01/2014] [Indexed: 01/07/2023] Open
Abstract
Thrombocytes, nucleated hemostatic blood cells of non-mammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in lower vertebrates using teleost fishes and amphibian models. Ex vivo, common carp thrombocytes were able to ingest live bacteria as well as latex beads (0.5-3 μm in diameter) and kill the bacteria. In vivo, we found that thrombocytes represented nearly half of the phagocyte population in the common carp total peripheral blood leukocyte pool. Phagocytosis efficiency was further enhanced by serum opsonization. Particle internalization led to phagolysosome fusion and killing of internalized bacteria, pointing to a robust ability for microbe elimination. We find that this potent phagocytic activity is shared across teleost (Paralichthys olivaceus) and amphibian (Xenopus laevis) models examined, implying its conservation throughout the lower vertebrate lineage. Our results provide novel insights into the dual nature of thrombocytes in the immune and homeostatic response and further provide a deeper understanding of the potential immune function of mammalian platelets based on the conserved and vestigial functions.
Collapse
Affiliation(s)
- Takahiro Nagasawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Chihaya Nakayasu
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-Ise, Japan
| | - Aja M. Rieger
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tomonori Somamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Nakao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Abstract
Platelets are anucleate cells derived from the megakaryocyte series, and have long been considered only as cells responsible for coagulation and the fibrinolysis process. However, recently more data shows that they are also effector cells in the inflammatory response and important elements of the immunological response. Platelets store and release many biologically active substances, including growth factors, cytokines and chemokines (tab. 1), which actively affect i.a. elements of the immune system, and thus become regulators of immunity and mediators of inflammatory response. Their impact on the immune system cells is also associated with the induction of leucocytes and progenitor cells to the site of pathogen permeation or vascular injury inflow, as well as endothelial cells. Interacting with neutrophils, monocytes and lymphocytes, they not only activate them, but also form platelet-leukocyte aggregates that immobilise pathogens and prevent their spreading. Furthermore, platelets are capable of absorbing pathogens, affecting anti-infection immunity of the system. It is also assumed that the presence of receptors on their surface, such as Toll-like receptors (TLRs), affects their initiation and activity of the immunological response.
Collapse
|
14
|
Sarkar S, Alam MA, Shaw J, Dasgupta AK. Drug delivery using platelet cancer cell interaction. Pharm Res 2013; 30:2785-94. [PMID: 23739991 DOI: 10.1007/s11095-013-1097-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To develop an efficient biocompatible and targeted drug delivery system in which platelets, an essential blood component having a natural affinity for cancer cells, are used as carrier of anticancer drug as delivery of drug to the targeted site is crucial for cancer treatment. METHODS Doxorubicin hydrochloride, a potent anti cancer drug, was delivered in lung adenocarcinoma cell line (A549) using platelet as a delivery agent. This delivery mode was also tested in Ehrlich ascites carcinoma (EAC) bearing mice in presence and absence of platelets. RESULTS The results show that platelets can uptake the drug and release the same upon activation. The efficiency of drug loaded platelets in inducing cytotoxicity was significantly higher in both in vitro and in vivo model, as compared to the free drug. CONCLUSIONS The proposed drug delivery strategy may lead to clinical improvement in the management of cancer treatment as lower drug concentration can be used in a targeted mode. Additionally the method can be personalized as patient's own platelet can be used for deliver various drugs.
Collapse
Affiliation(s)
- Sounik Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | | | | | | |
Collapse
|
15
|
Matowicka-Karna J, Kamocki Z, Kemona H. Assessment of platelet activation and phagocytic activity in gastric cancer patients. World J Gastrointest Pathophysiol 2013; 4:12-7. [PMID: 23596550 PMCID: PMC3627834 DOI: 10.4291/wjgp.v4.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the activation of platelets and their phagocytic activity in the course of gastric cancer.
METHODS: Forty-three gastric cancer patients were recruited to the study. The patients were divided into 3 groups depending on tumor stage. Group E included 6 patients with early gastric cancer; group A 18 patients with locally advanced cancer; and group M-19 with metastatic cancer. The investigations were performed twice, prior to surgery and 12-14 d afterwards.
RESULTS: The platelet count and the level of soluble platelet selectin (sP-selectin) were found to increase with the disease progression. The level of sP-selectin was lowest in early cancer and was observed to increase after surgery in all the study patients. Irrespective of tumor stage, a statistically significant decrease was noted in the percentage of phagocytizing platelets and in the phagocytic index in gastric cancer patients as compared to healthy subjects. Despite increased platelet count and stimulation of thrombocytopoiesis, the phagocytic functions of blood platelets were markedly impaired. Tumor development seems to impair metabolic processes.
CONCLUSION: A decreasing phagocytic activity can promote both inflammatory processes and cancer growth.
Collapse
|
16
|
Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, Kahr WHA, Lindemann S, Seizer P, Yost CC, Zimmerman GA, Weyrich AS. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 2011; 7:e1002355. [PMID: 22102811 PMCID: PMC3213094 DOI: 10.1371/journal.ppat.1002355] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022] Open
Abstract
Human β-defensins (hBD) are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus), forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET) formation by target polymorphonuclear leukocytes (PMNs), which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria. Platelets are small cells in the bloodstream whose primary function is to stop bleeding. In addition to their clotting functions, we show that human platelets stall bacterial growth. This inhibitory property of platelets is due to β-defensin 1, a small antimicrobial protein that kills bacteria. β-defensin 1 also induces white blood cells to discharge spider-like webs that trap and kill bacteria. Together, these findings indicate that human platelets use β-defensin 1 to fight off bacterial infection.
Collapse
Affiliation(s)
- Bjoern F. Kraemer
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Medizinische Klinik III, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark J. Cody
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Zechariah Franks
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Walter H. A. Kahr
- Division of Haematology/Oncology, Program in Cell Biology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | - Peter Seizer
- Medizinische Klinik III, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Christian C. Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Guy A. Zimmerman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew S. Weyrich
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
17
|
Suzuki H, Okamura Y, Ikeda Y, Takeoka S, Handa M. Ultrastructural analysis of thrombin-induced interaction between human platelets and liposomes carrying fibrinogen γ-chain dodecapeptide as a synthetic platelet substitute. Thromb Res 2011; 128:552-9. [PMID: 21840573 DOI: 10.1016/j.thromres.2011.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND The dodecapeptide HHLGGAKQAGDV (H12) in the carboxy-terminus of the fibrinogen γ-chain is a specific binding site of the ligand for platelet GPIIb/IIIa complex. We have evaluated liposomes carrying fibrinogen γ-chain dodecapeptide as a synthetic platelet substitute. OBJECTIVES We examined the interaction between human platelets and H12-liposomes during thrombin-induced activation using flow cytometry and electron microscopy (EM). METHODS AND RESULTS After thrombin-activation, a remarkable time-dependent increase in binding of the H12-liposomes to platelets was found by flow cytometry. A large-sized swollen open canalicular system (OCS) was observed in the spheroidal platelets from 60 sec to 5 min after thrombin-activation, but intact H12-liposomes were not evident by conventional EM. Cryoultramicrotomy and immunogold staining with anti-H12 antibody were successful in identifying the liposomes; they appeared as small particles with a unit membrane around 0.2 to 0.4 μm in diameter, and gold labels representing H12 were distributed homogeneously on the surface. Abundant H12-liposomes were localized not only on the surface membrane but also in the lumen of the large-sized swollen OCS in the platelets at 60 sec after thrombin-activation. The formation of the large-sized swollen OCS was inhibited by pre-incubation with unbound H12, EDTA or anti-GPIIb/IIIa antibody. In thrombin-induced platelet aggregates we observed electron-transparent areas between adherent platelets, in which abundant H12-liposomes were distributed. CONCLUSIONS We demonstrate morphologically that H12-liposomes bind to thrombin-activated platelets and accumulate between adherent platelets like fibrinogen, leading to large-scale aggregation.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Laboratory of Electron Microscopy, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 2011; 34:5-30. [PMID: 21818701 DOI: 10.1007/s00281-011-0286-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/20/2011] [Indexed: 12/28/2022]
Abstract
Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases.
Collapse
Affiliation(s)
- Adriana Vieira-de-Abreu
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
19
|
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9:1097-107. [PMID: 21435167 DOI: 10.1111/j.1538-7836.2011.04264.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis.
Collapse
Affiliation(s)
- D Cox
- Molecular and Cellular Therapeutics School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | |
Collapse
|
20
|
Magnetic and contrast properties of labeled platelets for magnetomotive optical coherence tomography. Biophys J 2011; 99:2374-83. [PMID: 20923673 DOI: 10.1016/j.bpj.2010.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/29/2010] [Accepted: 08/05/2010] [Indexed: 01/22/2023] Open
Abstract
This article introduces a new functional imaging paradigm that uses optical coherence tomography (OCT) to detect rehydrated, lyophilized platelets (RL platelets) that are in the preclinical trial stage and contain superparamagnetic iron oxides (SPIOs) approved by the U.S. Food and Drug Administration. Platelets are highly functional blood cells that detect and adhere to sites of vascular endothelial damage by forming primary hemostatic plugs. By applying magnetic gradient forces, induced nanoscale displacements (magnetomotion) of the SPIO-RL platelets are detected as optical phase shifts in OCT. In this article, we characterize the iron content and magnetic properties of SPIO-RL platelets, construct a model to predict their magnetomotion in a tissue medium, and demonstrate OCT imaging in tissue phantoms and ex vivo pig arteries. Tissue phantoms containing SPIO-RL platelets exhibited >3 dB contrast/noise ratio at ≥1.5 × 10(9) platelets/cm(3). OCT imaging was performed on ex vivo porcine arteries after infusion of SPIO-RL platelets, and specific contrast was obtained on an artery that was surface-damaged (P < 10(-6)). This may enable new technologies for in vivo monitoring of the adherence of SPIO-RL platelets to sites of bleeding and vascular damage, which is broadly applicable for assessing trauma and cardiovascular diseases.
Collapse
|
21
|
Internalization of IgG-coated targets results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:210-6. [PMID: 21177916 DOI: 10.1128/cvi.00296-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelets are crucial elements for maintenance of hemostasis. Other functions attributable to platelets are now being appreciated, such as their role in inflammatory reactions and host defense. Platelets have been reported to bind immunological stimuli like IgG complexes, and for nearly 50 years it has been speculated that platelets may participate in immunological reactions. Platelets have been reported to bind and internalize various substances, similar to other leukocytes, such as macrophages and dendritic cells. In the present study, we tested the hypothesis that human platelets can bind and internalize IgG-coated particles, similar to leukocytes. To this end, we observed that interaction with IgG-coated beads resulted in platelet activation (as measured by CD62P expression), internalization of targets, and significant soluble CD40 ligand (sCD40L) and RANTES (regulated upon activation, normal T cell expresses and secreted) secretion. Blocking FcγRIIA with monoclonal antibody (MAb) IV.3 or inhibiting actin remodeling with cytochalasin D inhibited platelet activation, internalization, and cytokine production. These data suggest that platelets are capable of mediating internalization of IgG-coated particles, resulting in platelet activation and release of both sCD40L and RANTES.
Collapse
|
22
|
Huang ZY, Chien P, Indik ZK, Schreiber AD. Human platelet FcγRIIA and phagocytes in immune-complex clearance. Mol Immunol 2010; 48:691-6. [PMID: 21168221 DOI: 10.1016/j.molimm.2010.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/16/2010] [Accepted: 11/20/2010] [Indexed: 01/30/2023]
Abstract
In addition to their primary role in hemostasis and wound healing, platelets play important roles in a multitude of physiological functions including immune and inflammatory responses. We present data that platelets, by virtue of their expression of the human specific FcγR, FcγRIIA, bind IgG complexes in vivo and that circulating phagocytes from healthy individuals internalize platelets in vivo. Human platelets, as a consequence of their expression of FcγRIIA, may thus, contribute to the clearance of IgG-containing complexes from the circulation.
Collapse
Affiliation(s)
- Zhen-Yu Huang
- Division of Hematology/Oncology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, United States.
| | | | | | | |
Collapse
|
23
|
Molecular diagnosis of bloodstream infections: planning to (physically) reach the bedside. Curr Opin Infect Dis 2010; 23:311-9. [PMID: 20592531 DOI: 10.1097/qco.0b013e32833bfc44] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Faster identification of infecting microorganisms and treatment options is a first-ranking priority in the infectious disease area, in order to prevent inappropriate treatment and overuse of broad-spectrum antibiotics. Standard bacterial identification is intrinsically time-consuming, and very recently there has been a burst in the number of commercially available nonphenotype-based techniques and in the documentation of a possible clinical impact of these techniques. RECENT FINDINGS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now a standard diagnostic procedure on cultures and hold promises on spiked blood. Meanwhile, commercial PCR-based techniques have improved with the use of bacterial DNA enrichment methods, the diversity of amplicon analysis techniques (melting curve analysis, microarrays, gel electrophoresis, sequencing and analysis by mass spectrometry) leading to the ability to challenge bacterial culture as the gold standard for providing earlier diagnosis with a better 'clinical' sensitivity and additional prognostic information. SUMMARY Laboratory practice has already changed with MALDI-TOF MS, but a change in clinical practice, driven by emergent nucleic acid-based techniques, will need the demonstration of real-life applicability as well as robust clinical-impact-oriented studies.
Collapse
|
24
|
Affiliation(s)
- D Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
25
|
Viertlboeck BC, Schmitt R, Hanczaruk MA, Crooijmans RPMA, Groenen MAM, Göbel TW. A novel activating chicken IgY FcR is related to leukocyte receptor complex (LRC) genes but is located on a chromosomal region distinct from the LRC and FcR gene clusters. THE JOURNAL OF IMMUNOLOGY 2009; 182:1533-40. [PMID: 19155501 DOI: 10.4049/jimmunol.182.3.1533] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FcRs have multifaceted roles in the immune system. Chicken FcRs were demonstrated on macrophages decades ago; however, only recently the chicken Ig-like receptor AB1, encoded in the leukocyte receptor complex, was molecularly identified as a high-affinity FcR. The present study was initiated to identify additional receptors with the capability to bind chicken immunoglobulins. Based on database searches, we cloned a novel chicken FcR, designated gallus gallus FcR (ggFcR), which was shown to bind selectively chicken IgY. The receptor consists of four extracellular C2-set Ig domains, followed by a transmembrane region containing arginine as a positively charged amino acid and a short cytoplasmic tail. ggFcR associates with the common gamma-chain, indicative for an activating receptor, and real-time RT-PCR revealed high expression on PBMC, thrombocytes, and macrophages. The genomic organization is similar to most Ig-like receptor genes, where each Ig domain is encoded by a separate exon. Additionally, the ggFcR signal peptide is encoded by two exons, the second of which is 36 bp, a hallmark for genes encoded in the leukocyte receptor complex. Phylogenetic analysis also showed a relationship to genes encoded in the leukocyte receptor complex. Surprisingly, ggFcR is not encoded in the leukocyte receptor complex, but it is located as a single isolated gene at the extremity of chicken chromosome 20.
Collapse
|
26
|
Li X, Iwai T, Nakamura H, Inoue Y, Chen Y, Umeda M, Suzuki H. An ultrastructural study of Porphyromonas gingivalis-induced platelet aggregation. Thromb Res 2008; 122:810-9. [PMID: 18448150 DOI: 10.1016/j.thromres.2008.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 12/23/2007] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
One of the major pathogens of periodontitis, Porphyromonas gingivalis (P. gingivalis), has the ability to aggregate human platelets. To investigate the interaction between P. gingivalis and human platelets in platelet rich plasma (PRP), platelet aggregation was measured by an aggregometer based on laser light scattering (LS) methods, and an ultrastructural study was performed using electron microscopy. A sharp and rapid increase of small-sized platelet aggregates was observed immediately after the addition of P. gingivalis to PRP, followed by the formation of medium- and large-sized aggregates in 2-3 min. In contrast, when Staphylococcus aureus (S. aureus) was used in the control experiment, only a slight increase in small-sized aggregates was detected. By electron microscopy, discoid-shaped platelets were observed prior to adding P. gingivalis. By 5 min after the addition of the bacteria, enormous platelet aggregates were observable. Most of the P. gingivalis were present between the adherent platelets, while some were internalized in platelet engulfment vacuoles. In contrast, when washed platelets were incubated with the bacteria under a non-stirring condition to prevent platelet aggregation, and stained with ruthenium red (RR) as an electron dense tracer of the cell surface including the open canalicular system (OCS), both RR-positive and -negative vacuoles containing P. gingivalis were identified in the activated platelets. Thus, this observation suggests that P. gingivalis residing in the RR-negative vacuoles is incorporated into the platelet cytoplasm by phagocytosis.
Collapse
Affiliation(s)
- Xiangfeng Li
- Department of Surgery, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Greco C, Martincic I, Gusinjac A, Kalab M, Yang AF, Ramírez-Arcos S. Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions. Transfusion 2007; 47:1143-53. [PMID: 17581148 DOI: 10.1111/j.1537-2995.2007.01249.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Staphylococcus epidermidis grows slowly in platelet (PLT) preparations compared to other bacteria, presenting the possibility of missed detection by routine screening. S. epidermidis is a leading cause of nosocomial sepsis, with virulence residing in its ability to establish chronic infections through production of slime layers, or biofilms, on biomedical devices. This study aims to establish biofilm formation (BF) as a mode of growth by S. epidermidis in PLT preparations. STUDY DESIGN AND METHODS Biofilm-positive (BFpos) and -negative (BFneg) S. epidermidis strains were grown in whole blood-derived PLTs (WBDPs) and in glucose-rich medium (TSBg). An assay for BF was adapted for cultures grown in WBDPs or filtered WBDPs in polystyrene culture plates. Bacterial attachment to polyvinylchloride PLT bags and PLTs was examined by scanning electron microscopy. RESULTS Both strains display similar growth profiles in WBDPs and TSBg. Unexpectedly, evidence of BF was observed on PLT bags and on PLTs directly, not only by the BFpos strain but also by the BFneg strain. The BFpos strain displayed greater plastic adherence than the BFneg strain in WBDPs (p < 0.05). BF by the BFneg strain was approximately 10-fold greater in WBDPs compared to TSBg (p < 0.05), likely by use of PLTs as a scaffold. Furthermore, BF by S. epidermidis was significantly decreased when PLT concentration was reduced 1000-fold. CONCLUSIONS S. epidermidis forms biofilms on PLT aggregates and on PLT bags under PLT storage conditions. Our results demonstrate that the PLT storage environment can promote a BF growth mechanism for contaminant bacteria.
Collapse
Affiliation(s)
- Carey Greco
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Beyond an eminent role in hemostasis and thrombosis, platelets are characterized by expert functions in assisting and modulating inflammatory reactions and immune responses. This is achieved by the regulated expression of adhesive and immune receptors on the platelet surface and by the release of a multitude of secretory products including inflammatory mediators and cytokines, which can mediate the interaction with leukocytes and enhance their recruitment. In addition, platelets are characterized by an enormous surface area and open canalicular system, which in concert with specialized recognition receptors may contribute to the engulfment of serum components, antigens, and pathogens. Platelet-dependent increases in leukocyte adhesion may not only account for an exacerbation of atherosclerosis, for arterial repair processes, but also for lymphocyte trafficking during adaptive immunity and host defense. This review compiles a selection of platelet-derived tools for bridging inflammation and vascular disease and highlights the molecular key components governing platelet-mediated mechanisms operative in immune surveillance, vascular remodeling, and atherosclerosis.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute of Cardiovascular Molecular Research, University Hospital of the Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | | |
Collapse
|