1
|
Mititelu A, Onisâi MC, Roșca A, Vlădăreanu AM. Current Understanding of Immune Thrombocytopenia: A Review of Pathogenesis and Treatment Options. Int J Mol Sci 2024; 25:2163. [PMID: 38396839 PMCID: PMC10889445 DOI: 10.3390/ijms25042163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The management of immune thrombocytopenia (ITP) and the prediction of patient response to therapy still represent a significant and constant challenge in hematology. ITP is a heterogeneous disease with an unpredictable evolution. Although the pathogenesis of ITP is currently better known and its etiology has been extensively studied, up to 75% of adult patients with ITP may develop chronicity, which represents a significant burden on patients' quality of life. A major risk of ITP is bleeding, but knowledge on the exact relationship between the degree of thrombocytopenia and bleeding symptoms, especially at a lower platelet count, is lacking. The actual management of ITP is based on immune suppression (corticosteroids and intravenous immunoglobulins), or the use of thrombopoietin receptor agonists (TPO-RAs), rituximab, or spleen tyrosine kinase (Syk) inhibitors. A better understanding of the underlying pathology has facilitated the development of a number of new targeted therapies (Bruton's tyrosine kinase inhibitors, neonatal Fc receptors, strategies targeting B and plasma cells, strategies targeting T cells, complement inhibitors, and newer TPO-RAs for improving megakaryopoiesis), which seem to be highly effective and well tolerated and result in a significant improvement in patients' quality of life. The disadvantage is that there is a lack of knowledge of the predictive factors of response to treatments, which would help in the development of an optimized treatment algorithm for selected patients.
Collapse
Affiliation(s)
- Alina Mititelu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| | - Minodora-Cezarina Onisâi
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| | - Adrian Roșca
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania;
| | - Ana Maria Vlădăreanu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| |
Collapse
|
2
|
Wang N, Yang X, Zhao Z, Liu D, Wang X, Tang H, Zhong C, Chen X, Chen W, Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease. Front Mol Neurosci 2023; 16:1227493. [PMID: 37654789 PMCID: PMC10466809 DOI: 10.3389/fnmol.2023.1227493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic process of Alzheimer's disease (AD). However, with the failure of clinical drug development and the increasing understanding of the disease, the Aβ hypothesis has been challenged. Numerous recent investigations have demonstrated that the vascular system plays a significant role in the course of AD, with vascular damage occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The question of how Aβ relates to neurovascular function and which is the trigger for AD has recently come into sharp focus. In this review, we outline the various vascular dysfunctions associated with AD, including changes in vascular hemodynamics, vascular cell function, vascular coverage, and blood-brain barrier (BBB) permeability. We reviewed the most recent findings about the complicated Aβ-neurovascular unit (NVU) interaction and highlighted its vital importance to understanding disease pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can aggravate vascular damage, forming a vicious cycle loop.
Collapse
Affiliation(s)
- Niya Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiang Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hao Tang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chuyu Zhong
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinzhang Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenli Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Liu IF, Lin TC, Wang SC, Yen CH, Li CY, Kuo HF, Hsieh CC, Chang CY, Chang CR, Chen YH, Liu YR, Lee TY, Huang CY, Hsu CH, Lin SJ, Liu PL. Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression. Biol Direct 2023; 18:9. [PMID: 36879344 PMCID: PMC9987103 DOI: 10.1186/s13062-023-00363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and β-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.
Collapse
Affiliation(s)
- I-Fan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.,Heart Center, Cheng Hsin General Hospital, Taipei, 112401, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yuan Chang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 413305, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 701401, Taiwan.
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, 110301, Taiwan. .,Heart Center, Cheng-Hsin General Hospital, Taipei, 112401, Taiwan.
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807378, Taiwan. .,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
4
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
5
|
Yao H, Xu H, Qiu S, Chen J, Lin Z, Zhu J, Sun X, Gao Q, Chen X, Xi C, Huang D, Zhang F, Gao S, Wang Z, Zhang J, Liu X, Ren G, Tao X, Li M, Chen W. Choline deficiency-related multi-omics characteristics are susceptible factors for chemotherapy-induced thrombocytopenia. Pharmacol Res 2022; 178:106155. [DOI: 10.1016/j.phrs.2022.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
|
6
|
Efat A, Shoeib S, Nazir A, Abdelmohsen E, Dawod A, Bedair HM, Elgheriany W. Endothelial Activation and Immune Thrombocytopenia: An Engagement Waiting for Consolidation. Clin Appl Thromb Hemost 2021; 27:10760296211054514. [PMID: 34806423 PMCID: PMC8646185 DOI: 10.1177/10760296211054514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immune thrombocytopenia (ITP) appears to be a heterogeneous disease. In some patients, autoimmunity may be associated with an inflammatory process, and in other patients, low platelets may interfere with other aspects of the coagulation system. Either may predispose to thrombosis or bleeding. Further investigation of the interactions of platelets, with inflammatory cytokines and endothelial biomarkers, may help us to better understand the disease, and to recognize those patients at risk of bleeding, or conversely thrombosis. The aim of this work is to estimate von Willebrand factor (vWF) and vascular cellular adhesion molecule (V-CAM) serum levels in adult immune thrombocytopenic patients (ITP) and to decipher their possible clinical correlates. Eighty adults (≥ 18 years) were enrolled in the study; naive newly diagnosed 40 patients with primary ITP (according to the ASH 2019) and 40 sex and age-matched healthy controls, all groups are subjected for complete blood count (CBC), liver, and renal function tests, ESR, CRP, V-CAM, and VWF-Ag by enzyme-linked immunosorbent assay (ELISA). There was a highly statistically significant difference between case and control as regards to the mean level of VWF-Ag and V-CAM. vWF and V-CAM could serve as biomarkers for endothelial alterations and should be investigated as a predictor of thrombocytopenic bleeding and tailor patient management accordingly.
Collapse
Affiliation(s)
- Alaa Efat
- 68872Menoufia University, Shebin Alkom, Egypt
| | | | - Aida Nazir
- 68789Alexandria University, Alexandria, Egypt
| | | | | | - Hanan M Bedair
- 68873National Liver Institute, Menoufia University, Egypt
| | | |
Collapse
|
7
|
Yang X, Li Z, Zhang Y, Bu K, Tian J, Cui J, Qin J, Zhao R, Liu S, Tan G, Liu X. Human urinary kininogenase reduces the endothelial injury by inhibiting Pyk2/MCU pathway. Biomed Pharmacother 2021; 143:112165. [PMID: 34543986 DOI: 10.1016/j.biopha.2021.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
The injury of endothelial cells is one of the initiating factors in restenosis after endovascular treatment. Human urinary kallidinogenase (HUK) is a tissue kallikrein which is used for ischemia-reperfusion injury treatment. Studies have shown that HUK may be a potential therapeutic agent to prevent stenosis after vascular injury, however, the precise mechanisms have not been fully established. This study is to investigate whether HUK can protect endothelial cells after balloon injury or H2O2-induced endothelial cell damage through the proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway. Intimal hyperplasia, a decrease of pinocytotic vesicles and cell apoptosis were found in the common carotid artery balloon injury and H2O2-induced endothelial cell damage, Pyk2/MCU was also up-regulated in such pathological process. HUK could prevent these injuries partially via the bradykinin B2 receptor by inhibiting Pyk2/MCU pathway, which prevented the mitochondrial damage, maintained calcium balance, and eventually inhibited cell apoptosis. Furthermore, MCU expression was not markedly increased if Pyk2 was suppressed by shRNA technique in the H2O2 treatment group, and cell viability was significantly better than H2O2-treated only. In short, our results indicate that the Pyk2/MCU pathway is involved in endothelial injury induced by balloon injury or H2O2-induced endothelial cell damage. HUK plays an protective role by inhibiting the Pyk2/MCU pathway in the endothelial injury.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, Hebei 056002, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Ruijie Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei 054031, China
| | - Shuxia Liu
- Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050000, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China.
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
8
|
Li C, Li L, Sun M, Sun J, Shao L, Xu M, Hou Y, Peng J, Wang L, Hou M. Predictive Value of High ICAM-1 Level for Poor Treatment Response to Low-Dose Decitabine in Adult Corticosteroid Resistant ITP Patients. Front Immunol 2021; 12:689663. [PMID: 34326842 PMCID: PMC8313967 DOI: 10.3389/fimmu.2021.689663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease. Endothelial cell activation/injury has been found in some autoimmune diseases including SLE, systemic sclerosis, and rheumatoid arthritis, but its role in ITP pathogenesis remains unclear. This study attempted to elucidate the correlation between endothelial dysfunction and disease severity of ITP and find related markers to predict response to low-dose decitabine treatment. Compared with healthy volunteers, higher plasma levels of soluble intercellular adhesion molecule-1 (ICAM-1), vascular endothelial growth factor (VEGF), and Angiopoietin-2 were found in adult corticosteroid resistant ITP patients. Notably, ICAM-1 levels were negatively correlated with the platelet count, and positively associated with the bleeding score. Recently, we have reported the efficacy and safety of low-dose decitabine in adult patients with ITP who failed for the first line therapies. Here, we evaluated the correlation of plasma ICAM-1 level with the efficacy of low-dose decitabine therapy for corticosteroid resistant ITP. A total of 29 adult corticosteroid resistant ITP patients who received consecutive treatments of low-dose decitabine were enrolled in this study. Fourteen patients showed response (nine showed complete response and five showed partial response). The levels of ICAM-1 before and after treatment were significantly higher in the non-responsive ITP patients than in the responsive patients. As shown in the multivariable logistic regression model, the odds of developing no-response to low-dose decitabine increased by 36.8% for per 5 ng/ml increase in plasma ICAM-1 level [odds ratio (OR) 1.368, 95% confidence interval (CI): 1.060 to 1.764]. In summary, this was the first study to elucidate the relationship between endothelial dysfunction and corticosteroid resistant ITP and identify the potential predictive value of ICAM-1 level for response to low-dose decitabine.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lizhen Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, China
| | - Jianzhi Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Thakar S, Gabarin N, Gupta A, Radford M, Warkentin TE, Arnold DM. Anemia-Induced Bleeding in Patients with Platelet Disorders. Transfus Med Rev 2021; 35:22-28. [PMID: 34332828 DOI: 10.1016/j.tmrv.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Anemia is not only a consequence of bleeding, but also a modifiable risk factor for bleeding in patients with thrombocytopenia or platelet function defects. In this review we outline the mechanism of anemia-induced bleeding in patients with platelet disorders, which involves a disturbance in normal red blood cell (RBC) rheology and reduced platelet margination to the endothelial surface due to a decrease in RBC mass, leading to impaired primary hemostasis and bleeding. Biologically, anemia reduces the mass of RBCs in the central column of flowing blood through a vessel resulting in fewer platelets coming into contact with the endothelial surface at the periphery of the flowing blood column. Thus, anemia results in impaired primary hemostasis. Von Willebrand factor (vWF) is another component of primary hemostasis and vWF deficiency, especially a deficiency of the highest vWF multimers, can also manifest with bleeding when concomitant anemia occurs. Clinically, patients at greatest risk for anemia-induced bleeding include patients with hematological malignancies in whom anemia and thrombocytopenia occur as a result of the underlying disease or the myelotoxic effects of treatment; patients with renal insufficiency with uremic thrombocytopathy and hypoproliferative anemia; and patients with inherited or acquired bleeding disorders affecting primary hemostasis (eg, Bernard-Soulier syndrome, von Willebrand disease) with chronic blood loss and iron deficiency anemia. Underlying abnormalities of any components of primary hemostasis plus concomitant anemia may result in major bleeding disorders; therefore, correction of remediable abnormalities-most notably, correction of the anemia- would be expected to have important clinical benefit. In this review we discuss how the correction of the anemia may lead to improvement of bleeding outcomes in patients with a primary hemostatic defect, supported by evidence from animal models, clinical trials and clinical experience.
Collapse
Affiliation(s)
- Swarni Thakar
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Nadia Gabarin
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Akash Gupta
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael Radford
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Theodore E Warkentin
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Semple JW, Rebetz J, Maouia A, Kapur R. An update on the pathophysiology of immune thrombocytopenia. Curr Opin Hematol 2021; 27:423-429. [PMID: 32868673 DOI: 10.1097/moh.0000000000000612] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
: Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder mediated by antiplatelet autoantibodies and antigen-specific T cells that either destroy platelets peripherally in the spleen or impair platelet production in the bone marrow. There have been a plethora of publications relating to the pathophysiology of ITP and since January of 2019, at least 50 papers have been published on ITP pathophysiology. PURPOSE OF REVIEW To summarize the literature relating to the pathophysiology of ITP including the working mechanisms of therapies, T-cell and B-cell physiology, protein/RNA/DNA biochemistry, and animal models in an attempt to unify the perceived abnormal immune processes. RECENT FINDINGS The most recent pathophysiologic irregularities associated with ITP relate to abnormal T-cell responses, particularly, defective T regulatory cell activity and how therapeutics can restore these responses. The robust literature on T cells in ITP points to the notion that ITP is a disease initiated by faulty self-tolerance mechanisms very much like that of other organ-specific autoimmune diseases. There is also a large literature on new and existing animal models of ITP and these will be discussed. It appears that understanding how to specifically modulate T cells in patients with ITP will undoubtedly lead to effective antigen-specific therapeutics. CONCLUSIONS ITP is predominately a T cell disorder which leads to a breakdown in self tolerance mechanisms and allows for the generation of anti-platelet autoantibodies and T cells. Novel therapeutics that target T cells may be the most effective way to perhaps cure this disorder.
Collapse
Affiliation(s)
- John W Semple
- Division of Hematology and Transfusion Medicine, Lund University.,Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University
| | - Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Hritzo B, Legesse B, Ward JM, Kaur A, Holmes-Hampton GP, Moroni M. Investigating the Multi-Faceted Nature of Radiation-Induced Coagulopathies in a Göttingen Minipig Model of Hematopoietic Acute Radiation Syndrome. Radiat Res 2021; 196:156-174. [PMID: 34019667 DOI: 10.1667/rade-20-00073.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2021] [Indexed: 11/03/2022]
Abstract
Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.
Collapse
Affiliation(s)
- Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
12
|
Ruane-O'Hora T, Markos F. Platelets Do Not Alter Flow-Mediated Dilation or Arterial Conduction in vivo. J Vasc Res 2021; 58:231-236. [PMID: 34010839 DOI: 10.1159/000516045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate whether platelets contribute to shear stress and vascular conductance in the iliac vascular bed in vivo. Flow-mediated dilation of pig iliac was induced by downstream injection of acetylcholine (50 μg), and separately, conductance (ΔF/ΔP) was calculated. This was carried out before and after removal of 1 L of arterial blood in 240 mL increments, and each 240 mL was spun in a centrifuge (1,500 rcf for 7 min); platelet-rich plasma was replaced with equal volume of heparinised saline and reinjected. The circulating platelet count fell from 369 × 109/L (n = 5) to 165 × 109/L (p = 0.01; n = 4; Student's unpaired t). An increase in flow led to an increase in the iliac diameter by 0.49 ± 0.03 mm (mean ± SEM) before platelet reduction and 0.55 ± 0.05 mm after (p = 0.36, Student's paired t, n = 5); the change in arterial conductance was also not significantly affected by platelet reduction, control: 1.44 ± 0.34 mL/min/mm Hg, after platelet reduction: 1.39 ± 0.04 mm (p = 0.55, Student's paired t, n = 4). Therefore, platelets do not contribute to shear stress or conductance in vivo.
Collapse
Affiliation(s)
- Therese Ruane-O'Hora
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Farouk Markos
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Grob D, Conejeros I, López-Osorio S, Velásquez ZD, Segeritz L, Gärtner U, Schaper R, Hermosilla C, Taubert A. Canine Angiostrongylus vasorum-Induced Early Innate Immune Reactions Based on NETs Formation and Canine Vascular Endothelial Cell Activation In Vitro. BIOLOGY 2021; 10:biology10050427. [PMID: 34065858 PMCID: PMC8151090 DOI: 10.3390/biology10050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Angiostrongylus vasorum is a cardiopulmonary nematode that affects canids, residing in the pulmonary artery and right atrium/ventricle. Due to its location, the parasite will have a close interaction with the different components of the innate immune system, including endothelial cells and polymorphonuclear neutrophils (PMN). Here we evaluated the expression of adhesion molecules of canine aortic endothelial cells (CAEC), and NETs formation by co-culture of freshly isolated canine PMN with A. vasorum L3. Overall, we found distinct inter-donor variations in adhesion molecule expression among CAEC isolates. Additionally, PMN and A. vasorum co-culture induced NETs release without affecting larval viability. Abstract Due to its localization in the canine blood stream, Angiostrongylus vasorum is exposed to circulating polymorphonuclear neutrophils (PMN) and the endothelial cells of vessels. NETs release of canine PMN exposed to A. vasorum infective stages (third stage larvae, L3) and early pro-inflammatory immune reactions of primary canine aortic endothelial cells (CAEC) stimulated with A. vasorum L3-derived soluble antigens (AvAg) were analyzed. Expression profiles of the pro-inflammatory adhesion molecules ICAM-1, VCAM-1, P-selectin and E-selectin were analyzed in AvAg-stimulated CAEC. Immunofluorescence analyses demonstrated that motile A. vasorum L3 triggered different NETs phenotypes, with spread NETs (sprNETs) as the most abundant. Scanning electron microscopy confirmed that the co-culture of canine PMN with A. vasorum L3 resulted in significant larval entanglement. Distinct inter-donor variations of P-selectin, E-selectin, ICAM-1 and VCAM-1 gene transcription and protein expression were observed in CAEC isolates which might contribute to the high individual variability of pathological findings in severe canine angiostrongylosis. Even though canine NETs did not result in larval killing, the entanglement of L3 might facilitate further leukocyte attraction to their surface. Since NETs have already been documented as involved in both thrombosis and endothelium damage events, we speculate that A. vasorum-triggered NETs might play a critical role in disease outcome in vivo.
Collapse
Affiliation(s)
- Daniela Grob
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Correspondence:
| | - Iván Conejeros
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Sara López-Osorio
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Grupo de Investigación CIBAV, Universidad de Antioquia UdeA, Medellín 050034, Colombia
| | - Zahady D. Velásquez
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Lisa Segeritz
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | | | - Carlos Hermosilla
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Anja Taubert
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| |
Collapse
|
14
|
Ho-Tin-Noé B, Le Chapelain O, Camerer E. Platelets maintain vascular barrier function in the absence of injury or inflammation. J Thromb Haemost 2021; 19:1145-1148. [PMID: 33595179 DOI: 10.1111/jth.15240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Benoit Ho-Tin-Noé
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM, Université de Paris, Paris, France
| | - Ophélie Le Chapelain
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM, Université de Paris, Paris, France
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| |
Collapse
|
15
|
Wang S, Liu Y, Nie M, Li Q, Liu Y. Profile of IL-36 cytokines (IL-36α, IL-36β, IL-36γ and IL-36Ra) in patients with primary immune thrombocytopenia. Int Immunopharmacol 2020; 82:106341. [PMID: 32114410 DOI: 10.1016/j.intimp.2020.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Shuang Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mu Nie
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Qianpeng Li
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, China.
| |
Collapse
|
16
|
LeVine DN, Brooks MB. Immune thrombocytopenia (ITP): Pathophysiology update and diagnostic dilemmas. Vet Clin Pathol 2019; 48 Suppl 1:17-28. [PMID: 31538353 DOI: 10.1111/vcp.12774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia (ITP) is a common autoimmune bleeding disorder. The understanding of ITP pathogenesis is rapidly evolving. We now recognize ITP as a complex and heterogeneous syndrome that results from a combination of humoral and cell-mediated attacks on platelets peripherally and megakaryocytes in the bone marrow. Autoantibody-mediated ITP also varies in the pathway used to clear platelets, which depends on the platelet glycoprotein being targeted. Moreover, ITP patients present with variable bleeding severities and treatment responses that do not closely correlate with platelet count. A gold standard diagnostic test for ITP is lacking, and biomarkers to assess disease severity are in their infancy. This review provides an update on the immunopathogenesis of ITP and summarizes currently available tests for ITP diagnosis, prediction of disease severity, and treatment responses. Given the heterogeneous pathogenesis and clinical presentation of ITP, we highlight the need for the development of diagnostic and prognostic tests that would allow for the individualized management of a complex disease.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
17
|
Ho-Tin-Noé B, Jadoui S. Spontaneous bleeding in thrombocytopenia: Is it really spontaneous? Transfus Clin Biol 2018; 25:210-216. [PMID: 30017659 DOI: 10.1016/j.tracli.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
Spontaneous bleeding is a clinical hallmark of thrombocytopenia and can take multiple forms including petechiae, epistaxis, gum bleeding, or, in worst cases, intracranial hemorrhage. Those bleeding events are called " spontaneous " because they occur in the absence of overt trauma. Spontaneous bleeding manifestations have long been considered to be a direct consequence of low platelet counts. Nevertheless, although low platelet counts may lead to ultrastructural endothelial alterations, those alterations and the associated state of vascular fragility are unlikely sufficient to cause spontaneous rupture of the microvessel wall. Indeed, in addition to endothelial injury, factors capable of damaging the basement membrane are required to allow escape of red blood cells in the extravascular space. Therefore, despite their misleading name, spontaneous bleeding events in thrombocytopenia are most likely provoked and involve subclinical biological processes in which platelets normally intervene to ensure hemostasis. In this review, we discuss past and more recent studies on the possible triggers of spontaneous bleeding events in thrombocytopenia, with a particular focus on the role of inflammatory reactions.
Collapse
Affiliation(s)
- B Ho-Tin-Noé
- Laboratory of Vascular Translational Science, université Paris-Diderot, Sorbonne Paris Cité, U1148 institut national de la santé et de la recherche médicale (Inserm), Paris, France.
| | - S Jadoui
- Laboratory of Vascular Translational Science, université Paris-Diderot, Sorbonne Paris Cité, U1148 institut national de la santé et de la recherche médicale (Inserm), Paris, France
| |
Collapse
|