1
|
Gao J, Guo H, Li J, Zhan M, You Y, Xin G, Liu Z, Fan X, Gao Q, Liu J, Zhang Y, Fu J. Buyang Huanwu decoction ameliorates myocardial injury and attenuates platelet activation by regulating the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. Chin Med 2024; 19:109. [PMID: 39160598 PMCID: PMC11331649 DOI: 10.1186/s13020-024-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Buyang Huanwu Decoction (BYHWD) is a traditional Chinese medicine to treat the syndrome of qi deficiency and blood stasis. Platelets play an important role in regulating thrombus and inflammation after ischemic injury, studies have shown that BYHWD regulate myocardial fibrosis and exert anti-inflammatory effects through IL-17 and TLR4 pathways, but the mechanism of platelet activation by BYHWD in stable coronary heart disease is still unknown. In the present study, model of left anterior descending coronary artery ligation was applied to investigate the mechanisms of BYHWD on modulating platelets hyperreactivity and heart function after fibrosis of ischemic myocardial infarction (MI). METHODS Myocardial infarction model was constructed by ligation of the left anterior descending coronary artery. The rats were randomly divided into five groups: sham, model, MI with aspirin (positive), MI with a low dosage of BYHWD (BYHWD-ld) and MI with a high dosage of BYHWD (BYHWD-hd) for 28 days. RESULTS Coronary artery ligation prominently induced left ventricle dysfunction, increased cardiomyocyte fibrosis, which was accompanied by platelets with hyperreactivity, and high levels of inflammatory factors. BYHWD obviously reversed cardiac dysfunction and fibrosis, increased the thickness of the left ventricular wall, and inhibited aggregation ratio and CD62p expression. BYHWD restored the mitochondrial respiration of platelets after MI, concomitant with an increased telomere expression and decreased inflammation. According to the result of transcriptome sequencing, we found that 106 differentially expressed genes compared model with BYHWD treatment. Enrichment analysis screened out the Ras-related protein Rap-1 (Rap1) signaling pathway and platelet activation biological function. Quantitative real-time PCR and Western blotting were applied to found that BYHWD reduced the expression of Rap1/PI3K-Akt/Src-CDC42 genes and attenuated the overactivity of PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. CONCLUSION BYHWD reduced inflammation and platelet activation via the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway and improved heart function after MI.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Hao Guo
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Junmei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Min Zhan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Gaojie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Zixin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Qinghe Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Jianhua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| |
Collapse
|
2
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
3
|
Gao H, Kuang Y, Liu Y, Zhang Y, Wang P, Ma Q. Changes of plasma Rap1A levels in patients with in-stent restenosis after percutaneous coronary intervention and the underlying mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1650-1658. [PMID: 38432855 PMCID: PMC10929945 DOI: 10.11817/j.issn.1672-7347.2023.230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Percutaneous coronary intervention (PCI) is one of the most important treatments for coronary artery disease (CAD). However, in-stent restenosis (ISR) after PCI is a serious complication without effective measures for prevention and treatment. This study aims to investigate the Ras-related protein 1A (Rap1A) level in ISR patients and in the tumor necrosis factor-α (TNF-α)-induced inflammatory injury model of human umbilical vein endothelial cells (HUVECs), to explore the role of Rap1A in regulating TNF-α-induced inflammation in HUVECs and to provide a new potential target for ISR prevention and treatment. METHODS A total of 60 CAD patients, who underwent PCI between December 2020 and July 2022 from the Department of Cardiovascular Medicine of Xiangya Hospital, Central South University, and re-examined coronary angiography (CAG) 1 year after the operation, were included. After admission, 27 patients were diagnosed with ISR and 33 patients were diagnosed with non-in-stent restenosis (non-ISR) according to the CAG. Clinical data were collected, and the plasma Rap1A level was determined by enzyme linked immunosorbent assay (ELISA). In cell experiments, an inflammatory injury model was established with TNF-α treatment (10 ng/mL, 24 h) in HUVECs. The mRNA and protein expression levels of Rap1A, interlukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) were measured by real-time reverse transcription PCR and Western blotting. Small interfering RNA (siRNA) was used to explore the role of Rap1A in regulating TNF-α-induced inflammation in HUVECs. RESULTS Compared with the non-ISR patients, a higher proportion of ISR patients had a history of smoking (P=0.005) and diabetes (P=0.028), and higher levels of glycosylated hemoglobin (HbA1c) (P=0.012), low-density lipoprotein cholesterol (LDL-c) (P=0.014), and hypersensitive C-reactive protein (hs-CRP) (P=0.027). The remaining projects did not show significant differences (all P>0.05). The plasma level of Rap1A in the ISR group was significantly higher than that in the non-ISR group [942.14 (873.28 to 1 133.81) μg/mL vs 886.93 (812.61 to 930.98) μg/mL; P=0.004]. Diabetes, LDL-c, and Rap1A were risk factors for ISR by univariate logistic regression analysis (all P<0.05). The mRNA and protein expression levels of inflammatory factors IL-6 and VCAM-1 were increased in HUVECs after 10 ng/mL TNF-α treatment for 24 h compared with the control group (all P<0.05), while the mRNA and protein levels of Rap1A were increased (both P<0.05). After inhibition of Rap1A in HUVECs, the mRNA and protein expression levels of IL-6 and VCAM-1 were significantly decreased (all P<0.05). CONCLUSIONS The plasma Rap1A level was significantly elevated in patients with ISR, suggesting that Rap1A may be a potential biomarker for predicting ISR. In the TNF-α- induced HUVECs inflammatory injury model, the expression level of Rap1A was increased. The level of TNF-α-induced endothelial cell inflammation was decreased after inhibition of Rap1A expression, suggesting that Rap1A may be a potential target for the treatment of endothelial cell inflammation in ISR.
Collapse
Affiliation(s)
- Haodong Gao
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
| | - Yuanyuan Kuang
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
| | - Yubo Liu
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
| | - Yinzhuang Zhang
- Department of Cardiology, First Hospital of Changsha, Changsha 410005, China
| | - Ping Wang
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
| | - Qilin Ma
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
| |
Collapse
|
4
|
Rydström A, Grahn THM, Niroula A, Mansell E, van der Garde M, Pertesi M, Subramaniam A, Soneji S, Zubarev R, Enver T, Nilsson B, Miharada K, Larsson J, Karlsson S. Functional and molecular profiling of hematopoietic stem cells during regeneration. Exp Hematol 2023; 127:40-51. [PMID: 37666355 DOI: 10.1016/j.exphem.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Hematopoietic stem cells (HSCs) enable hematopoietic stem cell transplantation (HCT) through their ability to replenish the entire blood system. Proliferation of HSCs is linked to decreased reconstitution potential, and a precise regulation of actively dividing HSCs is thus essential to ensure long-term functionality. This regulation becomes important in the transplantation setting where HSCs undergo proliferation followed by a gradual transition to quiescence and homeostasis. Although mouse HSCs have been well studied under homeostatic conditions, the mechanisms regulating HSC activation under stress remain unclear. Here, we analyzed the different phases of regeneration after transplantation. We isolated bone marrow from mice at 8 time points after transplantation and examined the reconstitution dynamics and transcriptional profiles of stem and progenitor populations. We found that regenerating HSCs initially produced rapidly expanding progenitors and displayed distinct changes in fatty acid metabolism and glycolysis. Moreover, we observed molecular changes in cell cycle, MYC and mTOR signaling in both HSCs, and progenitor subsets. We used a decay rate model to fit the temporal transcription profiles of regenerating HSCs and identified genes with progressively decreased or increased expression after transplantation. These genes overlapped to a large extent with published gene sets associated with key aspects of HSC function, demonstrating the potential of this data set as a resource for identification of novel HSC regulators. Taken together, our study provides a detailed functional and molecular characterization of HSCs at different phases of regeneration and identifies a gene set associated with the transition from proliferation to quiescence.
Collapse
Affiliation(s)
- Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tan H M Grahn
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Abhishek Niroula
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Els Mansell
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mark van der Garde
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maroulio Pertesi
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Tariq Enver
- Stem Cell Group, Cancer Institute, University College London, United Kingdom
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Sun H, Lee HS, Kim SHJ, Fernandes de Lima M, Gingras AR, Du Q, McLaughlin W, Ablack J, Lopez-Ramirez MA, Lagarrigue F, Fan Z, Chang JT, VanDyke D, Spangler JB, Ginsberg MH. IL-2 can signal via chemokine receptors to promote regulatory T cells' suppressive function. Cell Rep 2023; 42:112996. [PMID: 37598341 PMCID: PMC10564087 DOI: 10.1016/j.celrep.2023.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.
Collapse
Affiliation(s)
- Hao Sun
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ho-Sup Lee
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah Hyun-Ji Kim
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | | | - Qinyi Du
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Wilma McLaughlin
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jailail Ablack
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miguel A Lopez-Ramirez
- University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, La Jolla, CA, USA
| | | | - Zhichao Fan
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - John T Chang
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark H Ginsberg
- University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
6
|
Zhang B, Ding J, Ma Z. ICP4-Associated Activation of Rap1b Facilitates Herpes Simplex Virus Type I (HSV-1) Infection in Human Corneal Epithelial Cells. Viruses 2023; 15:1457. [PMID: 37515145 PMCID: PMC10385634 DOI: 10.3390/v15071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The strong contribution of RAS-related protein 1b (Rap1b) to cytoskeleton remodeling determines intracellular and extracellular physiological activities, including the successful infection of viruses in permissive cells, but its role in the HSV-1 life cycle is still unclear. Here, we demonstrated that the HSV-1 immediate early (IE) gene ICP4 inhibits protein kinase A (PKA) phosphorylation to induce Rap1b-activation-mediated viral infection. Rap1b activation and membrane enrichment begin at the early stage of HSV-1 infection and remain active during the proliferation period of the virus. Treating the cells with Rap1b small interfering RNA (siRNA) showed a dose-dependent decrease in viral infection levels, but no dose-dependent increase was observed after Rap1b overexpression. Further investigation indicated that the suppression of Rap1b activation derives from phosphorylated PKA and Rap1b mutants with partial or complete prenylation instead of phosphorylation, which promoted viral infection in a dose-dependent manner. Furthermore, the PKA agonist Forskolin disturbed Rap1b activation in a dose-dependent manner, accompanied by a decreasing trend in viral infection. Moreover, the HSV-1 IE gene ICP4 induced PKA dephosphorylation, leading to continuous Rap1b activation, followed by cytoskeleton rearrangement induced by cell division control protein 42 (CDC42) and Ras-related C3 botulinum toxin substrate 1 (RAC1). These further stimulated membrane-triggered physiological processes favoring virus infection. Altogether, we show the significance of Rap1b during HSV-1 infection and uncover the viral infection mechanism determined by the posttranslational regulation of the viral ICP4 gene and Rap1b host protein.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
7
|
Kreft IC, Huisman EJ, Cnossen MH, van Alphen FPJ, van der Zwaan C, van Leeuwen K, van Spaendonk R, Porcelijn L, Veen CSB, van den Biggelaar M, de Haas M, Meijer AB, Hoogendijk AJ. Proteomic landscapes of inherited platelet disorders with different etiologies. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:359-372.e3. [PMID: 36700500 DOI: 10.1016/j.jtha.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inherited platelet disorders (IPDs) are a heterogeneous group of rare diseases that are caused by the defects in early megakaryopoiesis, proplatelet formation, and/or mature platelet function. Although genomic sequencing is increasingly used to identify genetic variants underlying IPD, this technique does not disclose resulting molecular changes that impact platelet function. Proteins are the functional units that shape platelet function; however, insights into how variants that cause IPDs impact platelet proteomes are limited. OBJECTIVES The objective of this study was to profile the platelet proteomics signatures of IPDs. METHODS We performed unbiased label-free quantitative mass spectrometry (MS)-based proteome profiling on platelets of 34 patients with IPDs with variants in 13 ISTH TIER1 genes that affect different stages of platelet development. RESULTS In line with the phenotypical heterogeneity between IPDs, proteomes were diverse between IPDs. We observed extensive proteomic alterations in patients with a GFI1B variant and for genetic variants in genes encoding proteins that impact cytoskeletal processes (MYH9, TUBB1, and WAS). Using the diversity between IPDs, we clustered protein dynamics, revealing disrupted protein-protein complexes. This analysis furthermore grouped proteins with similar cellular function and location, classifying mitochondrial protein constituents and identifying both known and putative novel alpha granule associated proteins. CONCLUSIONS With this study, we demonstrate a MS-based proteomics perspective to IPDs. By integrating the effects of IPDs that impact different aspects of platelet function, we dissected the biological contexts of protein alterations to gain further insights into the biology of platelet (dys)function.
Collapse
Affiliation(s)
- Iris C Kreft
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands; Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | | | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Rosalina van Spaendonk
- Department of Immunohematology Diagnostic, Sanquin Diagnostic Services, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline S B Veen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Masja de Haas
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; Center for Clinical Transfusion Research, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Zieger B, Boeckelmann D. Inherited Platelet Disorders: A Short Introduction. Hamostaseologie 2023; 43:52-59. [PMID: 36807820 DOI: 10.1055/a-1987-3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Platelets play an important role regarding coagulation by contributing to thrombus formation by platelet adhesion, aggregation, and α-/δ-granule secretion. Inherited platelet disorders (IPDs) are a very heterogeneous group of disorders that are phenotypically and biochemically diverse. Platelet dysfunction (thrombocytopathy) can be accompanied by a reduction in the number of thrombocytes (thrombocytopenia). The extent of the bleeding tendency can vary greatly. Symptoms comprise mucocutaneous bleeding (petechiae, gastrointestinal bleeding and/or menorrhagia, epistaxis) and increased hematoma tendency. Life-threatening bleeding can occur after trauma or surgery. In the last years, next-generation sequencing had a great impact on unrevealing the underlying genetic cause of individual IPDs. Because IPDs are so diverse, a comprehensive analysis of platelet function and genetic testing is indispensable.
Collapse
Affiliation(s)
- Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Doris Boeckelmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Arzani H, Rafii-Tabar H, Ramezani F. The investigation into the effect of the length of RGD peptides and temperature on the interaction with the αIIbβ3 integrin: a molecular dynamic study. J Biomol Struct Dyn 2022; 40:9701-9712. [PMID: 34060983 DOI: 10.1080/07391102.2021.1932602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tripeptide Arg-Gly-Asp acid (RGD) is a protein sequence in the binding of proteins to cell surfaces, and is involved in various biological processes such as cell adhesion to the extracellular matrix, platelet activation, hemostasis, etc. The C2 domain of the Von Willebrand Factor (VWF), containing the RGD motif, plays an important role in the initial homeostasis process. It binds to the αIIbβ3 integrin and stimulates platelet aggregation. We have investigated, using the molecular Dynamic (MD) simulation method, the effect of the RGD-peptide length, and temperature variation, on the binding to the αIIbβ3 integrin receptor. We examined 10 different structural modes of the αIIbβ3 at three different temperatures; 237 K, 310 K and 318 K. Our findings show that the amino acids that form a binding pocket include Asp224, Tyr234, Ser226, Tyr190, Tyr189, Trp260, Trp262, Asp259, Lys253, Arg214, Asp217, Ser161 and Ala218 and that the ligand-receptor interaction was increased at higher temperatures. It was also found that the increase in the number of ligands' amino acids and their types (% glycine) plays an important role in the stability, conformation, and ligand-receptor interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Arzani
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Degjoni A, Campolo F, Stefanini L, Venneri MA. The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders. J Thromb Haemost 2022; 20:2465-2474. [PMID: 35950928 PMCID: PMC9805178 DOI: 10.1111/jth.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
Platelets are the "guardians" of the blood circulatory system. At sites of vessel injury, they ensure hemostasis and promote immunity and vessel repair. However, their uncontrolled activation is one of the main drivers of thrombosis. To keep circulating platelets in a quiescent state, the endothelium releases platelet antagonists including nitric oxide (NO) that acts by stimulating the intracellular receptor guanylyl cyclase (GC). The latter produces the second messenger cyclic guanosine-3',5'-monophosphate (cGMP) that inhibits platelet activation by stimulating protein kinase G, which phosphorylates hundreds of intracellular targets. Intracellular cGMP pools are tightly regulated by a fine balance between GC and phosphodiesterases (PDEs) that are responsible for the hydrolysis of cyclic nucleotides. Phosphodiesterase type 5 (PDE5) is a cGMP-specific PDE, broadly expressed in most tissues in humans and rodents. In clinical practice, PDE5 inhibitors (PDE5i) are used as first-line therapy for erectile dysfunction, pulmonary artery hypertension, and lower urinary tract symptoms. However, several studies have shown that PDE5i may ameliorate the outcome of various other conditions, like heart failure and stroke. Interestingly, NO donors and cGMP analogs increase the capacity of anti-platelet drugs targeting the purinergic receptor type Y, subtype 12 (P2Y12) receptor to block platelet aggregation, and preclinical studies have shown that PDE5i inhibits platelet functions. This review summarizes the molecular mechanisms underlying the effect of PDE5i on platelet activation and aggregation focusing on the therapeutic potential of PDE5i in platelet disorders, and the outcomes of a combined therapy with PDE5i and NO donors to inhibit platelet activation.
Collapse
Affiliation(s)
- Anisa Degjoni
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Federica Campolo
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Lucia Stefanini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Mary Anna Venneri
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
11
|
Woloszyk A, Tuong ZK, Perez L, Aguilar L, Bankole AI, Evans CH, Glatt V. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. BIOMATERIALS ADVANCES 2022; 139:213027. [PMID: 35882120 DOI: 10.1016/j.bioadv.2022.213027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, QLD, Australia; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Abraham I Bankole
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester 55902, MN, USA.
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
12
|
PI3Kγ stimulates a high molecular weight form of myosin light chain kinase to promote myeloid cell adhesion and tumor inflammation. Nat Commun 2022; 13:1768. [PMID: 35365657 PMCID: PMC8975949 DOI: 10.1038/s41467-022-29471-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells play key roles in cancer immune suppression and tumor progression. In response to tumor derived factors, circulating monocytes and granulocytes extravasate into the tumor parenchyma where they stimulate angiogenesis, immune suppression and tumor progression. Chemokines, cytokines and interleukins stimulate PI3Kγ-mediated Rap1 activation, leading to conformational changes in integrin α4β1 that promote myeloid cell extravasation and tumor inflammation Here we show that PI3Kγ activates a high molecular weight form of myosin light chain kinase, MLCK210, that promotes myosin-dependent Rap1 GTP loading, leading to integrin α4β1 activation. Genetic or pharmacological inhibition of MLCK210 suppresses integrin α4β1 activation, as well as tumor inflammation and progression. These results demonstrate a critical role for myeloid cell MLCK210 in tumor inflammation and serve as basis for the development of alternative approaches to develop immune oncology therapeutics. Myeloid cell recruitment during tumor inflammation depends on the VCAM-1 receptor integrin α4β1. Here the authors show that a high molecular weight form of myosin light chain kinase, MLCK210, is required for myeloid cell integrin α4β1 activation and adhesion and that MLCK210 inhibition reduces tumor growth and inflammation in preclinical cancer models.
Collapse
|
13
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
14
|
Johnson AK, Lorimer EL, Szabo A, Wu R, Shah NN, D’Souza A, Chhabra S, Hamadani M, Dhakal B, Hari P, Rao S, Carlson K, Williams CL, Knight JM. Rap1A, Rap1B, and β-Adrenergic Signaling in Autologous HCT: A Randomized Controlled Trial of Propranolol. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:45-56. [PMID: 35370486 PMCID: PMC8961707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Successful hematopoietic cell transplantation (HCT) depends on rapid engraftment of the progenitor and stem cells that will reestablish hematopoiesis. Rap1A and Rap1B are two closely related small GTPases that may affect platelet and neutrophil engraftment during HCT through their roles in cell adhesion and migration. β-adrenergic signaling may regulate the participation of Rap1A and Rap1B in engraftment through their inhibition or activation. We conducted a correlative study of a randomized controlled trial evaluating the effects of the nonselective β-antagonist propranolol on expression and prenylation of Rap1A and Rap1B during neutrophil and platelet engraftment in 25 individuals receiving an autologous HCT for multiple myeloma. Propranolol was administered for 1 week prior to and 4 weeks following HCT. Blood was collected 7 days (baseline) and 2 days (Day -2) before HCT, and 28 days after HCT (Day +28). Circulating polymorphonuclear cells (PMNC) were isolated and analyzed via immunoblotting to determine levels of prenylated and total Rap1A versus Rap1B. Twelve participants were randomized to the intervention and 13 to the control. Rap1A expression significantly correlated with Rap1B expression. Rap1B expression significantly correlated with slower platelet engraftment; however, this association was not observed in the propranolol-treated group. There were no significant associations between neutrophil engraftment and Rap1A or Rap1B expression. Post hoc exploratory analyses did not reveal an association between social health variables and Rap1A or Rap1B expression. This study identifies a greater regulatory role for Rap1B than Rap1A in platelet engraftment and suggests a possible role for β-adrenergic signaling in modulating Rap1B function during HCT.
Collapse
Affiliation(s)
| | - Ellen L. Lorimer
- Department of Pharmacology and Toxicology, Medical
College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Institute for Health & Equity, Division of
Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ruizhe Wu
- Institute for Health & Equity, Division of
Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nirav N. Shah
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of BMT and Cellular Therapy, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Binod Dhakal
- Division of BMT and Cellular Therapy, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Parameswaran Hari
- Division of BMT and Cellular Therapy, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI,
USA
| | - Karen Carlson
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI,
USA
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical
College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer M. Knight
- Department of Psychiatry, Medical College of Wisconsin,
Milwaukee, WI, USA
- Departments of Medicine and Microbiology &
Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Zhang L, Zhu Y, Wei X, Chen X, Li Y, Zhu Y, Xia J, Huang Y, Huang Y, Wang J, Pang Z. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm Sin B 2022; 12:3427-3447. [PMID: 35967283 PMCID: PMC9366539 DOI: 10.1016/j.apsb.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
Collapse
Affiliation(s)
- Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiheng Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
- Corresponding authors.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
16
|
Wang C, Cheng Y, Zhang Y, Jin H, Zuo Z, Wang A, Huang J, Jiang J, Kong W. Berberine and Its Main Metabolite Berberrubine Inhibit Platelet Activation Through Suppressing the Class I PI3Kβ/Rasa3/Rap1 Pathway. Front Pharmacol 2021; 12:734603. [PMID: 34690771 PMCID: PMC8531212 DOI: 10.3389/fphar.2021.734603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Berberine (BBR), a natural product, was reported to inhibit platelet aggregation; however, the molecular mechanisms remain unclear. This study aims to investigate the effects and mechanisms of BBR in inhibiting platelet activation and thrombus formation. Methods: Flow cytometry, immunofluorescence, and Western blot were used to determine the inhibitory effects and mechanisms of BBR and its main metabolite berberrubine (M2) on platelet activation in vitro and ex vivo. Purified integrin αIIbβ3, class I PI3K kit, and molecular docking were used to identify the possible targets of BBR and M2. A carrageenan-induced mouse thrombosis model was used to evaluate the effects of BBR on thrombus formation in vivo. Results: In vitro, BBR and M2 significantly inhibited ADP-induced integrin αIIbβ3 activation, reduced the level of P-selectin on the platelet membrane, and suppressed the binding of fibrinogen to the platelets. In this process, BBR and M2 greatly suppressed the PI3K/Akt pathway and inhibited Rasa3 membrane translocation and Rap1 activation. Furthermore, BBR and M2 selectively inhibited class I PI3Kβ, perhaps through binding to its active site. The activities of BBR were stronger than those of M2. After oral administration, BBR significantly inhibited the PI3K/Akt pathway and Rap1 activation and suppressed ADP-induced platelet activation and carrageenan-induced thrombosis in mice without prolonging bleeding time. Conclusions: We reveal for the first time the possible targets and mechanisms of BBR and M2 in inhibiting platelet activation. Our research may support the future clinical application of BBR as an antiplatelet drug in the prevention or treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Can Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Cheng
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanhui Zhang
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengyan Zuo
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijia Kong
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
LINC00665 Facilitates the Malignant Processes of Osteosarcoma by Increasing the RAP1B Expression via Sponging miR-708 and miR-142-5p. ACTA ACUST UNITED AC 2021; 2021:5525711. [PMID: 34306997 PMCID: PMC8282375 DOI: 10.1155/2021/5525711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OS) is a kind of fatal primary bone tumors in adolescents and young adults. Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs which occupy a part of the latest hot topics. We aimed to investigate the roles of lncRNA LINC00665 in OS in this study. In this study, we found that LINC00665 was highly expressed in OS tissues and cell lines, and its high expression was associated with malignant feature and poor prognosis of OS. In OS cells, LINC00665 could facilitate the proliferation, migration, and invasion to play an oncogenic role. Mechanistically, LINC00665 served as a sponge for miR-708 and miR-142-5p and positively mediated the expression of their target RAP1B. Finally, we confirmed that LINC00665 exercised its biological functions by mediating RAP1B. In conclusion, LINC00665 is overexpressed in OS and facilitates the malignant processes of OS cells by increasing the RAP1B expression via sponging miR-708 and miR-142-5p.
Collapse
|
18
|
Schubert P, Johnson L, Culibrk B, Chen Z, Tan S, Marks DC, Devine DV. Reconstituted cryopreserved platelets synthesize proteins during short-term storage and packaging a defined subset into microvesicles. Transfusion 2021; 61:2549-2555. [PMID: 34121199 DOI: 10.1111/trf.16542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cryopreservation of platelets (PLTs) could allow extension of their shelf-life to years, compared to days for liquid stored platelets. Due to their greater hemostatic effect, reconstituted cryopreserved platelets (cryo-PLTs) would be able to support bleeding emergencies. Since protein synthesis has been linked to PLT functions, such as clot formation and immune responses, the translational capacity of reconstituted cryo-PLTs was assessed upon thawing and short-term storage. METHODS/MATERIALS Platelets were frozen at -80°C with 5-6% DMSO. Upon thawing, they were reconstituted in plasma and then aliquoted (12 ml) into mini-bags and assessed over 24 h of storage at RT. One series served as control; the second and third series were spiked with either 300 μM puromycin (Pm) or 227 nM biotin-labeled Pm. Samples were tested for in vitro quality and PLT microvesicle enumeration by flow cytometry. Protein synthesis in cryo-PLTs was assessed using a modified method based on puromycin-associated nascent chain proteomics. RESULTS In vitro parameters of reconstituted and subsequently stored platelets were consistent with previously published results. Mass-spectrometry analyses identified that 22 proteins were synthesized in PLTs and 13 of those were observed in platelet microvesicles (PMVs). CONCLUSION Cryo-PLTs can synthesize proteins upon reconstitution and storage. Discovery of a subset of these proteins in the PMV suggests a role in vesicle encapsulation, possibly in a selective manner. This observation provides novel insights into the capacity for protein synthesis in cryo-PLTs and the potential regulation of protein packaging into PMV.
Collapse
Affiliation(s)
- Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Brankica Culibrk
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, Vancouver, British Columbia, Canada
| | - Zhongming Chen
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, Vancouver, British Columbia, Canada
| | - Shereen Tan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Dana V Devine
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Lopez‐Ramirez MA, McCurdy S, Li W, Haynes MK, Hale P, Francisco K, Oukoloff K, Bautista M, Choi CH, Sun H, Gongol B, Shyy JY, Ballatore C, Sklar LA, Gingras AR. Inhibition of the HEG1-KRIT1 interaction increases KLF4 and KLF2 expression in endothelial cells. FASEB Bioadv 2021; 3:334-355. [PMID: 33977234 PMCID: PMC8103725 DOI: 10.1096/fba.2020-00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 11/11/2022] Open
Abstract
The transmembrane protein heart of glass1 (HEG1) directly binds to and recruits Krev interaction trapped protein 1 (KRIT1) to endothelial junctions to form the HEG1-KRIT1 protein complex that establishes and maintains junctional integrity. Genetic inactivation or knockdown of endothelial HEG1 or KRIT1 leads to the upregulation of transcription factors Krüppel-like factors 4 and 2 (KLF4 and KLF2), which are implicated in endothelial vascular homeostasis; however, the effect of acute inhibition of the HEG1-KRIT1 interaction remains incompletely understood. Here, we report a high-throughput screening assay and molecular design of a small-molecule HEG1-KRIT1 inhibitor to uncover acute changes in signaling pathways downstream of the HEG1-KRIT1 protein complex disruption. The small-molecule HEG1-KRIT1 inhibitor 2 (HKi2) was demonstrated to be a bona fide inhibitor of the interaction between HEG1 and KRIT1 proteins, by competing orthosterically with HEG1 through covalent reversible interactions with the FERM (4.1, ezrin, radixin, and moesin) domain of KRIT1. The crystal structure of HKi2 bound to KRIT1 FERM revealed that it occupies the same binding pocket on KRIT1 as the HEG1 cytoplasmic tail. In human endothelial cells (ECs), acute inhibition of the HEG1-KRIT1 interaction by HKi2 increased KLF4 and KLF2 mRNA and protein levels, whereas a structurally similar inactive compound failed to do so. In zebrafish, HKi2 induced expression of klf2a in arterial and venous endothelium. Furthermore, genome-wide RNA transcriptome analysis of HKi2-treated ECs under static conditions revealed that, in addition to elevating KLF4 and KLF2 expression, inhibition of the HEG1-KRIT1 interaction mimics many of the transcriptional effects of laminar blood flow. Furthermore, HKi2-treated ECs also triggered Akt signaling in a phosphoinositide 3-kinase (PI3K)-dependent manner, as blocking PI3K activity blunted the Akt phosphorylation induced by HKi2. Finally, using an in vitro colocalization assay, we show that HKi6, an improved derivative of HKi2 with higher affinity for KRIT1, significantly impedes recruitment of KRIT1 to mitochondria-localized HEG1 in CHO cells, indicating a direct inhibition of the HEG1-KRIT1 interaction. Thus, our results demonstrate that early events of the acute inhibition of HEG1-KRIT1 interaction with HKi small-molecule inhibitors lead to: (i) elevated KLF4 and KLF2 gene expression; and (ii) increased Akt phosphorylation. Thus, HKi's provide new pharmacologic tools to study acute inhibition of the HEG1-KRIT1 protein complex and may provide insights to dissect early signaling events that regulate vascular homeostasis.
Collapse
Affiliation(s)
- Miguel Alejandro Lopez‐Ramirez
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
| | - Sara McCurdy
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Wenqing Li
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Mark K. Haynes
- Department of PathologyCenter for Molecular DiscoveryUniversity of New Mexico School of MedicineAlbuquerqueNMUSA
| | - Preston Hale
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Karol Francisco
- Department of Chemistry & BiochemistryUniversity of California San DiegoLa JollaCAUSA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Matthew Bautista
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Chelsea H.J. Choi
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Hao Sun
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Brendan Gongol
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - John Y. Shyy
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Larry A. Sklar
- Department of PathologyCenter for Molecular DiscoveryUniversity of New Mexico School of MedicineAlbuquerqueNMUSA
| | | |
Collapse
|
20
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
21
|
Yu H, Liu Y, He B, He T, Chen C, He J, Yang X, Wang J. Platelet biomarkers for a descending cognitive function: A proteomic approach. Aging Cell 2021; 20:e13358. [PMID: 33942972 PMCID: PMC8135080 DOI: 10.1111/acel.13358] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Memory loss is the most common clinical sign in Alzheimer's disease (AD); thus, searching for peripheral biomarkers to predict cognitive decline is promising for early diagnosis of AD. As platelets share similarities to neuron biology, it may serve as a peripheral matrix for biomarkers of neurological disorders. Here, we conducted a comprehensive and in-depth platelet proteomic analysis using TMT-LC-MS/MS in the populations with mild cognitive impairment (MCI, MMSE = 18-23), severe cognitive impairments (AD, MMSE = 2-17), and the age-/sex-matched normal cognition controls (MMSE = 29-30). A total of 360 differential proteins were detected in MCI and AD patients compared with the controls. These differential proteins were involved in multiple KEGG pathways, including AD, AMP-activated protein kinase (AMPK) pathway, telomerase RNA localization, platelet activation, and complement activation. By correlation analysis with MMSE score, three positively correlated pathways and two negatively correlated pathways were identified to be closely related to cognitive decline in MCI and AD patients. Partial least squares discriminant analysis (PLS-DA) showed that changes of nine proteins, including PHB, UQCRH, CD63, GP1BA, FINC, RAP1A, ITPR1/2, and ADAM10 could effectively distinguish the cognitively impaired patients from the controls. Further machine learning analysis revealed that a combination of four decreased platelet proteins, that is, PHB, UQCRH, GP1BA, and FINC, was most promising for predicting cognitive decline in MCI and AD patients. Taken together, our data provide a set of platelet biomarkers for predicting cognitive decline which may be applied for the early screening of AD.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Yanchao Liu
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Benrong He
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ting He
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Chongyang Chen
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jiahua He
- School of Physics Huazhong University of Science and Technology Wuhan Hubei China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jian‐Zhi Wang
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
22
|
Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106:337-350. [PMID: 33147934 PMCID: PMC7849565 DOI: 10.3324/haematol.2020.248153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcRγ associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances highlight the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
Collapse
Affiliation(s)
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Remi Favier
- French National Reference Center for Inherited Platelet Disorders, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris
| | | |
Collapse
|
23
|
Lagarrigue F, Paul DS, Gingras AR, Valadez AJ, Sun H, Lin J, Cuevas MN, Ablack JN, Lopez-Ramirez MA, Bergmeier W, Ginsberg MH. Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood 2020; 136:1180-1190. [PMID: 32518959 PMCID: PMC7472713 DOI: 10.1182/blood.2020005348] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling pathways that result in talin-1 binding to the integrin β cytoplasmic domain and consequent integrin activation, platelet aggregation, and effective hemostasis. The nature of the connection between Rap1 and talin-1 in integrin activation is an important remaining gap in our understanding of this process. Previous work identified a low-affinity Rap1-binding site in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a greater contribution than F0 in model systems. Here we generated mice bearing point mutations, which block Rap1 binding without affecting talin-1 expression, in either the talin-1 F1 domain (R118E) alone, which were viable, or in both the F0 and F1 domains (R35E,R118E), which were embryonic lethal. Loss of the Rap1-talin-1 F1 interaction in platelets markedly decreases talin-1-mediated activation of platelet β1- and β3-integrins. Integrin activation and platelet aggregation in mice whose platelets express only talin-1(R35E, R118E) are even more impaired, resembling the defect seen in platelets lacking both Rap1a and Rap1b. Although Rap1 is important in thrombopoiesis, platelet secretion, and surface exposure of phosphatidylserine, loss of the Rap1-talin-1 interaction in talin-1(R35E, R118E) platelets had little effect on these processes. These findings show that talin-1 is the principal direct effector of Rap1 GTPases that regulates platelet integrin activation in hemostasis.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France
| | - David S Paul
- UNC Blood Research Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | | | - Andrew J Valadez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jenny Lin
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Monica N Cuevas
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jailal N Ablack
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Wolfgang Bergmeier
- UNC Blood Research Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
24
|
Criscitiello MF, Kraev I, Lange S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int J Mol Sci 2020; 21:E2861. [PMID: 32325910 PMCID: PMC7215346 DOI: 10.3390/ijms21082861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
25
|
Gutiérrez-Herrero S, Fernández-Infante C, Hernández-Cano L, Ortiz-Rivero S, Guijas C, Martín-Granado V, González-Porras JR, Balsinde J, Porras A, Guerrero C. C3G contributes to platelet activation and aggregation by regulating major signaling pathways. Signal Transduct Target Ther 2020; 5:29. [PMID: 32296045 PMCID: PMC7109025 DOI: 10.1038/s41392-020-0119-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/25/2023] Open
Abstract
C3G is a GEF (guanine nucleotide exchange factor) for Rap GTPases, among which the isoform Rap1b is an essential protein in platelet biology. Using transgenic mouse models with platelet-specific overexpression of C3G or mutant C3GΔCat, we have unveiled a new function of C3G in regulating the hemostatic function of platelets through its participation in the thrombin-PKC-Rap1b pathway. C3G also plays important roles in angiogenesis, tumor growth, and metastasis through its regulation of the platelet secretome. In addition, C3G contributes to megakaryopoiesis and thrombopoiesis. Here, we used a platelet-specific C3G-KO mouse model to further support the role of C3G in hemostasis. C3G-KO platelets showed a significant delay in platelet activation and aggregation as a consequence of the defective activation of Rap1, which resulted in decreased thrombus formation in vivo. Additionally, we explored the contribution of C3G-Rap1b to platelet signaling pathways triggered by thrombin, PMA or ADP, in the referenced transgenic mouse model, through the use of a battery of specific inhibitors. We found that platelet C3G is phosphorylated at Tyr504 by a mechanism involving PKC-Src. This phosphorylation was shown to be positively regulated by ERKs through their inhibition of the tyrosine phosphatase Shp2. Moreover, C3G participates in the ADP-P2Y12-PI3K-Rap1b pathway and is a mediator of thrombin-TXA2 activities. However, it inhibits the synthesis of TXA2 through cPLA2 regulation. Taken together, our data reveal the critical role of C3G in the main pathways leading to platelet activation and aggregation through the regulation of Rap1b.
Collapse
Affiliation(s)
- Sara Gutiérrez-Herrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sara Ortiz-Rivero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Víctor Martín-Granado
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Hematología, Hospital Universitario de Salamanca (HUS), Salamanca, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Complutense University of Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
26
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
27
|
Palma-Barqueros V, Ruiz-Pividal J, Bohdan N, Vicente V, Bastida JM, Lozano M, Rivera J. RASGRP2 gene variations associated with platelet dysfunction and bleeding. Platelets 2019; 30:535-539. [PMID: 30849270 DOI: 10.1080/09537104.2019.1585528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This manuscript reviews pathogenic variants in RASGRP2, which are the cause of a relatively new autosomal recessive and nonsyndromic inherited platelet function disorder, referred to as platelet-type bleeding disorder-18 (BDPLT18)(OMIM:615888). To date, 18 unrelated BDPLT18 pedigrees have been reported, harboring 19 different homozygous or compound heterozygous RASGRP2 variants. Patients with this disease present with lifelong moderate to severe bleeding, with epistaxis as the most common and relevant bleeding symptom. Biologically, they exhibit normal platelet count and morphology, reduced aggregation responses to ADP, epinephrine and low-dose collagen, and impaired αIIbβ3 integrin activation (fibrinogen or PAC-1 binding) in response to most agonists except PMA. Diagnosis is confirmed by genetic analysis of RASGRP2.
Collapse
Affiliation(s)
- Verónica Palma-Barqueros
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia , Murcia , Spain
| | - Juan Ruiz-Pividal
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia , Murcia , Spain
| | - Natalia Bohdan
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia , Murcia , Spain
| | - Vicente Vicente
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia , Murcia , Spain
| | - Jose Maria Bastida
- b Department of Hematology , IBSAL-Hospital Universitario de Salamanca , Salamanca , Spain
| | - María Lozano
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia , Murcia , Spain.,c On behalf of the "Inherited Platelet Disorders Project", Hemorrhagic Diathesis Working Group SETH
| | - José Rivera
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia , Murcia , Spain.,c On behalf of the "Inherited Platelet Disorders Project", Hemorrhagic Diathesis Working Group SETH
| |
Collapse
|
28
|
Abstract
Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.
Collapse
Affiliation(s)
- Tony G Walsh
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Yong Li
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Andreas Wersäll
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Alastair W Poole
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| |
Collapse
|