1
|
Föhrkolb C, Vogel K, Lochnit G, Presek P. Identification of apolipoprotein A-I as a target of platelet tyrosine kinases. Platelets 2024; 35:2290921. [PMID: 39686563 DOI: 10.1080/09537104.2023.2290921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2024]
Affiliation(s)
- Christine Föhrkolb
- Institute of Pharmacology and Toxicology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Katrin Vogel
- Institute of Pharmacology and Toxicology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-Universität Gießen, Institute of Biochemistry, Gießen, Germany
| | - Peter Presek
- Institute of Pharmacology and Toxicology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Li Q, Zhang C, Ren Y, Qiao L, Xu S, Li K, Liu Y. A novel platelets-related gene signature for predicting prognosis, immune features and drug sensitivity in gastric cancer. Front Immunol 2024; 15:1477427. [PMID: 39606245 PMCID: PMC11599260 DOI: 10.3389/fimmu.2024.1477427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Platelets can dynamically regulate tumor development and progression. Nevertheless, research on the predictive value and specific roles of platelets in gastric cancer (GC) is limited. This research aims to establish a predictive platelets-related gene signature in GC with prognostic and therapeutic implications. Methods We downloaded the transcriptome data and clinical materials of GC patients (n=378) from The Cancer Genome Atlas (TCGA) database. Prognostic platelets-related genes screened by univariate Cox regression were included in Least Absolute Shrinkage and Selection Operator (LASSO) analysis to construct a risk model. Kaplan-Meier curves and receiver operating characteristic curves (ROCs) were performed in the TCGA cohort and three independent validation cohorts. A nomogram integrating the risk score and clinicopathological features was constructed. Functional enrichment and tumor microenvironment (TME) analyses were performed. Drug sensitivity prediction was conducted through The Cancer Therapeutics Response Portal (CTRP) database. Finally, the expression of ten signature genes was validated by quantitative real-time PCR (qRT-PCR). Results A ten-gene (SERPINE1, ANXA5, DGKQ, PTPN6, F5, DGKB, PCDH7, GNG11, APOA1, and TF) predictive risk model was finally constructed. Patients were categorized as high- or low-risk using median risk score as the threshold. The area under the ROC curve (AUC) values for the 1-, 2-, and 3-year overall survival (OS) in the training cohort were 0.670, 0.695, and 0.707, respectively. Survival analysis showed a better OS in low-risk patients in the training and validation cohorts. The AUCs of the nomogram for predicting 1-, 2-, and 3-year OS were 0.708, 0.763, and 0.742, respectively. TME analyses revealed a higher M2 macrophage infiltration and an immunosuppressive TME in the high-risk group. Furthermore, High-risk patients tended to be more sensitive to thalidomide, MK-0752, and BRD-K17060750. Conclusion The novel platelets-related genes signature we identified could be used for prognosis and treatment prediction in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Chen F, Peng D, Xia Y, Sun H, Shen H, Xia M. Identification of oxylipins and lipid mediators in pulmonary embolism. Lipids Health Dis 2024; 23:330. [PMID: 39385249 PMCID: PMC11462670 DOI: 10.1186/s12944-024-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND This study aimed to investigate the role of oxylipins and lipid mediators in Pulmonary Embolism (PE), a serious cardiovascular condition associated with high morbidity and mortality rates. METHODS A total of 6,365 hospitalized patients with thrombosis and 200 healthy individuals were recruited as the control group from 2015 to 2023. Thrombus type, coagulation, and lipid-related parameters were statistically analysed. Additionally, lipidomic characteristics of serum samples from the PE and control groups were examined via LC-MS/MS for the first time. RESULTS Among the 6,365 hospitalized patients with thrombosis, 72.1% (4,587/6,365) had venous thromboembolism (VTE). Within the VTE group, the incidence of PE was 12.1% (555/4,587). In comparison to the healthy control (HC) group, the PE group exhibited significant elevations in coagulation-related parameters, such as factor VIII (F VIII) and von Willebrand factor (vWF) activities, while antithrombin III (AT III) and factor XII (F XII) activities were notably reduced. Lipid-related parameters, including serum cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A (apoA), were significant reductions in PE patients (P < 0.0001), with areas under the curve (AUCs) exceeding 0.9. LC-MS/MS analysis of serum samples revealed 118 oxidized lipid metabolites. Compared to the HC group, the PE group exhibited 10 upregulated oxidized lipid metabolites, with the most significant difference observed in 20-hydroxyPGF2α derived from arachidonic acid (ARA). The study identified upregulated oxidized lipid metabolites primarily linked to the ARA metabolism signalling pathway. CONCLUSION This research indicates a notable correlation between lipid metabolism and the occurrence and development of PE. Specifically, upregulation of the arachidonic acid metabolism signalling pathway may be an important pathogenic factor for PE, and 20-hydroxyPGF2α derived from ARA has potential as a biomarker for PE disease.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Daibao Peng
- Department of Clinical Laboratory Medicine, Affiliated Hospital of Medical School, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Yanyan Xia
- Department of Clinical Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Haixuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Han Shen
- Department of Clinical Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| | - Mao Xia
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
4
|
Zhang Z, Zhong W, Zhang X, Ma X, Lu X, Zhang M, Tao A, Zhang B, Lou M. Efficacy and safety of Ginkgolide with intravenous alteplase thrombolysis in acute ischemic stroke with large vessel occlusion: a subgroup analysis of GIANT. Front Pharmacol 2024; 15:1452174. [PMID: 39281272 PMCID: PMC11392837 DOI: 10.3389/fphar.2024.1452174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Aim This study aims to explore the effectiveness and safety of Ginkgolide® in acute ischemic stroke (AIS) patients with large vessel occlusion (LVO) and moderate-to-severe stroke receiving intravenous alteplase thrombolysis (IVT). Methods Ginkgolide with Intravenous Alteplase Thrombolysis in Acute Ischemic Stroke Improving Neurological Function (GIANT) was an open-label, prospective, multicenter, cluster-randomized clinical trial and included AIS patients in 24 centers randomized to the intervention of intravenous Ginkgolide® or control group within the first 24 h after IVT. LVO was defined as any occlusion of the internal carotid artery, M1 or M2 of the middle cerebral artery, A1 or A2 of the anterior cerebral artery, P1 of the posterior cerebral artery, and V4 of the vertebral artery or the basilar artery. Stroke severity was assessed with the National Institutes of Health Stroke Scale (minor ≤5; moderate-to-severe >5). The primary outcome was a good outcome, defined as a modified Rankin Scale (mRS) score of 0-2 at 90 days. Secondary outcomes were early neurological improvement (ENI), defined as ≥18% increase in the National Institutes of Health Stroke Scale (NIHSS) score at 7 days compared to baseline and distribution of mRS at 3 months. Results A total of 1,113 patients were included, with 268/913 (29.4%) presenting LVO and 508 (45.6%) presenting moderate-to-severe stroke. In patients with LVO, Ginkgolide® usage was independently associated with ENI (P = 0.001) but not with a good outcome (P = 0.154). In the moderate-to-severe stroke subgroup, Ginkgolide® was independently associated with both a good outcome (P = 0.009) and ENI (P = 0.028). Ginkgolide® did not increase the risk of hemorrhagic transformation (all P > 0.05). Conclusion Using Ginkgolide® within 24-h after intravenous rt-PA is effective and safe in LVO and moderate-to-severe stroke patients.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wansi Zhong
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xuting Zhang
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaodong Ma
- Department of Neurology, Haiyan People's Hospital, Jiaxing, China
| | - Xudong Lu
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Meixia Zhang
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Anyang Tao
- Department of Neurology, The First People's Hospital of Taizhou, Taizhou, China
| | - Bing Zhang
- Department of Neurology, Huzhou Central Hospital, Huzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Nygren D, Torisson G, Happonen L, Mellhammar L, Linder A, Elf J, Yan H, Welinder C, Holm K. Proteomic Characterization of Plasma in Lemierre's Syndrome. Thromb Haemost 2024; 124:432-440. [PMID: 37857346 PMCID: PMC11038868 DOI: 10.1055/a-2195-3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The underlying mechanisms of thrombosis in Lemierre's syndrome and other septic thrombophlebitis are incompletely understood. Therefore, in this case control study we aimed to generate hypotheses on its pathogenesis by studying the plasma proteome in patients with these conditions. METHODS All patients with Lemierre's syndrome in the Skåne Region, Sweden, were enrolled prospectively during 2017 to 2021 as cases. Age-matched patients with other severe infections were enrolled as controls. Patient plasma samples were analyzed using label-free data-independent acquisition liquid chromatography tandem mass spectrometry. Differentially expressed proteins in Lemierre's syndrome versus other severe infections were highlighted. Functions of differentially expressed proteins were defined based on a literature search focused on previous associations with thrombosis. RESULTS Eight patients with Lemierre's syndrome and 15 with other severe infections were compared. Here, 20/449 identified proteins were differentially expressed between the groups. Of these, 14/20 had functions previously associated with thrombosis. Twelve of 14 had a suggested prothrombotic effect in Lemierre's syndrome, whereas 2/14 had a suggested antithrombotic effect. CONCLUSION Proteins involved in several thrombogenic pathways were differentially expressed in Lemierre's syndrome compared to other severe infections. Among identified proteins, several were associated with endothelial damage, platelet activation, and degranulation, and warrant further targeted studies.
Collapse
Affiliation(s)
- David Nygren
- Division of Infection Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Lund/Malmö, Sweden
| | - Gustav Torisson
- Department of Infectious Diseases, Skåne University Hospital, Lund/Malmö, Sweden
- Department of Translational Medicine, Clinical Infection Medicine, Lund University, Malmö, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lisa Mellhammar
- Division of Infection Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Lund/Malmö, Sweden
| | - Adam Linder
- Division of Infection Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Lund/Malmö, Sweden
| | - Johan Elf
- Center of Thrombosis and Haemostasis, Skåne University Hospital, Malmö, Sweden
| | - Hong Yan
- The Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Charlotte Welinder
- The Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Karin Holm
- Division of Infection Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
6
|
Zhang Z, Rodriguez M, Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation Between Lipids and Blood Clotting. Arterioscler Thromb Vasc Biol 2024; 44:533-544. [PMID: 38235555 PMCID: PMC10922732 DOI: 10.1161/atvbaha.123.318286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.
Collapse
Affiliation(s)
- Ziyu Zhang
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Maya Rodriguez
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
7
|
He F, Laranjeira AB, Kong T, Lin S, Ashworth KJ, Liu A, Lasky NM, Fisher DA, Cox MJ, Fulbright MC, Antunes-Heck L, Yu L, Brakhane M, Gao B, Sykes SM, D’Alessandro A, Di Paola J, Oh ST. Multiomic profiling reveals metabolic alterations mediating aberrant platelet activity and inflammation in myeloproliferative neoplasms. J Clin Invest 2024; 134:e172256. [PMID: 38060311 PMCID: PMC10836808 DOI: 10.1172/jci172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
Platelets from patients with myeloproliferative neoplasms (MPNs) exhibit a hyperreactive phenotype. Here, we found elevated P-selectin exposure and platelet-leukocyte aggregates indicating activation of platelets from essential thrombocythemia (ET) patients. Single-cell RNA-seq analysis of primary samples revealed significant enrichment of transcripts related to platelet activation, mTOR, and oxidative phosphorylation in ET patient platelets. These observations were validated via proteomic profiling. Platelet metabolomics revealed distinct metabolic phenotypes consisting of elevated ATP generation accompanied by increases in the levels of multiple intermediates of the tricarboxylic acid cycle, but lower α-ketoglutarate (α-KG) in MPN patients. Inhibition of PI3K/AKT/mTOR signaling significantly reduced metabolic responses and hyperreactivity in MPN patient platelets, while α-KG supplementation markedly reduced oxygen consumption and ATP generation. Ex vivo incubation of platelets from both MPN patients and Jak2 V617F-knockin mice with α-KG supplementation significantly reduced platelet activation responses. Oral α-KG supplementation of Jak2 V617F mice decreased splenomegaly and reduced hematocrit, monocyte, and platelet counts. Finally, α-KG treatment significantly decreased proinflammatory cytokine secretion from MPN CD14+ monocytes. Our results reveal a previously unrecognized metabolic disorder in conjunction with aberrant PI3K/AKT/mTOR signaling that contributes to platelet hyperreactivity in MPN patients.
Collapse
Affiliation(s)
- Fan He
- Division of Hematology, Department of Medicine, and
| | | | - Tim Kong
- Division of Hematology, Department of Medicine, and
| | - Shuyang Lin
- Division of Hematology, Department of Medicine, and
| | - Katrina J. Ashworth
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alice Liu
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nina M. Lasky
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Lilian Antunes-Heck
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, and
| | | | - Bei Gao
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen M. Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jorge Di Paola
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, and
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Oshinowo O, Azer SS, Lin J, Lam WA. Why platelet mechanotransduction matters for hemostasis and thrombosis. J Thromb Haemost 2023; 21:2339-2353. [PMID: 37331517 PMCID: PMC10529432 DOI: 10.1016/j.jtha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Mechanotransduction is the ability of cells to "feel" or sense their mechanical microenvironment and integrate and convert these physical stimuli into adaptive biochemical cellular responses. This phenomenon is vital for the physiology of numerous nucleated cell types to affect their various cellular processes. As the main drivers of hemostasis and clot retraction, platelets also possess this ability to sense the dynamic mechanical microenvironments of circulation and convert those signals into biological responses integral to clot formation. Like other cell types, platelets leverage their "hands" or receptors/integrins to mechanotransduce important signals in responding to vascular injury to achieve hemostasis. The clinical relevance of cellular mechanics and mechanotransduction is imperative as pathologic alterations or aberrant mechanotransduction in platelets has been shown to lead to bleeding and thrombosis. As such, the aim of this review is to provide an overview of the most recent research related to platelet mechanotransduction, from platelet generation to platelet activation, within the hemodynamic environment and clot contraction at the site of vascular injury, thereby covering the entire "life cycle" of platelets. Additionally, we describe the key mechanoreceptors in platelets and discuss the new biophysical techniques that have enabled the field to understand how platelets sense and respond to their mechanical microenvironment via those receptors. Finally, the clinical significance and importance of continued exploration of platelet mechanotransduction have been discussed as the key to better understanding of both thrombotic and bleeding disorders lies in a more complete mechanistic understanding of platelet function by way of mechanotransduction.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Sally S Azer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Jessica Lin
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Wilbur A Lam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA.
| |
Collapse
|