1
|
Nejati B, Shahhosseini R, Hajiabbasi M, Ardabili NS, Baktash KB, Alivirdiloo V, Moradi S, Rad MF, Rahimi F, Farani MR, Ghazi F, Mobed A, Alipourfard I. Cancer-on-chip: a breakthrough organ-on-a-chip technology in cancer cell modeling. Med Biol Eng Comput 2024:10.1007/s11517-024-03199-5. [PMID: 39400856 DOI: 10.1007/s11517-024-03199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains one of the leading causes of death worldwide. The unclear molecular mechanisms and complex in vivo microenvironment of tumors make it difficult to clarify the nature of cancer and develop effective treatments. Therefore, the development of new methods to effectively treat cancer is urgently needed and of great importance. Organ-on-a-chip (OoC) systems could be the breakthrough technology sought by the pharmaceutical industry to address ever-increasing research and development costs. The past decade has seen significant advances in the spatial modeling of cancer therapeutics related to OoC technology, improving physiological exposition criteria. This article aims to summarize the latest achievements and research results of cancer cell treatment simulated in a 3D microenvironment using OoC technology. To this end, we will first discuss the OoC system in detail and then demonstrate the latest findings of the cancer cell treatment study by Ooc and how this technique can potentially optimize better modeling of the tumor. The prospects of OoC systems in the treatment of cancer cells and their advantages and limitations are also among the other points discussed in this study.
Collapse
Affiliation(s)
- Babak Nejati
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sadegh Moradi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azar Children Training Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhood Ghazi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
2
|
Bavinck AP, Heerde WV, Schols SEM. Point-of-Care Testing in Patients with Hereditary Disorders of Primary Hemostasis: A Narrative Review. Semin Thromb Hemost 2024. [PMID: 38950596 DOI: 10.1055/s-0044-1787976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Inherited disorders of primary hemostasis, such as von Willebrand disease and congenital platelet disorders, can cause extensive, typically mucocutaneous bleeding. Assays to diagnose and monitor these disorders, such as von Willebrand factor activity assays and light transmission aggregometry, are performed in specialized hemostasis laboratories but are commonly not available in local hospitals. Due to the complexity and relative scarcity of these conventional assays, point-of-care tests (POCT) might be an attractive alternative in patients with hereditary bleeding disorders. POCTs, such as thromboelastography, are increasingly used to assess hemostasis in patients with acquired hemostatic defects, aiding clinical decision-making in critical situations, such as during surgery or childbirth. In comparison, the use of these assays in patients with hereditary hemostasis defects remains relatively unexplored. This review aims to give an overview of point-of-care hemostasis tests in patients with hereditary disorders of primary hemostasis. A summary of the literature reporting on the performance of currently available and experimental POCTs in these disorders is given, and the potential utility of the assays in various use scenarios is discussed. Altogether, the studies included in this review reveal that several POCTs are capable of identifying and monitoring severe defects in the primary hemostasis, while a POCT that can reliably detect milder defects of primary hemostasis is currently lacking. A better understanding of the strengths and limitations of POCTs in assessing hereditary defects of primary hemostasis is needed, after which these tests may become available for clinical practice, potentially targeting a large group of patients with milder defects of primary hemostasis.
Collapse
Affiliation(s)
- Aernoud P Bavinck
- Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Waander van Heerde
- Department of Hematology, Radboud University Medical Centre, Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| | - Saskia E M Schols
- Department of Hematology, Radboud University Medical Centre, Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Asaad Y, Nemcovsky‐Amar D, Sznitman J, Mangin PH, Korin N. A double-edged sword: The complex interplay between engineered nanoparticles and platelets. Bioeng Transl Med 2024; 9:e10669. [PMID: 39036095 PMCID: PMC11256164 DOI: 10.1002/btm2.10669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 07/23/2024] Open
Abstract
Nanoparticles (NP) play a crucial role in nanomedicine, serving as carriers for localized therapeutics to allow for precise drug delivery to specific disease sites and conditions. When injected systemically, NP can directly interact with various blood cell types, most critically with circulating platelets. Hence, the potential activation/inhibition of platelets following NP exposure must be evaluated a priori due to possible debilitating outcomes. In recent years, various studies have helped resolve the physicochemical parameters that influence platelet-NP interactions, and either emphasize nanoparticles' therapeutic role such as to augment hemostasis or to inhibit thrombus formation, or conversely map their potential undesired side effects upon injection. In the present review, we discuss some of the main effects of several key NP types including polymeric, ceramic, silica, dendrimers and metallic NPs on platelets, with a focus on the physicochemical parameters that can dictate these effects and modulate the therapeutic potential of the NP. Despite the scientific and clinical significance of understanding Platelet-NP interactions, there is a significant knowledge gap in the field and a critical need for further investigation. Moreover, improved guidelines and research methodologies need to be developed and implemented. Our outlook includes the use of biomimetic in vitro models to investigate these complex interactions under both healthy physiological and disease conditions.
Collapse
Affiliation(s)
- Yathreb Asaad
- Department of Biomedical EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | | | - Josué Sznitman
- Department of Biomedical EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Pierre H. Mangin
- University of Strasbourg, INSERM, EFS Grand‐Est, BPPS UMR‐S1255, FMTSStrasbourgFrance
| | - Netanel Korin
- Department of Biomedical EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
4
|
He C, Lu F, Liu Y, Lei Y, Wang X, Tang N. Emergent trends in organ-on-a-chip applications for investigating metastasis within tumor microenvironment: A comprehensive bibliometric analysis. Heliyon 2024; 10:e23504. [PMID: 38187238 PMCID: PMC10770560 DOI: 10.1016/j.heliyon.2023.e23504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background With the burgeoning advancements in disease modeling, drug development, and precision medicine, organ-on-a-chip has risen to the forefront of biomedical research. Specifically in tumor research, this technology has exhibited exceptional potential in elucidating the dynamics of metastasis within the tumor microenvironment. Recognizing the significance of this field, our study aims to provide a comprehensive bibliometric analysis of global scientific contributions related to organ-on-a-chip. Methods Publications pertaining to organ-on-a-chip from 2014 to 2023 were retrieved at the Web of Science Core Collection database. Rigorous analyses of 2305 articles were conducted using tools including VOSviewer, CiteSpace, and R-bibliometrix. Results Over the 10-year span, global publications exhibited a consistent uptrend, anticipating continued growth. The United States and China were identified as dominant contributors, characterized by strong collaborative networks and substantial research investments. Predominant institutions encompass Harvard University, MIT, and the Chinese Academy of Sciences. Leading figures in the domain, such as Dr. Donald Ingber and Dr. Yu Shrike Zhang, emerge as pivotal collaboration prospects. Lab on a Chip, Micromachines, and Frontiers in Bioengineering and Biotechnology were the principal publishing journals. Pertinent keywords encompassed Microfluidic, Microphysiological System, Tissue Engineering, Organoid, In Vitro, Drug Screening, Hydrogel, Tumor Microenvironment, and Bioprinting. Emerging research avenues were identified as "Tumor Microenvironment and Metastasis," "Application of organ-on-a-chip in drug discovery and testing" and "Advancements in personalized medicine applications". Conclusion The organ-on-a-chip domain has demonstrated a transformative impact on understanding disease mechanisms and drug interactions, particularly within the tumor microenvironment. This bibliometric analysis underscores the ever-increasing importance of this field, guiding researchers and clinicians towards potential collaborative avenues and research directions.
Collapse
Affiliation(s)
- Chunrong He
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Fangfang Lu
- Department of Ophthalmology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yi Liu
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuanhu Lei
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiaoxu Wang
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ning Tang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Shakeri A, Wang Y, Zhao Y, Landau S, Perera K, Lee J, Radisic M. Engineering Organ-on-a-Chip Systems for Vascular Diseases. Arterioscler Thromb Vasc Biol 2023; 43:2241-2255. [PMID: 37823265 PMCID: PMC10842627 DOI: 10.1161/atvbaha.123.318233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Vascular diseases, such as atherosclerosis and thrombosis, are major causes of morbidity and mortality worldwide. Traditional in vitro models for studying vascular diseases have limitations, as they do not fully recapitulate the complexity of the in vivo microenvironment. Organ-on-a-chip systems have emerged as a promising approach for modeling vascular diseases by incorporating multiple cell types, mechanical and biochemical cues, and fluid flow in a microscale platform. This review provides an overview of recent advancements in engineering organ-on-a-chip systems for modeling vascular diseases, including the use of microfluidic channels, ECM (extracellular matrix) scaffolds, and patient-specific cells. We also discuss the limitations and future perspectives of organ-on-a-chip for modeling vascular diseases.
Collapse
Affiliation(s)
- Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Ying Wang
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Yimu Zhao
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Shira Landau
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Kevin Perera
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jonguk Lee
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
6
|
Al-Tamimi M, El-sallaq M, Altarawneh S, Qaqish A, Ayoub M. Development of Novel Paper-Based Assay for Direct Serum Separation. ACS OMEGA 2023; 8:20370-20378. [PMID: 37332822 PMCID: PMC10268636 DOI: 10.1021/acsomega.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Background: Many conventional laboratory tests require serum separation using a clot activator/gel tube, followed by centrifugation in an equipped laboratory. The aim of this study is development of novel, equipment-free, paper-based assay for direct and efficient serum separation. Methods: Fresh blood was directly applied to wax-channeled filter paper treated with clotting activator/s and then observed for serum separation. The purity, efficiency, recovery, reproducibility, and applicability of the assay were validated after optimization. Results: Serum was successfully separated using activated partial thromboplastin time (APTT) reagent and calcium chloride-treated wax-channeled filter paper within 2 min. The assay was optimized using different coagulation activators, paper types, blood collection methods, and incubation conditions. Confirmation of serum separation from cellular components was achieved by direct visualization of the yellow serum band, microscopic imaging of the pure serum band, and absence of blood cells in recovered serum samples. Successful clotting was evaluated by the absence of clotting of recovered serum by prolonged prothrombin time and APTT, absence of fibrin degradation products, and absence of Staphylococcus aureus-induced coagulation. Absence of hemolysis was confirmed by undetectable hemoglobin from recovered serum bands. The applicability of serum separated in paper was tested directly by positive color change on paper using bicinchoninic acid protein reagent, on recovered serum samples treated with Biuret and Bradford reagents in tubes, or measurement of thyroid-stimulating hormone and urea compared to standard serum samples. Serum was separated using the paper-based assay from 40 voluntary donors and from the same donor for 15 days to confirm reproducibility. Dryness of coagulants in paper prevents serum separation that can be re-stored by a re-wetting step. Conclusions: Paper-based serum separation allows for development of sample-to-answer paper-based point-of-care tests or simple and direct blood sampling for routine diagnostic tests.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mariam El-sallaq
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Shahed Altarawneh
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Arwa Qaqish
- Department
of Biology and Biotechnology, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mai Ayoub
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|