1
|
Ma F, Li Y, Zhang Y, Zhang Q, Li X, Cao Q, Ma H, Xie D, Zhang B, Yu J, Li X, Xie Q, Wan G, Guo M, Guo J, Yin J, Liu G. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res Int 2024; 185:114248. [PMID: 38658067 DOI: 10.1016/j.foodres.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.
Collapse
Affiliation(s)
- Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jia Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoling Wan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
2
|
Zheng N, Long M, Zhang Z, Du S, Huang X, Osire T, Xia X. Behavior of enzymes under high pressure in food processing: mechanisms, applications, and developments. Crit Rev Food Sci Nutr 2023; 64:9829-9843. [PMID: 37243343 DOI: 10.1080/10408398.2023.2217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinlei Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Yu Q, Zhang M, Ju R, Mujumdar AS, Wang H. Advances in prepared dish processing using efficient physical fields: A review. Crit Rev Food Sci Nutr 2022; 64:4031-4045. [PMID: 36300891 DOI: 10.1080/10408398.2022.2138260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prepared dishes are increasingly popular convenience food that can be eaten directly from hygienic packaging by heating. Physics field (PF) is food processing method built with physical processing technology, which has the characteristics of high efficiency and environmental safety. This review focuses on summarizing the application of PFs in prepared dishes, evaluating and comparing PFs through quality changes during processing and storage of prepared dishes. Currently, improving the quality and extending the shelf life of prepared dishes through thermal and non-thermal processing are the main modes of action of PFs. Most PFs show good potential in handing prepared dishes, but may also react poorly to some prepared dishes. In addition, the difficulty of precise control of processing conditions has led to research mostly at the laboratory stage, but as physical technology continues to break through, more PFs and multi-physical field will be promoted for commercial use in the future. This review contributes to a deeper understanding of the effect of PFs on prepared dishes, and provides theoretical reference and practical basis for future processing research in the development of various enhanced PFs.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|