1
|
Facheris P, Jeffery J, Del Duca E, Guttman-Yassky E. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol 2023; 20:448-474. [PMID: 36928371 DOI: 10.1038/s41423-023-00992-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease, and it is considered a complex and heterogeneous condition. Different phenotypes of AD, defined according to the patient age at onset, race, and ethnic background; disease duration; and other disease characteristics, have been recently described, underlying the need for a personalized treatment approach. Recent advancements in understanding AD pathogenesis resulted in a real translational revolution and led to the exponential expansion of the therapeutic pipeline. The study of biomarkers in clinical studies of emerging treatments is helping clarify the role of each cytokine and immune pathway in AD and will allow addressing the unique immune fingerprints of each AD subset. Personalized medicine will be the ultimate goal of this targeted translational research. In this review, we discuss the changes in the concepts of both the pathogenesis of and treatment approach to AD, highlight the scientific rationale behind each targeted treatment and report the most recent clinical efficacy data.
Collapse
Affiliation(s)
- Paola Facheris
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Humanitas Clinical and Research Center, Department of Dermatology, Rozzano, Milano, Italy
| | - Jane Jeffery
- Duke University School of Medicine, Durham, NC, USA
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
David E, Ungar B, Renert-Yuval Y, Facheris P, Del Duca E, Guttman-Yassky E. The evolving landscape of biologic therapies for atopic dermatitis: Present and future perspective. Clin Exp Allergy 2023; 53:156-172. [PMID: 36653940 DOI: 10.1111/cea.14263] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023]
Abstract
Atopic dermatitis (AD) is one of the most common, chronic inflammatory skin diseases with a significant physical, emotional and socioeconomic burden. In recent years the understanding of AD pathogenesis has expanded from the Th2-centred perspective, with the recognition of the involvement of other immune axes. In different AD endotypes, influenced by environment, genetics and race, transcriptomic profiles have identified differing contributions of multiple immune axes such as, Th17, Th22 and Th1. The enriched pathogenic model of AD has catalysed the development of numerous biologic therapies targeting a range of key molecules implicated in disease progression. Currently, dupilumab and tralokinumab, which both target the Th2 pathway, are the only approved biologic therapies for AD in the United States and Europe. New biologic therapies in development, however, target different Th2-pathway molecules along with cytokines in other immune axes, including Th17 and Th22, offering promise for varied treatments for this heterogeneous disease. As the biologic pipeline advances, the integration into clinical practice and approval of these experimental biologics may provide more effective, tailored therapeutic solutions and illuminate on the pathologic processes of AD across a broader, more diverse patient population.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Trier AM, Kim BS. Insights into atopic dermatitis pathogenesis lead to newly approved systemic therapies. Br J Dermatol 2022; 188:698-708. [PMID: 36763703 DOI: 10.1093/bjd/ljac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/04/2022] [Accepted: 10/13/2022] [Indexed: 01/09/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease characterized by scaly, oozing skin and itch. In moderate-to-severe AD, treatment options have been historically very limited and off-label use has been a common method for disease management. For decades, ciclosporin A was the only systemic immunosuppressive drug approved in most European countries to address this major unmet medical need. However, increased understanding of the pathophysiology of AD has led to a revolution in the treatment of this potentially debilitating disease. Following the approval of the first biological therapy for AD in 2017, there has been a rapid expansion of compounds under development and four additional systemic therapies have been approved in Europe and the USA within the past 3 years alone. In this review, we underscore how key breakthroughs have transformed the therapeutic landscape of AD, leading to a major expansion of type 2 immunity-targeted biological therapies, exploration of neuroimmune modulatory agents, and interest in Janus kinase inhibition.
Collapse
Affiliation(s)
- Anna M Trier
- Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Fölster-Holst R, Torrelo A, Das K, Murrell DF, Patil A, Rahmat Pour Rokni G, Grabbe S, Staubach P, Sohn A, Goldust M. Biological medication in atopic dermatitis. Expert Opin Biol Ther 2022; 22:643-649. [PMID: 34991429 DOI: 10.1080/14712598.2022.2026920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disorder associated with intense itch/pruritus and skin lesions. Several modalities of treatment including topical therapy, systemic agents, and biologics are available for the treatment of disease. Despite this, management poses challenge due to chronic nature and recurrent episodes in many patients. Biologics represent an important option of treatment for patients who do not respond to the traditional treatment. AREAS COVERED In this article, we focused on efficacy and safety of biologics in the treatment of atopic dermatitis. Other therapies are out of the scope of this review. Articles from PubMed and Google scholar and cross references of retrieved articles were used to write the narrative review. EXPERT OPINION Biologics play an important role in the treatment of atopic dermatitis. Every biologic has its own place in the treatment considering pharmacological profile, efficacy, and safety. Several biologics have been studied in the treatment of moderate-to-severe cases who failed to provide adequate response to traditional treatment. Dupilumab, is approved for the treatment of moderate-to-severe atopic dermatitis. Tralokinumab and nemolizumab have shown promising results in patients with atopic dermatitis.
Collapse
Affiliation(s)
- Regina Fölster-Holst
- Department of Dermatology, University Hospital Schleswig-Holstein, Dermatology, Campus Kiel, Kiel, Germany
| | - Antonio Torrelo
- Department of Dermatology, University Children's Hospital Niño Jesús, Madrid, Spain
| | - Kinnor Das
- Department of Dermatology Venereology and Leprosy, Silchar Medical College, Silchar, India
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Anant Patil
- Department of Pharmacology, Dr. Dy Patil Medical College, Navi Mumbai, India
| | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Petra Staubach
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Sohn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Ayasse MT, Ahmed A, Espinosa ML, Walker CJ, Yousaf M, Thyssen JP, Silverberg JI. What are the highest yielding search strategy terms for systematic reviews in atopic dermatitis? A systematic review. Arch Dermatol Res 2021; 313:737-750. [PMID: 33221950 DOI: 10.1007/s00403-020-02165-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022]
Abstract
The impact of search strategies on systematic reviews (SR) of atopic dermatitis (AD) is unknown. The purpose of this review was to evaluate search strategies used in SR of AD and their impact on the frequency of manuscripts identified. MEDLINE and EMBASE were searched for SR related to AD. Simulations were performed by running combinations of search terms in MEDLINE and EMBASE. Overall, 250 SR met inclusion criteria, of which 225 specified search strategies. SR using 5-6 terms (20.0% to 12.1%) or ≥ 7 (40.0% to 18.8%) terms decreased, whereas SR using 3-4 terms numerically increased (18.8% to 30.2%) and 1-2 terms remained similar (37.5% to 38.9%) from 1999-2009 to 2015-2019. The most commonly searched terms were "atopic dermatitis" (n = 166), followed by "eczema" (n = 156), "dermatitis atopic'" (n = 81), "atopic eczema" (n = 74), "neurodermatitis" (n = 59), "Besniers prurigo" (n = 29), "infantile eczema" (n = 27), and "childhood eczema" (n = 19). Simulations revealed that "eczema" and "atopic dermatitis" yielded the most hits. The number of search terms that maximized hits in MEDLINE and EMBASE was 5 and 4, respectively. Search strategies for AD were heterogeneous, with high proportions of search strategies providing few search hits. Future studies should use standardized and optimized search terms.
Collapse
Affiliation(s)
- Marissa T Ayasse
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Avenue NW, Suite 2B-425, Washington, DC, 20037, USA
| | - Adnan Ahmed
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maria L Espinosa
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christina J Walker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Muhammad Yousaf
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonathan I Silverberg
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Avenue NW, Suite 2B-425, Washington, DC, 20037, USA.
| |
Collapse
|
6
|
Zwicky P, Ingelfinger F, Silva de Melo BM, Ruchti F, Schärli S, Puertas N, Lutz M, Phan TS, Kündig TM, Levesque MP, Maul JT, Schlapbach C, LeibundGut-Landmann S, Mundt S, Becher B. IL-12 regulates type 3 immunity through interfollicular keratinocytes in psoriasiform inflammation. Sci Immunol 2021; 6:eabg9012. [PMID: 34678045 DOI: 10.1126/sciimmunol.abg9012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Bruno Marcel Silva de Melo
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.,Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto Sao Paulo, Brazil
| | - Fiorella Ruchti
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.,Section of Immunology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Stefanie Schärli
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicole Puertas
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Truong San Phan
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Salomé LeibundGut-Landmann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.,Section of Immunology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Allergic skin diseases such as urticaria, atopic dermatitis and allergic contact dermatitis are among the most common skin diseases with severe socioeconomic consequences. The pathogenesis of allergic skin diseases is complex. This review provides an overview of cytocines IL-17, IL-23, IL-31 and IL-33. RECENT FINDINGS Current research results show a variety of immunological processes in the pathogenesis of the allergic skin diseases, including the role of cytokines. In addition to the Th1 and Th2 immune response, the immune response via Th17 is becoming increasingly important in allergic skin diseases but also the cytokines IL-23, IL-31 and IL-33 have been discussed in the literature recently. Different cytokines promote in a kind of orchestra the different symptoms seen in the different allergic skin diseases, including pruritus, dermatitis, mast cell mediator release and inflammation. SUMMARY We are still in the early stages of understanding pathophysiology of allergic skin diseases and the role of various cytokines in the immune system. With the development of targeted antibodies against the proinflammatory cytokines, the variety of normal therapeutic options can be expected to evolve.
Collapse
|
8
|
Schneeweiss MC, Perez-Chada L, Merola JF. Comparative safety of systemic immunomodulatory medications in adults with atopic dermatitis. J Am Acad Dermatol 2021; 85:321-329. [DOI: 10.1016/j.jaad.2019.05.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
|
9
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:cells10061392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
- Correspondence:
| |
Collapse
|
10
|
De Bruyn Carlier T, Badloe FMS, Ring J, Gutermuth J, Kortekaas Krohn I. Autoreactive T cells and their role in atopic dermatitis. J Autoimmun 2021; 120:102634. [PMID: 33892348 DOI: 10.1016/j.jaut.2021.102634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is an itchy, non-contagious relapsing and chronic inflammatory skin disease that usually develops in early childhood. This pathology is associated with food allergy, allergic asthma, allergic rhinitis and anaphylaxis which may persist in adulthood. The underlying mechanisms of AD (endotypes) are just beginning to be discovered and show a complex interaction of various pathways including skin barrier function and immune deviation. Immune reactions to self-proteins (autoantigens) of the skin have been identified in patients with inflammatory skin diseases, such as chronic spontaneous urticaria, connective tissue disease, pemphigus vulgaris and bullous pemphigoid. IgE antibodies and T cells directed against epitopes of the skin were observed in adult patients with severe and chronic AD as well. This was associated with disease severity and suggests a progression from allergic inflammation to severe autoimmune processes against the skin. IgE-mediated autoimmunity and self-reactive T cells might accelerate the ongoing skin inflammation or might contribute to the relapsing course of the disease. However, to date, the exact mechanisms of IgE-mediated autoimmunity and self-reactive T cells in the pathophysiology of AD are still unclear. The aim of this review is to evaluate the development of (autoreactive) T cells and their response to (auto)antigens, as well as the role of the peripheral tolerance in autoimmunity in the pathophysiology of AD, including the unmet needs and gaps.
Collapse
Affiliation(s)
- Tina De Bruyn Carlier
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Fariza Mishaal Saiema Badloe
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Johannes Ring
- Department of Dermatology and Allergology Biederstein, Technical University Munich, München, Germany.
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| |
Collapse
|
11
|
Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, Qiao J, Fang H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front Immunol 2020; 11:594735. [PMID: 33281823 PMCID: PMC7705238 DOI: 10.3389/fimmu.2020.594735] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-17 (IL-17) is an essential proinflammatory cytokine, which is mainly secreted by the CD4+ helper T cells (Th17 cells) and subsets of innate lymphoid cells. IL-17A is associated with the pathogenesis of inflammatory diseases, including psoriasis, atopic dermatitis, hidradenitis suppurativa, alopecia areata, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Interleukin-23 (IL-23) plays a pivotal role in stimulating the production of IL-17 by activating the Th17 cells. The IL-23/IL-17 axis is an important pathway for targeted therapy for inflammatory diseases. Emerging evidence from clinical trials has shown that monoclonal antibodies against IL-23, IL-17, and tumor necrosis factor are effective in the treatment of patients with psoriasis, atopic dermatitis, hidradenitis suppurativa, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Here, we summarize the latest knowledge about the biology, signaling, and pathophysiological functions of the IL-23/IL-17 axis in inflammatory skin diseases. The currently available biologics targeting the axis is also discussed.
Collapse
Affiliation(s)
- Taoming Liu
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuni Ying
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunli Tang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Ding
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yali Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Olabi B, Worboys S, Garland T, Grindlay DJC, Rogers NK, Harman KE. What’s new in atopic eczema? An analysis of systematic reviews published in 2018. Part 2: systemic therapies. Clin Exp Dermatol 2020; 45:980-985. [DOI: 10.1111/ced.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Affiliation(s)
- B. Olabi
- Department of Dermatology Lauriston Building, Lauriston Place Edinburgh UK
| | - S. Worboys
- James Wigg Practice 2 Bartholomew Road London UK
| | - T. Garland
- Department of Dermatology Alexandra Wing, Broadgreen Hospital Liverpool UK
| | - D. J. C. Grindlay
- Centre of Evidence Based Dermatology University of Nottingham King’s Meadow Campus Nottingham UK
| | - N. K. Rogers
- Centre of Evidence Based Dermatology University of Nottingham King’s Meadow Campus Nottingham UK
| | - K. E. Harman
- Centre of Evidence Based Dermatology University of Nottingham King’s Meadow Campus Nottingham UK
| |
Collapse
|
13
|
Litman T. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. APMIS 2019; 127:386-424. [PMID: 31124204 PMCID: PMC6851586 DOI: 10.1111/apm.12934] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
The current state, tools, and applications of personalized medicine with special emphasis on inflammatory skin diseases like psoriasis and atopic dermatitis are discussed. Inflammatory pathways are outlined as well as potential targets for monoclonal antibodies and small-molecule inhibitors.
Collapse
Affiliation(s)
- Thomas Litman
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Explorative Biology, Skin ResearchLEO Pharma A/SBallerupDenmark
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The precision medicine concept is both appealing and challenging. We review here the recent findings in the endotype-driven approach for major allergic diseases. RECENT FINDINGS Stratified medicine for different allergic diseases can identify patients who are more likely to benefit or experience an adverse reaction in response to a given therapy and anticipate their long-term outcome and vital risk. In addition, this approach potentially facilitates drug development and prevention strategies. SUMMARY The endotype-driven approach in allergic diseases has tremendous potential, but there are notable barriers in reaching the new world of precision medicine. Multidimensional endotyping integrating visible properties with multiple biomarkers is recommended for both type 2 and nontype 2 allergic diseases to provide evidence that a certain pathway is the key driver for a given patient. Significant healthcare system changes are required to achieve the expected targets.
Collapse
|
15
|
Johnson BB, Franco AI, Beck LA, Prezzano JC. Treatment-resistant atopic dermatitis: challenges and solutions. Clin Cosmet Investig Dermatol 2019; 12:181-192. [PMID: 30962700 PMCID: PMC6432884 DOI: 10.2147/ccid.s163814] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic, relapsing-remitting inflammatory disease that can be challenging to treat. Patients with mild disease are usually managed well with good skin care practices including moisturization and appropriate bathing along with intermittent use of topical therapies such as topical corticosteroids and/or topical calcineurin inhibitors during flares. Patients with frequent flares may benefit from proactive application of topical therapies twice a week to the most troublesome areas. Patients with severe disease often present significant treatment challenges. Systemic therapies are usually required for severe AD but have varying degrees of success and can be associated with side-effect profiles that require counseling and close monitoring. Phototherapy has been shown to have success in treating moderate-to-severe AD, but several factors can limit its utility and efficacy including cost and access. New therapies are in development targeting specific pathways relevant for AD. Dupilumab was the first biologic treatment approved in North America, Europe, and Japan for adults with moderate-to-severe AD. Although this treatment can lead to rapid improvement in the majority of patients, there are inadequate responders. In this review, we discuss the clinical challenges and treatment options for moderate-to-severe refractory AD.
Collapse
Affiliation(s)
- Brian B Johnson
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA,
| | - Abigail I Franco
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA,
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA,
| | - James C Prezzano
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA,
| |
Collapse
|