1
|
Barcellos-Hoff MH. The radiobiology of TGFβ. Semin Cancer Biol 2022; 86:857-867. [PMID: 35122974 DOI: 10.1016/j.semcancer.2022.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor β (TGFβ). TGFβ is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFβ unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFβ responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFβ activation, how TGFβ regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFβ exploit fundamental radiobiology that may be the missing link to deploying TGFβ inhibitors for optimal patient benefit from cancer treatment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Romesser PB, Smith JJ. Inhibiting TGF-β to increase response rates to chemoradiotherapy in rectal cancer. Lancet Oncol 2022; 23:1116-1118. [PMID: 36055299 DOI: 10.1016/s1470-2045(22)00504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Paul B Romesser
- Colorectal Anal Cancer Service, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J Joshua Smith
- Colorectal Cancer Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
3
|
Radiosensitizing effect of galunisertib, a TGF-ß receptor I inhibitor, on head and neck squamous cell carcinoma in vitro. Invest New Drugs 2022; 40:478-486. [PMID: 34985593 PMCID: PMC9098568 DOI: 10.1007/s10637-021-01207-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Background. Resistance to radiation therapy poses a major clinical problem for patients suffering from head and neck squamous cell carcinoma (HNSCC). Transforming growth factor ß (TGF-ß) has emerged as a potential target. This study aimed to investigate the radiosensitizing effect of galunisertib, a small molecule TGF-ß receptor kinase I inhibitor, on HNSCC cells in vitro. Methods. Three HNSCC cell lines were treated with galunisertib alone, or in combination with radiation. Of those three cell lines, one has a known inactivating mutation of the TGF-ß pathway (Cal27), one has a TGF-ß pathway deficiency (FaDu) and one has no known alteration (SCC-25). The effect on metabolic activity was evaluated by a resazurin-based reduction assay. Cell migration was evaluated by wound-healing assay, clonogenic survival by colony formation assay and cell cycle by FACS analysis. Results. Galunisertib reduced metabolic activity in FaDu, increased in SCC-25 and had no effect on CAL27. Migration was significantly reduced by galunisertib in all three cell lines and showed additive effects in combination with radiation in CAL27 and SCC-25. Colony-forming capabilities were reduced in SCC-25 by galunisertib and also showed an additive effect with adjuvant radiation treatment. Cell cycle analysis showed a reduction of cells in G1 phase in response to galunisertib treatment. Conclusion. Our results indicate a potential antineoplastic effect of galunisertib in HNSCC with intact TGF-ß signaling in combination with radiation.
Collapse
|
4
|
Girimaji N, Nada R, Sharma A, Bharati J, Rathi M. Complete Remission of Lupus Nephritis Following Chemoradiotherapy of Carcinoma Cervix: An Association. Indian J Nephrol 2021; 31:402-405. [PMID: 34584360 PMCID: PMC8443106 DOI: 10.4103/ijn.ijn_267_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is associated with a higher incidence of solid organ malignancies, including cervical carcinoma, creating a paradox in their management in the context of autoimmunity. We present a case of 45-year-old female presented with mucocutaneous, musculoskeletal symptoms of SLE. Renal biopsy showed class IV lupus nephritis (LN); modified NIH activity score: 8/24, chronicity score: 6/12. Post NIH regimen induction, she achieved partial remission; further developed proteinuric relapse which was re-induced with mycophenolate mofetil (MMF) to which she failed to respond. Subsequently diagnosed with carcinoma cervix stage IIB, she received four cycles of concurrent cisplatin-based chemoradiotherapy. MMF was stopped; low dose steroids continued. Following this, the patient achieved complete remission (CR) of LN and is in remission for 5 years. This is an unexpected association between chemoradiotherapy of cervical carcinoma and CR of class IV LN, allowing long-term discontinuation of immunosuppression.
Collapse
Affiliation(s)
- Niveditha Girimaji
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Shimura T. The role of mitochondrial oxidative stress and the tumor microenvironment in radiation-related cancer. JOURNAL OF RADIATION RESEARCH 2021; 62:i36-i43. [PMID: 33978176 PMCID: PMC8114220 DOI: 10.1093/jrr/rraa090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 06/23/2020] [Indexed: 05/15/2023]
Abstract
The health risks associated with low-dose radiation, which are a major concern after the Fukushima Daiichi nuclear power plant accident (the Fukushima accident), have been extensively investigated, and the cancer risks from low-dose radiation exposure (below ~ 100 mSv) are thought to be negligible. According to World Health Organization and the United Nations Scientific Committee on the Effects of Atomic Radiation reports, the level of radiation exposure from the Fukushima accident is limited, estimating no significant increased risk from the accident. Radiation-induced cell injury is mainly caused by oxidative damage to biomolecules, including DNA, lipids and proteins. Radiation stimulates metabolic activation within the mitochondria to provide energy for the DNA damage response. Mitochondrial respiratory chain complexes I and III are the most important intracellular source of reactive oxygen species (ROS) during oxidative phosphorylation in eukaryotic cells. Manganese superoxide dismutase and glutathione are key players in redox control within cells. However, perturbation of the antioxidant response leads to chronic oxidative stress in irradiated cells. Excess ROS of mitochondrial origin is reported in cancer-associated fibroblast and promotes carcinogenesis. The aim of this review paper is to discuss critical roles of mitochondria in radiation-related cancer by introducing our recent studies. In particular, elevated mitochondrial ROS in stromal fibroblasts potentiate transforming growth factor-beta (TGF-β) signaling, which triggers smooth muscle actin (α-SMA) expression to stimulate myofibroblast differentiation. Radiation-induced myofibroblasts promote tumor growth by enhancing angiogenesis. Thus, radiation affects both malignant cancer cells and neighboring stromal cells through secretion of soluble factors.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, 351-0197, Japan
- Corresponding author. Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan. Tel. +81-48-458-6261; Fax +81-48-458-6270;
| |
Collapse
|
6
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Shimura T. Roles of Fibroblasts in Microenvironment Formation Associated with Radiation-Induced Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:239-251. [PMID: 34664243 DOI: 10.1007/978-3-030-73119-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In tumor tissues, activated stromal fibroblasts, termed cancer-associated fibroblasts (CAFs), exhibit similar characteristics to myofibroblasts. CAFs promote cancer cell differentiation and invasion by releasing various factors, such as growth factors, chemokines, and matrix-degrading proteases, into neighboring tumor cells. However, the roles of tumor microenvironment in case of radiation-induced carcinogenesis remain poorly understood. We recently revealed that mitochondrial oxidative stress causes tumor microenvironment formation associated with radiation-induced cancer. Repeated low-dose fractionated radiation progressively damages fibroblast mitochondria and elevates mitochondrial reactive oxygen species (ROS) levels. Excessive mitochondrial ROS activate transforming growth factor-beta (TGF-β) signaling, thereby inducing fibroblasts activation and facilitating tumor microenvironment formation. Consequently, radiation affects malignant cancer cells directly and indirectly via molecular alterations in stromal fibroblasts, such as the activation of TGF-β and angiogenic signaling. This review summarizes for the first time the roles of mitochondrial oxidative stress in microenvironment formation associated with radiation-induced cancer. This review may help us understand the risks of exposure to low-dose radiation. The cross talk between cancer cells and stromal fibroblasts contributes to the development and progression of radiation-induced cancer.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| |
Collapse
|
8
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front Oncol 2019; 9:1009. [PMID: 31649878 PMCID: PMC6795692 DOI: 10.3389/fonc.2019.01009] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy (RT) is widely used in cancer care strategies. Its effectiveness relies mainly on its ability to cause lethal damage to the DNA of cancer cells. However, some cancers have shown to be particularly radioresistant partly because of efficient and redundant DNA repair capacities. Therefore, RT efficacy might be enhanced by using drugs that can disrupt cancer cells' DNA repair machinery. Here we review the recent advances in the development of novel inhibitors of DNA repair pathways in combination with RT. A large number of these compounds are the subject of preclinical/clinical studies and target key enzymes involved in one or more DNA repair pathways. A totally different strategy consists of mimicking DNA double-strand breaks via small interfering DNA (siDNA) to bait the whole DNA repair machinery, leading to its global inhibition.
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Pathology Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|
11
|
Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K, Kunugita N. Radiation-Induced Myofibroblasts Promote Tumor Growth via Mitochondrial ROS-Activated TGFβ Signaling. Mol Cancer Res 2018; 16:1676-1686. [PMID: 30042177 DOI: 10.1158/1541-7786.mcr-18-0321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022]
Abstract
Fibroblasts are a key stromal cell in the tumor microenvironment (TME) and promote tumor growth via release of various growth factors. Stromal fibroblasts in cancer, called cancer-associated fibroblasts (CAF), are related to myofibroblasts, an activated form of fibroblast. While investigating the role of stroma fibroblasts on radiation-related carcinogenesis, it was observed following long-term fractionated radiation (FR) that the morphology of human diploid fibroblasts changed from smaller spindle shapes to larger flat shapes. These cells expressed smooth muscle actin (α-SMA) and platelet-derived growth factor receptors, markers of myofibroblasts and CAFs, respectively. Long-term FR induces progressive damage to the fibroblast nucleus and mitochondria via increases in mitochondrial reactive oxygen species (ROS) levels. Here, it is demonstrated that long-term FR-induced α-SMA-positive cells have decreased mitochondrial membrane potential and activated oxidative stress responses. Antioxidant N-acetyl cysteine suppressed radiation-induced mitochondrial damage and generation of myofibroblasts. These results indicate that mitochondrial ROS are associated with the acquisition of myofibroblasts after long-term FR. Mechanistically, mitochondrial ROS activated TGFβ signaling which in turn mediated the expression of α-SMA in radiation-induced myofibroblasts. Finally, in vivo tumor growth analysis in a human tumor xenograft model system revealed that long-term FR-induced myofibroblasts promote tumor growth by enhancing angiogenesis.Implications: Radiation affects malignant cancer cells directly and indirectly via molecular alterations in stromal fibroblasts such as activation of TGFβ and angiogenic signaling pathways. Mol Cancer Res; 16(11); 1676-86. ©2018 AACR.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Minami, Wako, Saitama, Japan.
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Junya Kobayashi
- Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kenshi Komatsu
- Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health, Minami, Wako, Saitama, Japan
| |
Collapse
|
12
|
Zhang L, Luo Y, Lu Z, He J, Wang L, Zhang L, Zhang Y, Liu Y. Astragalus Polysaccharide Inhibits Ionizing Radiation-Induced Bystander Effects by Regulating MAPK/NF-kB Signaling Pathway in Bone Mesenchymal Stem Cells (BMSCs). Med Sci Monit 2018; 24:4649-4658. [PMID: 29976920 PMCID: PMC6069470 DOI: 10.12659/msm.909153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background This study investigated the effect of Astragalus polysaccharides (APS) on radiation-induced bystander effects (RIBE) in human bone mesenchymal stem cells (BMSCs) induced by irradiated A549 cells. Material/Methods A549 cells were irradiated with 2 Gy X-rays to obtain conditioned medium. BMSCs were incubated with the conditioned medium or APS. The levels of reactive oxygen species (ROS) and TGF-β were detected by ELISA. Cell survival, genomic instability, and DNA damages were detected by CCK-8 assay, colony formation assay, the micronucleus test and immunofluorescence assay, respectively. The protein and phosphorylation protein expression of p38, c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK1/2), P65, and cyclooxygenase-2 (COX-2) in bystander effect cells were detected by Western blot. Results The expression of COX-2 and ROS increased following stimulation with conditioned medium; this effect was inhibited by pre-exposing the cells to APS. BMSCs growth and colony formation rate decreased following stimulation with conditioned medium; this effect was suppressed by pre-exposing the cells to APS. In addition, the micronucleus rate and 53BP1 foci number increased after treatment with conditioned medium; this increase in BMSCs was inhibited by APS. The levels of phosphorylated p38, JNK, ERK1/2, NF-κB P65, and COX-2 proteins were increased by conditioned medium but were decreased by pre-treatment with APS. Conclusions RIBE in BMSCs induced by the irradiated A549 was mediated by the ROS in the conditioned medium and might be related to MAPK/NF-κB signal pathways in BMSCs. APS may block RIBE through regulating the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yali Luo
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Zhiwei Lu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Lei Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Lixin Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yiming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland).,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
13
|
Poort LJ, Ludlage JH, Lie N, Böckmann RA, Odekerken JC, Hoebers FJ, Kessler PA. The histological and histomorphometric changes in the mandible after radiotherapy: An animal model. J Craniomaxillofac Surg 2017; 45:716-721. [DOI: 10.1016/j.jcms.2017.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
|
14
|
Zhao Y, Wang L, Huang Q, Jiang Y, Wang J, Zhang L, Tian Y, Yang H. Radiosensitization of Non-Small Cell Lung Cancer Cells by Inhibition of TGF-β1 Signaling With SB431542 Is Dependent on p53 Status. Oncol Res 2017; 24:1-7. [PMID: 27178816 PMCID: PMC7838670 DOI: 10.3727/096504016x14570992647087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although medically inoperable patients with stage I non-small cell lung cancer cells (NSCLC) are often treated with stereotactic body radiation therapy, its efficacy can be compromised due to poor radiosensitivity of cancer cells. Inhibition of transforming growth factor-β1 (TGF-β1) using LY364947 and LY2109761 has been demonstrated to radiosensitize cancer cells such as breast cancer, glioblastoma, and lung cancer. Our previous results have demonstrated that another potent and selective inhibitor of TGF-β1 receptor kinases, SB431542, could radiosensitize H460 cells both in vitro and in vivo. In the present study, we investigated whether SB431542 could radiosensitize other NSCLC cell lines, trying to explore the potential implication of this TGF-β1 inhibitor in radiotherapy for NSCLC patients. The results showed that A549 cells were significantly radiosensitized by SB431542, whereas no radiosensitizing effect was observed in H1299 cells. Interestingly, both H460 and A549 cells have wild-type p53, while H1299 cells have deficient p53. To study whether the radiosensitizing effect of SB431542 was associated with p53 status of cancer cells, the p53 of H460 cells was silenced using shRNA transfection. Then it was found that the radiosensitizing effect of SB431542 on H460 cells was not observed in H460 cells with silenced p53. Moreover, X-irradiation caused rapid Smad2 activation in H460 and A549 cells but not in H1299 and H460 cells with silenced p53. The Smad2 activation postirradiation could be abolished by SB431542. This may explain the lack of radiosensitizing effect of SB431542 in H1299 and H460 cells with silenced p53. Thus, we concluded that the radiosensitizing effect of inhibition of TGF-β1 signaling in NSCLC cells by SB431542 was p53 dependent, suggesting that using TGF-β1 inhibitor in radiotherapy may be more complicated than previously thought and may need further investigation.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chatterjee A, Kosmacek EA, Oberley-Deegan RE. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1 Signaling Pathway. Radiat Res 2017; 187:367-381. [PMID: 28225655 DOI: 10.1667/rr14623.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer patients who undergo radiotherapy frequently suffer from side effects caused by radiation-induced damage to normal tissues adjacent to the tumor. Exposure of these normal cells during radiation treatment can result in tissue fibrosis and cellular senescence, which ultimately leads to postirradiation-related chronic complications including urinary urgency and frequency, erectile dysfunction, urethral stricture and incontinence. Radiation-induced reactive oxygen species (ROS) have been reported as the most potent causative factor for radiation damage to normal tissue. While MnTE-2-PyP, a ROS scavenger, protects normal cells from radiation-induced damage, it does not protect cancer cells during radiation treatment. However, the mechanism by which MnTE-2-PyP provides protection from radiation-induced fibrosis has been unclear. Our current study reveals the underlying molecular mechanism of radiation protection by MnTE-2-PyP in normal mouse prostate fibroblast cells. To investigate the role of MnTE-2-PyP in normal tissue protection after irradiation, primary prostate fibroblasts from C57BL/6 mice were cultured in the presence or absence of MnTE-2-PyP and exposed to 2 Gy of X rays. We found that MnTE-2-PyP could protect primary prostate fibroblasts from radiation-induced activation, as measured by the contraction of collagen discs, and senescence, detected by beta-galactosidase staining. We observed that MnTE-2-PyP inhibited the TGF-β-mediated fibroblast activation pathway by downregulating the expression of TGF-β receptor 2, which in turn reduced the activation and/or expression of SMAD2, SMAD3 and SMAD4. As a result, SMAD2/3-mediated transcription of profibrotic markers was reduced by MnTE-2-PyP. Due to the inhibition of the TGF-β pathway, fibroblasts treated with MnTE-2-PyP could resist radiation-induced activation and senescence. NADPH oxidase 4 (NOX4) expression is upregulated after irradiation and produces ROS. As was observed with MnTE-2-PyP treatment, NOX4-/- fibroblasts were protected from radiation-induced fibroblast activation and senescence. However, NOX4-/- fibroblasts had reduced levels of active TGF-β1, which resulted in decreased TGF-β signaling. Therefore, our data suggest that reduction of ROS levels, either by MnTE-2-PyP treatment or by eliminating NOX4 activity, significantly protects normal prostate tissues from radiation-induced tissue damage, but that these approaches work on different components of the TGF-β signaling pathway. This study proposes a crucial insight into the molecular mechanism executed by MnTE-2-PyP when utilized as a radioprotector. An understanding of how this molecule works as a radioprotector will lead to a better controlled mode of treatment for post therapy complications in prostate cancer patients.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
16
|
Broustas CG, Xu Y, Harken AD, Chowdhury M, Garty G, Amundson SA. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model. Radiat Res 2017; 187:433-440. [PMID: 28140791 DOI: 10.1667/rr0005.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.
Collapse
Affiliation(s)
- Constantinos G Broustas
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| | - Yanping Xu
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Andrew D Harken
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Mashkura Chowdhury
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| | - Guy Garty
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| |
Collapse
|
17
|
Fu J, Jiang M, Zhang M, Zhang J, Wang Y, Xiang S, Xu X, Ye Q, Song H. MiR-495 functions as an adjuvant to radiation therapy by reducing the radiation-induced bystander effect. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1026-1033. [PMID: 27697751 DOI: 10.1093/abbs/gmw098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023] Open
Abstract
The radiation-induced bystander effect (RIBE) is an important factor in tumor radiation therapy because it may increase the probability of normal cellular injury and the likelihood of secondary cancers after radiotherapy. Here, we identified the role of miR-495 in alleviating RIBEs during radiotherapy. Luciferase reporter assay results confirmed that miR-495 regulated endothelial nitric oxide synthase (eNOS) by targeting the Sp1 3'-untranslated region. Consequently, after radiation, tumor cells expressed less eNOS and Sp1 than controls. In vitro cell irradiation data based on flow-cytometric analysis and enzymed linked immunosorbent assay confirmed that nitric oxide (NO) and its downstream product transforming growth factor β1 (TGF-β1) were critical signaling factors contributing to RIBEs. Fewer normal LO2 liver cells were injured and fewer micronuclei were observed when treated with the medium of the miR-495 overexpressing HepG2 and ZR75-1 tumor cells. Accordingly, treatment with the miR-495 antagomir led to higher NO and TGF-β1 levels and more injured LO2 cells. In vivo experiments indicated that local irradiation of tumors overexpressing miR-495 produced fewer necrotic foci in non-irradiated liver tissue compared with controls. miR-495 was upregulated in clinical cancer tissues compared with adjacent non-cancerous tissues, and radiation significantly reduced the expression level of miR-495 in carcinoma cell lines. In summary, miR-495 may have promise as an adjuvant for tumor radiation therapy to decrease RIBEs involving the Sp1/eNOS pathway.
Collapse
Affiliation(s)
- Jie Fu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Mengmeng Jiang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shensi Xiang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
18
|
|
19
|
Abstract
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model.
Collapse
|
20
|
Carl C, Flindt A, Hartmann J, Dahlke M, Rades D, Dunst J, Lehnert H, Gieseler F, Ungefroren H. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell Mol Life Sci 2016; 73:427-43. [PMID: 26238393 PMCID: PMC11108547 DOI: 10.1007/s00018-015-2003-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/02/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
Abstract
Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial-mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2-20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Cedric Carl
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Anne Flindt
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Julian Hartmann
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Markus Dahlke
- Department of Radiation Oncology, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, UKSH, Campus Lübeck, 23538, Lübeck, Germany
- Department of Radiation Oncology, UKSH, Campus Kiel, 24105, Kiel, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Frank Gieseler
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Hendrik Ungefroren
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
21
|
Hu W, Xu S, Yao B, Hong M, Wu X, Pei H, Chang L, Ding N, Gao X, Ye C, Wang J, Hei TK, Zhou G. MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode. RNA Biol 2015; 11:1189-98. [PMID: 25483041 DOI: 10.4161/rna.34345] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of radiation-induced bystander effects (RIBE) have been investigated intensively over the past two decades. Although quite a few reports demonstrated that cytokines such as TGF-β1 are induced within the directly irradiated cells and play critical roles in mediating the bystander effects, little is known about the signaling pathways that occur in bystander cells. The crucial question as to why RIBE signals cannot be infinitely transmitted, therefore, remains unclear. In the present study, we showed that miR-663, a radiosensitive microRNA, participates in the regulation of biological effects in both directly irradiated and bystander cells via its targeting of TGF-β1. MiR-663 was downregulated, while TGFB1 was upregulated in directly irradiated cells. The regulation profile of miR-663 and TGFB1, on the other hand, was reversed in bystander cells, in which an elevated miR-663 expression was exhibited and led to downregulation of TGF-β1. Further studies revealed that miR-663 interacts with TGFB1 directly and that through its binding to the core regulation sequence, miR-663 suppresses the expression of TGFB1. Based on the results, we propose that miR-663 inhibits the propagation of RIBE in a feedback mode, in which the induction of TGF-β1 by reduced miR-663 in directly irradiated cells leads to increased level of miR-663 in bystander cells. The upregulation of miR-663 in turn suppresses the expression of TGF-β1 and limits further transmission of the bystander signals.
Collapse
Affiliation(s)
- Wentao Hu
- a Department of Space Radiobiology; Key Laboratory of Heavy Ion Radiation Biology and Medicine; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne) 2015; 2:12. [PMID: 25853132 PMCID: PMC4362338 DOI: 10.3389/fmed.2015.00012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRTs) are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT) and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors, which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure, and low absorbed dose rate) differ from those of conventional EBRT (homogeneous irradiation, short exposure, and high absorbed dose rate), and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related) and non-targeted effects (assumed to be non-dose-related) of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main challenges of TRT in the future.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Catherine Lozza
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Vincent Boudousq
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Isabelle Navarro-Teulon
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M, Corbitt A, Alwood JS, Yu Y, Globus RK, Solomides CC, Ullrich RL, Petrache I. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2014; 308:L416-28. [PMID: 25526737 DOI: 10.1152/ajplung.00260.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Ralph A Pietrofesa
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kelly S Schweitzer
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evgeny V Berdyshev
- Department of Medicine University of Illinois at Chicago, Chicago, Illinois
| | | | - Astrid Corbitt
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Joshua S Alwood
- Oak Ridge Associated Universities, NASA Postdoctoral Program, Moffett Field, California
| | - Yongjia Yu
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Ruth K Globus
- NASA Ames Research Center, Moffett Field, California
| | | | | | - Irina Petrache
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
24
|
Moskwa P, Zinn PO, Choi YE, Shukla SA, Fendler W, Chen CC, Lu J, Golub TR, Hjelmeland A, Chowdhury D. A functional screen identifies miRs that induce radioresistance in glioblastomas. Mol Cancer Res 2014; 12:1767-78. [PMID: 25256711 DOI: 10.1158/1541-7786.mcr-14-0268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The efficacy of radiotherapy in many tumor types is limited by normal tissue toxicity and by intrinsic or acquired radioresistance. Therefore, it is essential to understand the molecular network responsible for regulating radiosensitivity/resistance. Here, an unbiased functional screen identified four microRNAs (miR1, miR125a, miR150, and miR425) that induce radioresistance. Considering the clinical importance of radiotherapy for patients with glioblastoma, the impact of these miRNAs on glioblastoma radioresistance was investigated. Overexpression of miR1, miR125a, miR150, and/or miR425 in glioblastoma promotes radioresistance through upregulation of the cell-cycle checkpoint response. Conversely, antagonizing with antagomiRs sensitizes glioblastoma cells to irradiation, suggesting their potential as targets for inhibiting therapeutic resistance. Analysis of glioblastoma datasets from The Cancer Genome Atlas (TCGA) revealed that these miRNAs are expressed in glioblastoma patient specimens and correlate with TGFβ signaling. Finally, it is demonstrated that expression of miR1 and miR125a can be induced by TGFβ and antagonized by a TGFβ receptor inhibitor. Together, these results identify and characterize a new role for miR425, miR1, miR125, and miR150 in promoting radioresistance in glioblastomas and provide insight into the therapeutic application of TGFβ inhibitors in radiotherapy. IMPLICATIONS Systematic identification of miRs that cause radioresistance in gliomas is important for uncovering predictive markers for radiotherapy or targets for overcoming radioresistance.
Collapse
Affiliation(s)
- Patryk Moskwa
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Internal Medicine A, Medical University of Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, Germany
| | - Pascal O Zinn
- Department of Neurosurgery, Baylor College of Medicine and M Anderson Cancer Center, Houston, Texas
| | - Young Eun Choi
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sachet A Shukla
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Wojciech Fendler
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, California
| | - Jun Lu
- Yale Stem Cell Center and Department of Genetics, Yale University, New Haven, Connecticut
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Anita Hjelmeland
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, Alabama
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
25
|
Miao L, Holley AK, Zhao Y, St Clair WH, St Clair DK. Redox-mediated and ionizing-radiation-induced inflammatory mediators in prostate cancer development and treatment. Antioxid Redox Signal 2014; 20:1481-500. [PMID: 24093432 PMCID: PMC3936609 DOI: 10.1089/ars.2013.5637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. RECENT ADVANCES Ionizing radiation (IR)-generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. CRITICAL ISSUES Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. FUTURE DIRECTIONS Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues.
Collapse
Affiliation(s)
- Lu Miao
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | |
Collapse
|
26
|
Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett 2014; 356:43-51. [PMID: 24530228 DOI: 10.1016/j.canlet.2014.01.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/08/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer.
Collapse
Affiliation(s)
- Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Center for Scientific Research Demokritos, Athens, Greece
| | - Alexandros Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, M13 9WL, UK.
| |
Collapse
|
27
|
Ellsworth S, Balmanoukian A, Kos F, Nirschl CJ, Nirschl TR, Grossman SA, Luznik L, Drake CG. Sustained CD4 + T cell-driven lymphopenia without a compensatory IL-7/IL-15 response among high-grade glioma patients treated with radiation and temozolomide. Oncoimmunology 2014; 3:e27357. [PMID: 24790790 PMCID: PMC4004618 DOI: 10.4161/onci.27357] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Prolonged lymphopenia correlating with decreased survival commonly occurs among glioma patients undergoing radiation therapy (RT) and temozolomide (TMZ) treatment. To better understand the pathophysiology of this phenomenon, we prospectively monitored serum cytokine levels and lymphocyte subsets in 15 high-grade glioma patients undergoing combined radiation and TMZ (referred to as RT/TMZ) treatment. Sufficient data for analysis were acquired from 11 of the patients initially enrolled. Lymphocyte phenotyping data were obtained using cytofluorometric analysis and serum cytokine levels were measured using the a multiplex bead-based assays. Total lymphocyte counts (TLCs) were > 1000 cells per μL peripheral blood in 10/11 patients at baseline, but dropped significantly after treatment. Specifically, after RT/TMZ therapy, the TLCs were found to be < 500 cells/μL in 2/11 patients, 500-1000 cells/μL in 7/11 patients, and > 1000 cells/μL in the remaining 2 patients. Among residual mononuclear blood cells, we observed a proportional drop in B and CD4+ T cells but not in CD8+ T lymphocytes. Natural killer cells remained to near-to-baseline levels and there was a transient and slight (insignificant) increase in regulatory T cells (Tregs). The circulating levels of IL-7 and IL-15 remained low despite marked drops in both the total and CD4+ T lymphocyte counts. Thus, patients with malignant glioma undergoing RT/TMZ treatment exhibit a marked decline in TLCs, affecting both CD4+ T cells and B lymphocytes, in the absence of a compensatory increase in interleukin-7 levels. The failure to mount an appropriate homeostatic cytokine response may be responsible for the prolonged lymphopenia frequently observed in these patients.
Collapse
Affiliation(s)
- Susannah Ellsworth
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| | - Ani Balmanoukian
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| | | | - Christopher J Nirschl
- Department of Medical Oncology; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| | - Thomas R Nirschl
- Department of Medical Oncology; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| | - Stuart A Grossman
- Department of Medical Oncology; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| | - Leo Luznik
- Department of Medical Oncology; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| | - Charles G Drake
- Department of Medical Oncology; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
- James Buchanan Brady Urological Institute; Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD USA
| |
Collapse
|
28
|
Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013; 12:526-42. [PMID: 23812271 DOI: 10.1038/nrd4003] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity.
Collapse
|
29
|
The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin Oncol (R Coll Radiol) 2013; 25:569-77. [PMID: 23850153 DOI: 10.1016/j.clon.2013.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/17/2022]
Abstract
A comprehensive, mechanistic understanding of radiobiological phenomena that can be integrated within the broader context of cancer biology offers the prospect of transforming clinical practice in radiation oncology. In this review, we revisit the six established biological hallmarks of cancer and examine how they have provided insights into novel therapeutic strategies. In addition, we discuss the potential of two emerging hallmarks to continue to expand our understanding beyond the narrow confines of the traditional 5Rs of radiobiology.
Collapse
|
30
|
Zhang H, Wang YA, Meng A, Yan H, Wang X, Niu J, Li J, Wang H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. JOURNAL OF RADIATION RESEARCH 2013; 54:630-636. [PMID: 23370919 PMCID: PMC3709670 DOI: 10.1093/jrr/rrs142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/01/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Ionizing radiation (IR) causes not only acute tissue damage but also residual bone marrow (BM) suppression. The induction of residual BM injury is primarily attributable to the induction of reactive oxygen species (ROS) pressure in hematopoietic cells. In this study, we examined if SB431542, a transforming growth factor β1 (TGFβ1) inhibitor, can mitigate IR-induced BM suppression in vitro. Our results showed that treatment with SB431542 protected mice bone marrow mononuclear cells (BMMNCs), hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) from IR-induced suppression using cell viability assays, clonogenic assays and competitive repopulation assays. Moreover, expression of gene-related ROS production in hematopoietic cells was analyzed. The expression of NOX1, NOX2 and NOX4 was increased in irradiated BMMNCs, and that of NOX2 and NOX4 was reduced by SB431542 treatment. Therefore, the results from this study suggest that SB431542, a TGFβ1 inhibitor, alleviates IR-induced BM suppression at least in part via inhibiting IR-induced NOX2 and NOX4 expression.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Ying-ai Wang
- Department of Internal medicine, Tianjin Medical University, No. 22 Qixiangtai Road, Hexi District, Tianjin, China
| | - Aimin Meng
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Hao Yan
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Xinzhuo Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Jingxiu Niu
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Jin Li
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| |
Collapse
|
31
|
Understanding the functions of tumor stroma in resistance to ionizing radiation: Emerging targets for pharmacological modulation. Drug Resist Updat 2013; 16:10-21. [DOI: 10.1016/j.drup.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023]
|
32
|
Abstract
Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included.
Collapse
Affiliation(s)
- Leena Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA.
| | | |
Collapse
|
33
|
Mouse models for efficacy testing of agents against radiation carcinogenesis—a literature review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 10:107-43. [PMID: 23271302 PMCID: PMC3564133 DOI: 10.3390/ijerph10010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus) remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.
Collapse
|
34
|
Lhakhang TW, Chaudhry MA. Interactome of Radiation-Induced microRNA-Predicted Target Genes. Comp Funct Genomics 2012; 2012:569731. [PMID: 22924026 PMCID: PMC3424689 DOI: 10.1155/2012/569731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/19/2012] [Indexed: 01/22/2023] Open
Abstract
The microRNAs (miRNAs) function as global negative regulators of gene expression and have been associated with a multitude of biological processes. The dysfunction of the microRNAome has been linked to various diseases including cancer. Our laboratory recently reported modulation in the expression of miRNA in a variety of cell types exposed to ionizing radiation (IR). To further understand miRNA role in IR-induced stress pathways, we catalogued a set of common miRNAs modulated in various irradiated cell lines and generated a list of predicted target genes. Using advanced bioinformatics tools we identified cellular pathways where miRNA predicted target genes function. The miRNA-targeted genes were found to play key roles in previously identified IR stress pathways such as cell cycle, p53 pathway, TGF-beta pathway, ubiquitin-mediated proteolysis, focal adhesion pathway, MAPK signaling, thyroid cancer pathway, adherens junction, insulin signaling pathway, oocyte meiosis, regulation of actin cytoskeleton, and renal cell carcinoma pathway. Interestingly, we were able to identify novel targeted pathways that have not been identified in cellular radiation response, such as aldosterone-regulated sodium reabsorption, long-term potentiation, and neutrotrophin signaling pathways. Our analysis indicates that the miRNA interactome in irradiated cells provides a platform for comprehensive modeling of the cellular stress response to IR exposure.
Collapse
Affiliation(s)
- Tenzin W. Lhakhang
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405, USA
| | - M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405, USA
| |
Collapse
|
35
|
Bourgier C, Levy A, Vozenin MC, Deutsch E. Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev 2012; 31:699-712. [DOI: 10.1007/s10555-012-9381-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Hneino M, François A, Buard V, Tarlet G, Abderrahmani R, Blirando K, Hoodless PA, Benderitter M, Milliat F. The TGF-β/Smad repressor TG-interacting factor 1 (TGIF1) plays a role in radiation-induced intestinal injury independently of a Smad signaling pathway. PLoS One 2012; 7:e35672. [PMID: 22567107 PMCID: PMC3342305 DOI: 10.1371/journal.pone.0035672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/17/2023] Open
Abstract
Despite advances in radiation delivery protocols, exposure of normal tissues during the course of radiation therapy remains a limiting factor of cancer treatment. If the canonical TGF-β/Smad pathway has been extensively studied and implicated in the development of radiation damage in various organs, the precise modalities of its activation following radiation exposure remain elusive. In the present study, we hypothesized that TGF-β1 signaling and target genes expression may depend on radiation-induced modifications in Smad transcriptional co-repressors/inhibitors expressions (TGIF1, SnoN, Ski and Smad7). In endothelial cells (HUVECs) and in a model of experimental radiation enteropathy in mice, radiation exposure increases expression of TGF-β/Smad pathway and of its target gene PAI-1, together with the overexpression of Smad co-repressor TGIF1. In mice, TGIF1 deficiency is not associated with changes in the expression of radiation-induced TGF-β pathway-related transcripts following localized small intestinal irradiation. In HUVECs, TGIF1 overexpression or silencing has no influence either on the radiation-induced Smad activation or the Smad3-dependent PAI-1 overexpression. However, TGIF1 genetic deficiency sensitizes mice to radiation-induced intestinal damage after total body or localized small intestinal radiation exposure, demonstrating that TGIF1 plays a role in radiation-induced intestinal injury. In conclusion, the TGF-β/Smad co-repressor TGIF1 plays a role in radiation-induced normal tissue damage by a Smad-independent mechanism.
Collapse
Affiliation(s)
- Mohammad Hneino
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Agnes François
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Valerie Buard
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Georges Tarlet
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Rym Abderrahmani
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Karl Blirando
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Pamela A. Hoodless
- Terry Fox Laboratory, British Columbia Cancer Agency and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc Benderitter
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Fabien Milliat
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
37
|
Radioprotective Effect of Lidocaine on Function and Ultrastructure of Salivary Glands Receiving Fractionated Radiation. Int J Radiat Oncol Biol Phys 2012; 82:e623-30. [DOI: 10.1016/j.ijrobp.2011.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/29/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
|
38
|
Zhang Y, Zhang X, Rabbani ZN, Jackson IL, Vujaskovic Z. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int J Radiat Oncol Biol Phys 2012; 83:740-8. [PMID: 22270165 DOI: 10.1016/j.ijrobp.2011.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 06/28/2011] [Accepted: 08/08/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. METHODS AND MATERIALS C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. RESULTS Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-β1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. CONCLUSION Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
39
|
Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 2011; 13:537-49. [PMID: 21677877 DOI: 10.1593/neo.11258] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/17/2022] Open
Abstract
Here we investigate the effects of the novel transforming growth factor-β receptor I (TGF-βRI) serine/threonine kinase inhibitor LY2109761 on glioblastoma when combined with the present clinical standard combination regimen radiotherapy and temozolomide (TMZ). Human GBM U87 (methylated MGMT promoter), T98 (unmethylated MGMT promoter), and endothelial cells (HUVECs) were treated with combinations of LY2109761, TMZ, and radiation. We found that LY2109761 reduced clonogenic survival of U87 and T98 cells and further enhanced the radiation-induced anticlonogenicity. In addition, LY2109761 had antimigratory and antiangiogenic effects in Matrigel migration and tube formation assays. In vivo, in human xenograft tumors growing subcutaneously on BALB/c nu/nu mice, LY2109761 delayed tumor growth alone and in combination with fractionated radiation and TMZ. Interestingly, as expected, the methylated U87 model was more sensitive to TMZ than the unmethylated T98 model in all experiments, whereas the opposite was found for LY2109761. Moreover, with respect to tumor angiogenesis, while LY2109761 decreased the glioblastoma proliferation index (Ki-67) and the microvessel density (CD31 count), the relative pericyte coverage (α-SMA/CD31 ratio) increased in particular after triple therapy, suggesting a vascular normalization effect induced by LY2109761. This normalization could be attributed in part to a decrease in the Ang-2/Ang-1 messenger RNA ratio. LY2109761 also reduced tumor blood perfusion as quantified by noninvasive dynamic contrast-enhanced magnetic resonance imaging. Together, the data indicate that the addition of a TGF-βRI kinase inhibitor to the present clinical standard (radiation plus TMZ) has the potential to improve clinical outcome in human glioblastoma, especially in patients with unmethylated MGMT promoter status.
Collapse
|
40
|
Abstract
Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. The dose of ionizing radiation that can be given to the tumour is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumour or to decrease the effects on normal tissues. These aims must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumour in the second approach. Two factors have made such approaches feasible: namely, an improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours. These have led to the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy.
Collapse
Affiliation(s)
- Adrian C Begg
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.
| | | | | |
Collapse
|
41
|
Rizvi A, Pecaut MJ, Slater JM, Subramaniam S, Gridley DS. Low-dose γ-rays modify CD4(+) T cell signalling response to simulated solar particle event protons in a mouse model. Int J Radiat Biol 2011; 87:24-35. [PMID: 21142612 DOI: 10.3109/09553002.2010.518206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Astronauts on missions are exposed to low-dose/low-dose-rate (LDR) radiation and could receive high doses during solar particle events (SPE). This study investigated T cell function in response to LDR radiation and simulated SPE (sSPE) protons, alone and in combination. MATERIALS AND METHODS C57BL/6 mice received LDR γ-radiation (⁵⁷Co) to a total dose of 0.01 Gray (Gy) at 0.179 mGy/h, either with or without subsequent exposure to 1.7 Gy sSPE protons delivered over 36 h. Mice were euthanised on days 4 and 21 post-exposure. T cells with cluster of differentiation 4 (CD4(+)) were negatively isolated from spleens and activated with anti-CD3 antibody. Cells and supernatants were evaluated for survival/signalling proteins and cytokines. RESULTS The most striking effects were noted on day 21. In the survival pathway, nuclear factor-kappaB (NF-κB; total and active forms) and p38 mitogen activated protein kinase (p38MAPK; total) were significantly increased and cJun N-terminal kinase (JNK; total and active) was decreased when mice were primed with LDR γ-rays prior to sSPE exposure (P < 0.001). Evaluation of the T cell antigen receptor (TCR) signalling pathway revealed that LDR γ-ray exposure normalised the high sSPE proton-induced level of lymphocyte specific protein tyrosine kinase (Lck; total and active) on day 21 (P < 0.001 for sSPE vs. LDR + sSPE), while radiation had no effect on active zeta-chain-associated protein kinase 70 (Zap-70). There was increased production of interleukin-2 (IL-2) and IL-4 and decreased transforming growth factor-β1 in the LDR + sSPE group compared to the sSPE group. CONCLUSION The data demonstrate, for the first time, that protracted exposure to LDR γ-rays can significantly modify the effects of sSPE protons on critical survival/signalling proteins and immunomodulatory cytokines produced by CD4(+) T cells.
Collapse
Affiliation(s)
- Asma Rizvi
- Department of Radiation Medicine, Division of Biochemistry, Loma Linda University & Medical Center, Loma Linda, California, USA
| | | | | | | | | |
Collapse
|
42
|
Moses H, Barcellos-Hoff MH. TGF-beta biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 2011; 3:a003277. [PMID: 20810549 DOI: 10.1101/cshperspect.a003277] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transforming growth factor-β1 (TGF-β) was first implicated in mammary epithelial development by Daniel and Silberstein in 1987 and in breast cancer cells and hormone resistance by Lippman and colleagues in 1988. TGF-β is critically important for mammary morphogenesis and secretory function through specific regulation of epithelial proliferation, apoptosis, and extracellular matrix. Differential TGF-β effects on distinct cell types are compounded by regulation at multiple levels and the influence of context on cellular responses. Studies using controlled expression and conditional-deletion mouse models underscore the complexity of TGF-β biology across the cycle of mammary development and differentiation. Early loss of TGF-β growth regulation in breast cancer evolves into fundamental deregulation that mediates cell interactions and phenotypes driving invasive disease. Two outstanding issues are to understand the mechanisms of biological control in situ and the circumstances by which TGF-β regulation is subverted in neoplastic progression.
Collapse
Affiliation(s)
- Harold Moses
- Department of Cancer Biology and Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
43
|
Du SS, Qiang M, Zeng ZC, Zhou J, Tan YS, Zhang ZY, Zeng HY, Liu ZS. Radiation-induced liver fibrosis is mitigated by gene therapy inhibiting transforming growth factor-β signaling in the rat. Int J Radiat Oncol Biol Phys 2010; 78:1513-23. [PMID: 20932668 DOI: 10.1016/j.ijrobp.2010.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 01/06/2023]
Abstract
PURPOSE We determined whether anti-transforming growth factor-β (TGF-β) intervention could halt the progression of established radiation-induced liver fibrosis (RILF). METHODS AND MATERIALS A replication-defective adenoviral vector expressing the extracellular portion of human TβRII and the Fc portion of immunoglobulin G fusion protein (AdTβRIIFc) was produced. The entire rat liver was exposed to 30 Gy irradiation to generate a RILF model (RILFM). Then, RILFM animals were treated with AdTβRIIFc (1 × 10(11) plaque-forming units [PFU] of TβRII), control virus (1 × 10(11) PFU of AdGFP), or saline. Delayed radiation liver injury was assessed by histology and immunohistochemistry. Chronic oxidative stress damage, hepatic stellate cell activation, and hepatocyte regeneration were also analyzed. RESULTS In rats infected with AdTβRIIFc, fibrosis was significantly improved compared with rats treated with AdGFP or saline, as assessed by histology, hydroxyproline content, and serum level of hyaluronic acid. Compared with AdGFP rats, AdTβRIIFc-treated rats exhibited decreased oxidative stress damage and hepatic stellate cell activation and preserved liver function. CONCLUSIONS Our results demonstrate that TGF-β plays a critical role in the progression of liver fibrosis and suggest that anti-TGF-β intervention is feasible and ameliorates established liver fibrosis. In addition, chronic oxidative stress may be involved in the progression of RILF.
Collapse
Affiliation(s)
- Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
45
|
Abstract
With >10,000,000 cancer survivors in the U.S. alone, the late effects of cancer treatment are a significant public health issue. Over the past 15 years, much work has been done that has led to an improvement in our understanding of the molecular mechanisms underlying the development of normal tissue injury after cancer therapy. In many cases, these injuries are characterized at the histologic level by loss of parenchymal cells, excessive fibrosis, and tissue atrophy. Among the many cytokines involved in this process, transforming growth factor (TGF)-beta1 is thought to play a pivotal role. TGF-beta1 has a multitude of functions, including both promoting the formation and inhibiting the breakdown of connective tissue. It also inhibits epithelial cell proliferation. TGF-beta1 is overexpressed at sites of injury after radiation and chemotherapy. Thus, TGF-beta1 represents a logical target for molecular therapies designed to prevent or reduce normal tissue injury after cancer therapy. Herein, the evidence supporting the critical role of TGF-beta1 in the development of normal tissue injury after cancer therapy is reviewed and the results of recent research aimed at preventing normal tissue injury by targeting the TGF-beta1 pathway are presented.
Collapse
Affiliation(s)
- Mitchell S Anscher
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
46
|
|
47
|
Halofuginone enhances the radiation sensitivity of human tumor cell lines. Cancer Lett 2009; 289:119-26. [PMID: 19713035 DOI: 10.1016/j.canlet.2009.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/30/2009] [Accepted: 08/02/2009] [Indexed: 01/01/2023]
Abstract
Transforming growth factor beta (TGF-beta) is implicated in radiation-induced fibrosis of normal tissues in patients receiving radiotherapy. Inhibiting the TGF-beta signaling pathway by various means has been shown to reduce radiation-induced fibrosis in pre-clinical studies. The present study evaluated the effects of interfering with the TGF-beta signaling pathway on the radiosensitivity of selected human tumor cell lines using the plant-derived alkaloid, halofuginone. Halofuginone treatment inhibited cell growth, halted cell cycle progression, decreased radiation-induced DNA damage repair, and decreased TGF-beta receptor II protein levels, leading to increased cellular radiosensitization. These data further support the goal of manipulating the TGF-beta pathway to achieve a positive increase in the therapeutic gain in clinical radiotherapy.
Collapse
|
48
|
Abstract
TGF-beta plays an essential role in maintaining tissue homeostasis through its ability to induce cell cycle arrest, differentiation and apoptosis, and to preserve genomic stability. Thus, TGF-beta is a potent anticancer agent that prohibits the uncontrolled proliferation of epithelial, endothelial and hematopoietic cells. Interestingly, tumorigenesis typically elicits aberrations in the TGF-beta signaling pathway that engenders resistance to the cytostatic activities of TGF-beta, thereby enhancing the development and progression of human malignancies. Moreover, these genetic and epigenetic events conspire to convert TGF-beta from a suppressor of tumor formation to a promoter of their growth, invasion and metastasis. The dichotomous nature of TGF-beta during tumorigenesis is known as the 'TGF-beta paradox', which remains the most critical and mysterious question concerning the physiopathological role of this multifunctional cytokine. Here we review recent findings that directly impact our understanding of the TGF-beta paradox and discuss their importance to targeting the oncogenic activities of TGF-beta in developing and progressing neoplasms.
Collapse
Affiliation(s)
- Maozhen Tian
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|
49
|
Scharpfenecker M, Kruse JJCM, Sprong D, Russell NS, Ten Dijke P, Stewart FA. Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. Int J Radiat Oncol Biol Phys 2009; 73:506-13. [PMID: 19147015 DOI: 10.1016/j.ijrobp.2008.09.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/05/2008] [Accepted: 09/26/2008] [Indexed: 02/07/2023]
Abstract
PURPOSE Transforming growth factor-beta (TGF-beta) and Notch signaling pathways are important regulators of vascular homeostasis and vessel remodeling; mutations in these pathways can lead to vascular disorders. Similar vascular phenotypes develop in the normal tissues of cancer patients as a long-term effect of radiotherapy. Irradiation most severely affects the capillaries, which become leaky and dilated and might eventually rupture. To investigate the mechanism of such capillary damage, we studied the effect of TGF-beta and Notch signaling in microvascular endothelial cells. METHODS AND MATERIALS Human microvascular endothelial cells were irradiated with 5 or 10 Gy and activation of TGF-beta and Notch signaling pathways was assessed by biochemical methods and a cell migration assay. RESULTS Ionizing radiation induced Smad2 phosphorylation and nuclear translocation and increased mRNA and protein expression of the activin-like kinase 5 (ALK5) target gene plasminogen activator inhibitor-1 (PAI-1). At the same time, we observed diminished Smad1/5/8 activation and downregulation of the ALK1 downstream target, inhibitor of DNA binding-1 (ID-1). We also measured an upregulation of the Notch ligand Jagged-1 and the target gene Hey1. Decreased inhibitor of DNA binding-1 levels coincided with a reduced ability of the cells to migrate. CONCLUSION Ionizing radiation shifts the balance from ALK1 to ALK5 signaling and activates the Notch pathway in endothelial cells. This combination of anti-angiogenic signals contributes to reduced cell migration after irradiation.
Collapse
Affiliation(s)
- Marion Scharpfenecker
- Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 2008; 115:453-95. [PMID: 18841463 DOI: 10.1007/s10549-008-0184-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 12/24/2022]
Abstract
In most human breast cancers, lowering of TGFbeta receptor- or Smad gene expression combined with increased levels of TGFbetas in the tumor microenvironment is sufficient to abrogate TGFbetas tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFbeta signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFbeta tumor suppression. In mouse models of "triple-negative" or basal-like breast cancer, treatment with TGFbeta neutralizing antibodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFbeta antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFbeta target genes upregulation in human breast cancers suggest that TGFbeta may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFbeta appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFbeta because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFbeta, while antiestrogens act by upregulating TGFbeta. This model predicts that inhibiting TGFbeta signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFbeta antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These predictions need to be addressed prospectively in clinical trials and should inform the selection of patient populations most likely to benefit from this novel anti-metastatic therapeutic approach.
Collapse
Affiliation(s)
- Antoinette R Tan
- Division of Medical Oncology, Department of Internal Medicine, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|