1
|
Paquette B, Oweida A. Combination of radiotherapy and immunotherapy in duality with the protumoral action of radiation. Cancer Radiother 2024; 28:484-492. [PMID: 39304400 DOI: 10.1016/j.canrad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
Radiotherapy is widely used to treat various cancers. Its combination with immune checkpoint inhibitors is intensively studied preclinically and clinically. Although the first results were very encouraging, the number of patients who respond positively remains low, and the therapeutic benefit is often temporary. This review summarizes how radiation can stimulate an antitumor immune response and its combination with immunotherapy based on inhibiting immune checkpoints. We will provide an overview of radiotherapy parameters that should be better controlled to avoid downregulating the antitumor immune response. The low response rate of combining radiotherapy and immunotherapy could, at least in part, be caused by the stimulation of cancer cell invasion and metastasis development that occur at similar doses and number of radiation fractions. To end on a positive note, we explore how a targeted inhibition of the inflammatory cytokines induced by radiation with a cyclooxygenase-2 inhibitor could both support an antitumor immune response and block radiation-induced metastasis formation.
Collapse
Affiliation(s)
- Benoît Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Ayman Oweida
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Key Factor Regulating Inflammatory Microenvironment, Metastasis, and Resistance in Breast Cancer: Interleukin-1 Signaling. Mediators Inflamm 2021; 2021:7785890. [PMID: 34602858 PMCID: PMC8486558 DOI: 10.1155/2021/7785890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in the study of inflammatory cytokines and immune networks in the tumor microenvironment.
Collapse
|
3
|
Oweida A, Paquette B. Reconciling two opposing effects of radiation therapy: stimulation of cancer cell invasion and activation of anti-cancer immunity. Int J Radiat Biol 2021; 99:951-963. [PMID: 34264178 DOI: 10.1080/09553002.2021.1956005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The damage caused by radiation therapy to cancerous and normal cells inevitably leads to changes in the secretome profile of pro and anti-inflammatory mediators. The inflammatory response depends on the dose of radiation and its fractionation, while the inherent radiosensitivity of each patient dictates the intensity and types of adverse reactions. This review will present an overview of two apparently opposite reactions that may occur after radiation treatment: induction of an antitumor immune response and a protumoral response. Emphasis is placed on the molecular and cellular mechanisms involved. CONCLUSIONS By understanding how radiation changes the balance between anti- and protumoral effects, these forces can be manipulated to optimize radiation oncology treatments.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
4
|
Berg TJ, Marques C, Pantazopoulou V, Johansson E, von Stedingk K, Lindgren D, Jeannot P, Pietras EJ, Bergström T, Swartling FJ, Governa V, Bengzon J, Belting M, Axelson H, Squatrito M, Pietras A. The Irradiated Brain Microenvironment Supports Glioma Stemness and Survival via Astrocyte-Derived Transglutaminase 2. Cancer Res 2021; 81:2101-2115. [PMID: 33483373 DOI: 10.1158/0008-5472.can-20-1785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.
Collapse
Affiliation(s)
- Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor group, CNIO, Madrid, Spain
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristoffer von Stedingk
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Oncogenomics, M1-131 Academic Medical Center University of Amsterdam, Amsterdam, the Netherlands
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pauline Jeannot
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elin J Pietras
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valeria Governa
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Guo CH, Hsia S, Chung CH, Lin YC, Shih MY, Chen PC, Peng CL, Henning SM, Hsu GSW, Li Z. Nutritional supplements in combination with chemotherapy or targeted therapy reduces tumor progression in mice bearing triple-negative breast cancer. J Nutr Biochem 2020; 87:108504. [PMID: 32956826 DOI: 10.1016/j.jnutbio.2020.108504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
The potential anti-cancer properties of selenium (Se) and eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) have been documented. However, few studies have been conducted examining anti-tumor effects of nutritional supplements (NS) containing Se and EPA/DHA in combination with anti-cancer agents, such as taxol (Tax), adriamycin (Adr), and avastin (Ava). Compared with triple-negative breast cancer (TNBC)-bearing positive control (TB) mice, a low dose of Tax, Adr, and Ava decreased tumor size and the incidence of metastasis in TB-Tax, TB-Adr, and TB-Ava groups. Combination treatment with anti-cancer agent and NS (2.7 μg Se and 5.1 mg EPA/3.7 mg DHA/g) induced additional decreases in TB-Tax-NS, TB-Adr-NS, and TB-Ava-NS groups. Th1-associated cytokines were increased, and Th2-type cytokines were decreased significantly in TB mice with combination treatment than that of anti-cancer agent treatment alone. Combination treatment with anti-cancer agents and NS has also been shown to further increased tumor malondialdehyde (MDA) levels, lowered hypoxia-inducible factor (HIF)-1α, angiogenic markers (vascular endothelial growth factor [VEGF] and CD31) and metastatic potential, as well as reduced heat shock proteins, receptor tyrosine kinase AXL, and surface markers of cancer stem cells, and increased apoptotic proteins. For immune checkpoint molecules, combination treatment was associated with a greater decrease in programmed cell death ligand-1 (PD-L1) in both tumors and mammary glands, but PD-1 level in primary tumors was increased. Our results suggest that combination treatment with low-dose anti-cancer agents (Tax, Adr, and Ava) and oral supplementation of Se/ EPA/DHA significantly decreased tumor growth and metastatic progression in TNBC mice through multiple anti-tumor mechanisms.
Collapse
Affiliation(s)
- Chih-Hung Guo
- Micronutrition and Biomedical Nutrition Lab, Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan; Taiwan Nutraceutical Association, Taipei 105, Taiwan.
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | | | - Yi-Chun Lin
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | - Min-Yi Shih
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | | | - Chia-Lin Peng
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | - Susanne M Henning
- UCLA Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Guoo-Shyng W Hsu
- Department of Nutritional Science, Fu Jen University, New Taipei City 242, Taiwan
| | - Zhaoping Li
- UCLA Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| |
Collapse
|
6
|
Lemelin V, Bass AD, Sanche L. Low energy (6-18 eV) electron scattering from condensed thymidine (dT) III: absolute electronic excitation cross sections. Phys Chem Chem Phys 2020; 22:8364-8372. [PMID: 32266899 DOI: 10.1039/d0cp00198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absolute cross sections (CSs) for electronic excitation by low-energy electron (LEE) scattering, from condensed thymidine (dT) in the 6-18 eV incident energy range, were measured by high-resolution electron energy loss spectroscopy (HREELS). Various electron energy loss (EEL) spectra were acquired using 1 ML of dT condensed on a multilayer film of Ar held at about 20 K under ultra-high vacuum (∼1 × 10-11 Torr). dT is one of the most complex DNA constituents to be studied by HREELS and these spectra provide the first LEE energy-loss data for electronic excitation of a nucleoside. CSs for transitions to the states 13A', 13A'', 23A', 21A', 33A', 23A'', 43A', 33A'', 53A' and 51A' of dT were extracted from the EEL spectra. These states correlate to those previously measured for the thymine moiety. Two broad resonances are observed in the energy dependence of the CSs at around 8 and 10 eV; these energies are close to those found in earlier gas- and solid-phase studies on the interaction of LEEs with dT, thymine and related molecules. A quantitative comparison between the electronic CSs of dT and those of thymine and tetrahydrofuran indicates that no variation is induced in the electronic CSs of thymine upon chemically binding to a deoxyribose group.
Collapse
Affiliation(s)
- V Lemelin
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des radiations, Université de Sherbrooke, Québec J1H 5N4, Canada.
| | - A D Bass
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des radiations, Université de Sherbrooke, Québec J1H 5N4, Canada.
| | - L Sanche
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des radiations, Université de Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
7
|
CSCs in Breast Cancer-One Size Does Not Fit All: Therapeutic Advances in Targeting Heterogeneous Epithelial and Mesenchymal CSCs. Cancers (Basel) 2019; 11:cancers11081128. [PMID: 31394796 PMCID: PMC6721464 DOI: 10.3390/cancers11081128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Unlike other breast cancer subtypes, triple-negative breast cancer (TNBC) has no specific targets and is characterized as one of the most aggressive subtypes of breast cancer that disproportionately accounts for the majority of breast cancer-related deaths. Current conventional chemotherapeutics target the bulk tumor population, but not the cancer stem cells (CSCs) that are capable of initiating new tumors to cause disease relapse. Recent studies have identified distinct epithelial-like (E) ALDH+ CSCs, mesenchymal-like (M) CD44+/CD24- CSCs, and hybrid E/M ALDH+/CD44+/CD24- CSCs. These subtypes of CSCs exhibit differential signal pathway regulations, possess plasticity, and respond differently to treatment. As such, co-inhibition of different subtypes of CSCs is key to viable therapy. This review serves to highlight different pathway regulations in E and M CSCs in TNBC, and to further describe their role in disease progression. Potential inhibitors targeting E and/or M CSCs based on clinical trials are summarized for further investigation. Since future research needs to adopt suitable tumor models and take into account the divergence of E and M CSCs for the development of effective treatments, TNBC models for clinically translatable studies are further discussed.
Collapse
|
8
|
Petringa G, Romano F, Manti L, Pandola L, Attili A, Cammarata F, Cuttone G, Forte G, Manganaro L, Pipek J, Pisciotta P, Russo G, Cirrone GAP. Radiobiological quantities in proton-therapy: Estimation and validation using Geant4-based Monte Carlo simulations. Phys Med 2019; 58:72-80. [PMID: 30824153 DOI: 10.1016/j.ejmp.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The Geant4 Monte Carlo simulation toolkit was used to reproduce radiobiological parameters measured by irradiating three different cancerous cell lines with monochromatic and clinical proton beams. METHODS The experimental set-up adopted for irradiations was fully simulated with a dedicated open-source Geant4 application. Cells survival fractions was calculated coupling the Geant4 simulations with two analytical radiobiological models: one based on the LEM (Local Effect Model) approach and the other on a semi-empirical parameterisation. Results was evaluated and compared with experimental data. RESULTS AND CONCLUSIONS The results demonstrated the Geant4 ability to reproduce radiobiological quantities for different cell lines.
Collapse
Affiliation(s)
- G Petringa
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - F Romano
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; National Physical Laboratory, Acoustic and Ionizing Radiation Division, Teddington TW11 0LW, Middlesex, UK
| | - L Manti
- Dipartimento di Fisica E. Pancini, Universitá degli Studi Federico II di Napoli, Via Cinthia, I-80126 Napoli, Italy; INFN-NA, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - L Pandola
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy
| | - A Attili
- INFN-TO, Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - F Cammarata
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; IBFM-CNR, Institute of Molecular Bioimaging and Physiology - National Research Council, Cefalù, PA, Italy
| | - G Cuttone
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy
| | - G Forte
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; IBFM-CNR, Institute of Molecular Bioimaging and Physiology - National Research Council, Cefalù, PA, Italy
| | - L Manganaro
- INFN-TO, Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - J Pipek
- ELI-Beamline Project, Inst. Physics, ASCR, PALS Center, Prague, Czech Republic
| | - P Pisciotta
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - G Russo
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; IBFM-CNR, Institute of Molecular Bioimaging and Physiology - National Research Council, Cefalù, PA, Italy
| | - G A P Cirrone
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; ELI-Beamline Project, Inst. Physics, ASCR, PALS Center, Prague, Czech Republic.
| |
Collapse
|
9
|
Ignacio RMC, Gibbs CR, Kim S, Lee ES, Adunyah SE, Son DS. Serum amyloid A predisposes inflammatory tumor microenvironment in triple negative breast cancer. Oncotarget 2019; 10:511-526. [PMID: 30728901 PMCID: PMC6355188 DOI: 10.18632/oncotarget.26566] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Acute-phase proteins (APPs) are associated with a variety of disorders such as infection, inflammatory diseases, and cancers. The signature profile of APPs in breast cancer (BC) is poorly understood. Here, we identified serum amyloid A (SAA) for proinflammatory predisposition in BC through the signature profiles of APPs, interleukin (IL) and tumor necrosis factor (TNF) superfamily using publicly available datasets of tumor samples and cell lines. Triple-negative breast cancer (TNBC) subtype highly expressed SAA1/2 compared to HER2, luminal A (LA) and luminal B (LB) subtypes. IL1A, IL1B, IL8/CXCL8, IL32 and IL27RA in IL superfamily and CD70, TNFSF9 and TNFRSF21 in TNF superfamily were highly expressed in TNBC compared to other subtypes. SAA is restrictedly regulated by nuclear factor (NF)-κB and IL-1β, an NF-κB activator highly expressed in TNBC, increased the promoter activity of SAA1 in human TNBC MDA-MB231 cells. Interestingly, two κB-sites contained in SAA1 promoter were involved, and the proximal region (-96/-87) was more critical than the distal site (-288/-279) in regulating IL-1β-induced SAA1. Among the SAA receptors, TLR1 and TLR2 were highly expressed in TNBC. Cu-CPT22, TLR1/2 antagonist, abrogated IL-1β-induced SAA1 promoter activity. In addition, SAA1 induced IL8/CXCL8 promoter activity, which was partially reduced by Cu-CPT22. Notably, SAA1/2, TLR2 and IL8/CXCL8 were associated with a poor overall survival in mesenchymal-like TNBC. Taken together, IL-1-induced SAA via NF-κB-mediated signaling could potentiate an inflammatory burden, leading to cancer progression and high mortality in TNBC patients.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Carla R Gibbs
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Soohyun Kim
- Department of Veterinary Sciences, College of Veterinary Medicine, Kon-Kuk University, Seoul, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
10
|
Choi J, Park S, Yoon Y, Ahn J. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers. Bioinformatics 2018; 33:3619-3626. [PMID: 28961949 DOI: 10.1093/bioinformatics/btx487] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Motivation Identification of genes that can be used to predict prognosis in patients with cancer is important in that it can lead to improved therapy, and can also promote our understanding of tumor progression on the molecular level. One of the common but fundamental problems that render identification of prognostic genes and prediction of cancer outcomes difficult is the heterogeneity of patient samples. Results To reduce the effect of sample heterogeneity, we clustered data samples using K-means algorithm and applied modified PageRank to functional interaction (FI) networks weighted using gene expression values of samples in each cluster. Hub genes among resulting prioritized genes were selected as biomarkers to predict the prognosis of samples. This process outperformed traditional feature selection methods as well as several network-based prognostic gene selection methods when applied to Random Forest. We were able to find many cluster-specific prognostic genes for each dataset. Functional study showed that distinct biological processes were enriched in each cluster, which seems to reflect different aspect of tumor progression or oncogenesis among distinct patient groups. Taken together, these results provide support for the hypothesis that our approach can effectively identify heterogeneous prognostic genes, and these are complementary to each other, improving prediction accuracy. Availability and implementation https://github.com/mathcom/CPR. Contact jgahn@inu.ac.kr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jonghwan Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, The Republic of Korea
| | - Sanghyun Park
- Department of Computer Science, Yonsei University, Seoul, The Republic of Korea
| | - Youngmi Yoon
- Department of Computer Engineering, Gachon University, Seongnam-si, Gyeonggi-do, The Republic of Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon, The Republic of Korea
| |
Collapse
|
11
|
Blyth BJ, Cole AJ, MacManus MP, Martin OA. Radiation therapy-induced metastasis: radiobiology and clinical implications. Clin Exp Metastasis 2017; 35:223-236. [PMID: 29159430 DOI: 10.1007/s10585-017-9867-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.
| | - Aidan J Cole
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
12
|
Lemay R, Lepage M, Tremblay L, Therriault H, Charest G, Paquette B. Tumor Cell Invasion Induced by Radiation in Balb/C Mouse is Prevented by the Cox-2 Inhibitor NS-398. Radiat Res 2017; 188:605-614. [PMID: 28956695 DOI: 10.1667/rr14716.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation stimulates the expression of inflammatory mediators known to increase cancer cell invasion. Therefore, it is important to determine whether anti-inflammatory drugs can prevent this adverse effect of radiation. Since cyclooxygenase-2 (COX-2) is a central player in the inflammatory response, we performed studies to determine whether the COX-2 inhibitor NS-398 can reduce the radiation enhancement of cancer cell invasion. Thighs of Balb/c mice treated with NS-398 were irradiated with either daily fractions of 7.5 Gy for five consecutive days or a single 30 Gy dose prior to subcutaneous injection of nonirradiated MC7-L1 mammary cancer cells. Five weeks later, tumor invasion, blood vessel permeability and interstitial volumes were assessed using magnetic resonance imaging (MRI). Matrix metalloproteinase-2 (MMP-2) was measured in tissues by zymography at 21 days postirradiation. Cancer cell invasion in the mouse thighs was increased by 12-fold after fractionated irradiations (5 × 7.5 Gy) and by 17-fold after a single 30 Gy dose of radiation. This stimulation of cancer cell invasion was accompanied by a significant increase in the interstitial volume and a higher level of the protease MMP-2. NS-398 treatment largely prevented the stimulation of cancer cell invasion, which was associated with a reduction in interstitial volume in the irradiated thighs and a complete suppression of MMP-2 stimulation. In conclusion, this animal model using MC7-L1 cells demonstrates that radiation-induced cancer cell invasion can be largely prevented with the COX-2 inhibitor NS-398.
Collapse
Affiliation(s)
| | - Martin Lepage
- b Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Luc Tremblay
- b Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | |
Collapse
|
13
|
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11:755-769. [PMID: 28548345 PMCID: PMC5496498 DOI: 10.1002/1878-0261.12083] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Kathryn E Ware
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shivee Gilja
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Cheng L, Liu J, Liu Q, Liu Y, Fan L, Wang F, Yu H, Li Y, Bu L, Li X, Wei W, Wang H, Sun G. Exosomes from Melatonin Treated Hepatocellularcarcinoma Cells Alter the Immunosupression Status through STAT3 Pathway in Macrophages. Int J Biol Sci 2017; 13:723-734. [PMID: 28655998 PMCID: PMC5485628 DOI: 10.7150/ijbs.19642] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression is a significant factor in the progression of tumor invasion and metastasis. Melatonin, a well-known hormone, has certain cytotoxic and immune regulatory effects to inhibit tumor function. Exosomes are small membrane vesicles released by many kinds of cells, which contain different macromolecules, such as mRNAs and microRNAs (miRNAs), and proteins that can mediate communications between cells. Tumor-derived exosomes may cause immunosuppression, however, it is unknown whether melatonin can attenuate an immunosuppressive status by altering the function of tumor-derived exosomes. In the present study, we evaluated the effects of hepatocellularcarcinoma-derived exosomes (Exo-con) and exosomes derived from hepatocellularcarcinoma cells treated with 0.1 mM melatonin (Exo-MT), on the expression of inflammatory factors and programmed death ligand 1(PD-L1) by co-culturing Exo-con and Exo-MT, respectively, with macrophages differentiated from THP-1 cells or RAW264.7 cells. Our in vitro results indicate that Exo-MT can downregulate the expression of PD-L1 on macrophages while Exo-con can upregulate the expression of PD-L1 through flow cytometry and immunofluorescence analysis. In addition, Exo-con upregulates the secretion of cytokines, such as IL-6, IL-10, IL-1β, and TNF-α in macrophages. Accordingly, Exo-MT could attenuate the high expression of these inflammatory cytokines. Furthermore, in vivo experiments confirmed the results found in vitro. PD-L1 expression and cytokine secretion were lower in the Exo-MT group compared with those in the Exo-con group. Working to identify a specific mechanism, our research shows that Exo-MT decreases STAT3 activation compared to the Exo-con group. In summary, we found exosomes from melatonin treated hepatocellularcarcinoma cells alters the immunosupression status through STAT3 pathway in macrophages. Our study may provide a new avenue to investigate the mechanisms of melatonin in regulating an immunosuppressive status.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiatao Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Qingqing Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Yu Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lulu Fan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Fang Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Hanqing Yu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Yuhuan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lijia Bu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaoqiu Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, Anhui, China
| | - Guoping Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|