1
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
2
|
Hertel NE, Biegalski SR, Nelson VI, Nelson WA, Mukhopadhyay S, Su Z, Chan AM, Kesarwala AH, Dynan WS. Compact portable sources of high-LET radiation: Validation and potential application for galactic cosmic radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:163-169. [PMID: 36336362 DOI: 10.1016/j.lssr.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Implementation of a systematic program for galactic cosmic radiation (GCR) countermeasure discovery will require convenient access to ground-based space radiation analogs. The current gold standard approach for GCR simulation is to use a particle accelerator for sequential irradiation with ion beams representing different GCR components. This has limitations, particularly for studies of non-acute responses, strategies that require robotic instrumentation, or implementation of complex in vitro models that are emerging as alternatives to animal experimentation. Here we explore theoretical and practical issues relating to a different approach to provide a high-LET radiation field for space radiation countermeasure discovery, based on use of compact portable sources to generate neutron-induced charged particles. We present modeling studies showing that DD and DT neutron generators, as well as an AmBe radionuclide-based source, generate charged particles with a linear energy transfer (LET) distribution that, within a range of biological interest extending from about 10 to 200 keV/μm, resembles the LET distribution of reference GCR radiation fields experienced in a spacecraft or on the lunar surface. We also demonstrate the feasibility of using DD neutrons to induce 53BP1 DNA double-strand break repair foci in the HBEC3-KT line of human bronchial epithelial cells, which are widely used for studies of lung carcinogenesis. The neutron-induced foci are larger and more persistent than X ray-induced foci, consistent with the induction of complex, difficult-to-repair DNA damage characteristic of exposure to high-LET (>10 keV/μm) radiation. We discuss limitations of the neutron approach, including low fluence in the low LET range (<10 keV/μm) and the absence of certain long-range features of high charge and energy particle tracks. We present a concept for integration of a compact portable source with a multiplex microfluidic in vitro culture system, and we discuss a pathway for further validation of the use of compact portable sources for countermeasure discovery.
Collapse
Affiliation(s)
- Nolan E Hertel
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America.
| | - Steven R Biegalski
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - Victoria I Nelson
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - William A Nelson
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - Sharmistha Mukhopadhyay
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - Zitong Su
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, 30322 Atlanta GA, United States of America
| | - Alexis M Chan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, 30322 Atlanta GA, United States of America
| | - Aparna H Kesarwala
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America
| | - William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, 30322 Atlanta GA, United States of America.
| |
Collapse
|
3
|
Verma SD, Passerat de la Chapelle E, Malkani S, Juran CM, Boyko V, Costes SV, Cekanaviciute E. Astrocytes regulate vascular endothelial responses to simulated deep space radiation in a human organ-on-a-chip model. Front Immunol 2022; 13:864923. [PMID: 36275678 PMCID: PMC9580499 DOI: 10.3389/fimmu.2022.864923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Central nervous system (CNS) damage by galactic cosmic ray radiation is a major health risk for human deep space exploration. Simulated galactic cosmic rays or their components, especially high Z-high energy particles such as 56Fe ions, cause neurodegeneration and neuroinflammation in rodent models. CNS damage can be partially mediated by the blood-brain barrier, which regulates systemic interactions between CNS and the rest of the body. Astrocytes are major cellular regulators of blood-brain barrier permeability that also modulate neuroinflammation and neuronal health. However, astrocyte roles in regulating CNS and blood-brain barrier responses to space radiation remain little understood, especially in human tissue analogs. In this work, we used a novel high-throughput human organ-on-a-chip system to evaluate blood-brain barrier impairments and astrocyte functions 1-7 days after exposure to 600 MeV/n 56Fe particles and simplified simulated galactic cosmic rays. We show that simulated deep space radiation causes vascular permeability, oxidative stress, inflammation and delayed astrocyte activation in a pattern resembling CNS responses to brain injury. Furthermore, our results indicate that astrocytes have a dual role in regulating radiation responses: they exacerbate blood-brain barrier permeability acutely after irradiation, followed by switching to a more protective phenotype by reducing oxidative stress and pro-inflammatory cytokine and chemokine secretion during the subacute stage.
Collapse
Affiliation(s)
- Sonali D. Verma
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Estrella Passerat de la Chapelle
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Sherina Malkani
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Cassandra M. Juran
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Valery Boyko
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Bionetics, Yorktown, VA, United States
| | - Sylvain V. Costes
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- *Correspondence: Egle Cekanaviciute,
| |
Collapse
|
4
|
Laiakis EC, Canadell MP, Grilj V, Harken AD, Garty GY, Brenner DJ, Smilenov L, Fornace AJ. Small Molecule Responses to Sequential Irradiation with Neutrons and Photons for Biodosimetry Applications: An Initial Assessment. Radiat Res 2021; 196:468-477. [PMID: 33857313 PMCID: PMC9004252 DOI: 10.1667/rade-20-00032.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
Mass casualty exposure scenarios from an improvised nuclear device are expected to be far more complex than simple photons. Based on the proximity to the explosion and potential shielding, a mixed field of neutrons and photons comprised of up to approximately 30% neutrons of the total dose is anticipated. This presents significant challenges for biodosimetry and for short-term and long-term medical treatment of exposed populations. In this study we employed untargeted metabolomic methods to develop a biosignature in urine and serum from C57BL/6 mice to address radiation quality issues. The signature was developed in males and applied to samples from female mice to identify potential sex differences. Thirteen urinary (primarily amino acids, vitamin products, nucleotides) and 18 serum biomarkers (primarily mitochondrial and fatty acid β oxidation intermediates) were selected and evaluated in samples from day 1 and day 7 postirradiation. Sham-irradiated groups (controls) were compared to an equitoxic dose (3 Gy X-ray equivalent) from X rays (1.2 Gy/min), neutrons (∼1 Gy/h), or neutrons-photons. Results showed a time-dependent increase in the efficiency of the signatures, with serum providing the highest levels of accuracy in distinguishing not only between exposed from non-exposed populations, but also between radiation quality (photon exposures vs. exposures with a neutron component) and in between neutron-photon exposures (5, 15 or 25% of neutrons in the total dose) for evaluating the neutron contribution. A group of metabolites known as acylcarnitines was only responsive in males, indicating the potential for different mechanisms of action in baseline levels and of neutron-photon responses between the two sexes. Our findings highlight the potential of metabolomics in developing biodosimetric methods to evaluate mixed exposures with high sensitivity and specificity.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer
Center, Georgetown University, Washington, DC
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington, DC
| | | | - Veljko Grilj
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - Guy Y. Garty
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New
York, New York
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University, New
York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer
Center, Georgetown University, Washington, DC
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington, DC
| |
Collapse
|
5
|
Soler I, Yun S, Reynolds RP, Whoolery CW, Tran FH, Kumar PL, Rong Y, DeSalle MJ, Gibson AD, Stowe AM, Kiffer FC, Eisch AJ. Multi-Domain Touchscreen-Based Cognitive Assessment of C57BL/6J Female Mice Shows Whole-Body Exposure to 56Fe Particle Space Radiation in Maturity Improves Discrimination Learning Yet Impairs Stimulus-Response Rule-Based Habit Learning. Front Behav Neurosci 2021; 15:722780. [PMID: 34707486 PMCID: PMC8543003 DOI: 10.3389/fnbeh.2021.722780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.
Collapse
Affiliation(s)
- Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cody W. Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Priya L. Kumar
- University of Pennsylvania, Philadelphia, PA, United States
| | - Yuying Rong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J. DeSalle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adam D. Gibson
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurological Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Frederico C. Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
7
|
Klein PM, Alaghband Y, Doan NL, Ru N, Drayson OGG, Baulch JE, Kramár EA, Wood MA, Soltesz I, Limoli CL. Acute, Low-Dose Neutron Exposures Adversely Impact Central Nervous System Function. Int J Mol Sci 2021; 22:9020. [PMID: 34445726 PMCID: PMC8396607 DOI: 10.3390/ijms22169020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.
Collapse
Affiliation(s)
- Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Olivia G. G. Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| |
Collapse
|
8
|
Holden S, Perez R, Hall R, Fallgren CM, Ponnaiya B, Garty G, Brenner DJ, Weil MM, Raber J. Effects of Acute and Chronic Exposure to a Mixed Field of Neutrons and Photons and Single or Fractionated Simulated Galactic Cosmic Ray Exposure on Behavioral and Cognitive Performance in Mice. Radiat Res 2021; 196:31-39. [PMID: 33857301 PMCID: PMC8297553 DOI: 10.1667/rade-20-00228.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
During space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons. In C3H male mice, there were effects of acute radiation exposure on activity levels in the open field containing objects. In addition, there were radiation-aspirin interactions for effects of chronic radiation exposure on activity levels and measures of anxiety in the open field, and on activity levels in the open field containing objects. There were also detrimental effects of aspirin and chronic radiation exposure on the ability of mice to distinguish the familiar and novel object. Finally, there were effects of acute GCRsim on activity levels in the open field containing objects. Activity levels were lower in GCRsim than sham-irradiated mice. Thus, acute and chronic irradiation to a mixture of neutrons and photons and acute and fractionated GCRsim have differential effects on behavioral and cognitive performance of C3H mice. Within the limitations of our study design, aspirin does not appear to be a suitable countermeasure for effects of chronic exposure to space radiation on cognitive performance.
Collapse
Affiliation(s)
- Sarah Holden
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Ruby Perez
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Reed Hall
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Christina M. Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Brian Ponnaiya
- Columbia University Center for Radiological Research, New York, New York 10032
| | - Guy Garty
- Columbia University Center for Radiological Research, New York, New York 10032
| | - David J. Brenner
- Columbia University Center for Radiological Research, New York, New York 10032
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
9
|
Chronic Low Dose Neutron Exposure Results in Altered Neurotransmission Properties of the Hippocampus-Prefrontal Cortex Axis in Both Mice and Rats. Int J Mol Sci 2021; 22:ijms22073668. [PMID: 33915974 PMCID: PMC8036585 DOI: 10.3390/ijms22073668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy). In the present study, we report neutron exposure induced synaptic plasticity in the medial prefrontal cortex, accompanied by microglial activation and significant synaptic loss in the hippocampus. In a parallel study, neutron exposure was also found to alter fluorescence assisted single synaptosome LTP (FASS-LTP) in the hippocampus of rats, that may be related to a reduced ability to insert AMPAR into the post-synaptic membrane, which may arise from increased phosphorylation of the serine 845 residue of the GluA1 subunit. Thus, we demonstrate for the first time, that low dose chronic neutron irradiation impacts homeostatic synaptic plasticity in the hippocampal-cortical circuit in two rodent species, and that the ability to successfully encode associative recognition memory is a dynamic, multicircuit process, possibly involving compensatory changes in AMPAR density on the synaptic surface.
Collapse
|
10
|
Dissmore T, DeMarco AG, Jayatilake M, Girgis M, Bansal S, Li Y, Mehta K, Sridharan V, Gill K, Bansal S, Tyburski JB, Cheema AK. Longitudinal metabolic alterations in plasma of rats exposed to low doses of high linear energy transfer radiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:219-233. [PMID: 33902389 PMCID: PMC9896584 DOI: 10.1080/26896583.2020.1865027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Astronauts embarking on deep space missions are at high risk of long-term exposure to low doses of high linear energy transfer (LET) radiation, which can contribute to the development of cancer and multiple degenerative diseases. However, long term effects of exposure to low doses of high LET radiation in plasma metabolite profiles have not been elucidated. We utilized an untargeted metabolomics and lipidomics approach to analyze plasma obtained from adult male Long Evans rats to determine the longitudinal effects of low-dose proton and low-dose oxygen ion whole-body irradiation on metabolic pathways. Our findings reveal that radiation exposure induced modest changes in the metabolic profiles in plasma, 7 months after exposure. Furthermore, we identified some common metabolite dysregulations between protons and oxygen ions, which may indicate a similar mechanism of action for both radiation types.
Collapse
Affiliation(s)
- Tixieanna Dissmore
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Andrew G DeMarco
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Khyati Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kirandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Sunil Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Takahashi A, Yamanouchi S, Takeuchi K, Takahashi S, Tashiro M, Hidema J, Higashitani A, Adachi T, Zhang S, Guirguis FNL, Yoshida Y, Nagamatsu A, Hada M, Takeuchi K, Takahashi T, Sekitomi Y. Combined Environment Simulator for Low-Dose-Rate Radiation and Partial Gravity of Moon and Mars. Life (Basel) 2020; 10:life10110274. [PMID: 33172150 PMCID: PMC7694743 DOI: 10.3390/life10110274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Deep space exploration by humans has become more realistic, with planned returns to the Moon, travel to Mars, and beyond. Space radiation with a low dose rate would be a constant risk for space travelers. The combined effects of space radiation and partial gravity such as on the Moon and Mars are unknown. The difficulty for such research is that there are no good simulating systems on the ground to investigate these combined effects. To address this knowledge gap, we developed the Simulator of the environments on the Moon and Mars with Neutron irradiation and Gravity change (SwiNG) for in vitro experiments using disposable closed cell culture chambers. The device simulates partial gravity using a centrifuge in a three-dimensional clinostat. Six samples are exposed at once to neutrons at a low dose rate (1 mGy/day) using Californium-252 in the center of the centrifuge. The system is compact including two SwiNG devices in the incubator, one with and one without radiation source, with a cooling function. This simulator is highly convenient for ground-based biological experiments because of limited access to spaceflight experiments. SwiNG can contribute significantly to research on the combined effects of space radiation and partial gravity.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
- Correspondence: ; Tel.: +81-27-220-7917
| | - Sakuya Yamanouchi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Kazuomi Takeuchi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Shogo Takahashi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Jun Hidema
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Takuya Adachi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Shenke Zhang
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Fady Nagy Lotfy Guirguis
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Kunihito Takeuchi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Tohru Takahashi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Yuji Sekitomi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
- Material Solutions Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
13
|
Response to the Commentary from Bevelacqua et al. eNeuro 2020; 7:ENEURO.0439-19.2019. [PMID: 31857345 PMCID: PMC7031857 DOI: 10.1523/eneuro.0439-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
|
14
|
Britten RA, Duncan VD, Fesshaye AS, Wellman LL, Fallgren CM, Sanford LD. Sleep fragmentation exacerbates executive function impairments induced by protracted low dose rate neutron exposure. Int J Radiat Biol 2019; 97:1077-1087. [PMID: 31724895 DOI: 10.1080/09553002.2019.1694190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Astronauts on the planned missions to Mars are expected to have to work more autonomously than on previous missions. Thus mission success may be influenced by the astronauts' ability to respond quickly to unexpected problems, processes that require several executive functions. The purpose of this study was to determine the impact that prolonged low dose and low dose rate exposure to neutrons had on two executive functions, and whether the severity and incidence of cognitive impairment was altered by sleep fragmentation. MATERIALS AND METHODS In this study we assessed the impact that prolonged (six month) low dose rate neutron exposure had on the ability of male Wistar rats to perform in two executive function tasks (i.e. attentional set shifting (ATSET) - a constrained cognitive flexibility task and the UCFlex assay - an unconstrained cognitive flexibility task). In recognition of the fact that astronauts also have to contend with inadequate sleep quantity and quality for much of their time in space, we determined the impact that relatively mild sleep disruption had on the ability to perform in the ATSET test in sham and neutron-irradiated rats. RESULTS Chronic low dose (18 cGy) and dose-rate (1 mGy/day) exposure of rats to mixed neutron and photon over the course of six months resulted in significant impairment of simple discrimination (SD) performance. Should similar effects occur in astronauts subjected to low dose rate exposure to Space Radiation, the impairment of SD performance would result in a decreased ability to identify and learn the 'rules' required to respond to a new task or situation. Analysis of the behavioral data by kernel density estimation revealed that 40% of rats had severe ATSET impairments. This value may be a best-case scenario because exposure to neutrons also adversely impacted performance in the UCFlex task. Furthermore, when the good performing rats were reevaluated after they had been subjected to sleep fragmentation, additional ATSET performance decrements were observed in the set shifting stages of the ATSET test, with only 7.4% of the neutron exposed rats able to successfully perform ATSET under normal and sleep fragmented conditions, as opposed to ∼55% of shams. CONCLUSION Protracted low dose and low dose rate neutron exposures impairs executive functions in a high percentage of rats that were normally rested, however further detriments in performance become evident when the rats are subjected to sleep fragmentation.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
- Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vania D Duncan
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Arriyam S Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L Wellman
- Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Christina M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Larry D Sanford
- Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
15
|
Perez RE, Younger S, Bertheau E, Fallgren CM, Weil MM, Raber J. Effects of chronic exposure to a mixed field of neutrons and photons on behavioral and cognitive performance in mice. Behav Brain Res 2019; 379:112377. [PMID: 31765722 DOI: 10.1016/j.bbr.2019.112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/28/2023]
Abstract
To simulate the space radiation environment astronauts are exposed to, most studies involve acute exposures but during a space mission there will be chronic (long-lasting) exposures. To address this knowledge gap, a neutron irradiator using a 252Cf (252Californium) source was used to generate a mixed field of neutrons and photons to simulate chronic, low dose rate exposures to high LET radiation. In the present study, we assessed the effects chronic neutron exposure starting at 60 days of age on behavioral and cognitive performance of BALB/c female and C3H male mice at 600 and 700 days of age as part of an opportunistic study that took advantage of the availability of neutron and sham-irradiated mice from a radiation carcinogenesis experiment. There were profound dose- and time point-dependent effects of chronic neutron exposure. At the 600-day time point, irradiated BALB/c female mice showed improved nest building at all three doses. At the 700-day, but not 600-day, time point slightly but significantly increased body weights were seen in C3H male mice exposed to 0.118 Gy. At the 600-day time point BALB/c female mice irradiated with 0.2 Gy did, like sham-irradiated, not show preferential exploration of the novel object that was seen in mice irradiated with 0.118 or 0.4 Gy. In C3H male mice exposed to 0.4 Gy and at the 600-day time point, increased measures of anxiety were observed on days 1 and 2 in the open field. Thus, different outcome measures show distinct dose-response relationships, with some anticipated to worsen performance during space missions, like increased measures of anxiety, while other anticipated to enhance performance, such as increased nest building and object recognition.
Collapse
Affiliation(s)
- Ruby E Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Skyler Younger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elin Bertheau
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christina M Fallgren
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael M Weil
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|