1
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619652. [PMID: 39484519 PMCID: PMC11526895 DOI: 10.1101/2024.10.22.619652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury. To meet this critical need, Synedgen Inc., has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy total body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory response mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera, while suppressing potentially pathogenic bacteria compared with vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and effectively reducing proinflammatory responses. Further development of this drug as an FDA-approved medical countermeasure will be of critical importance in the event of a radiation public health emergency.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Jeong J, Sun S, Kim YJ, Sohn KY, Kim JW, Lee JS. Mitigating the Effects of 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol on Gastrointestinal Acute Radiation Syndrome after Total-Body Irradiation in Mice. Radiat Res 2024; 202:706-718. [PMID: 39187264 DOI: 10.1667/rade-24-00126.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Total-body irradiation (TBI) with gamma rays can damage organisms in various unexpected ways and trigger several organ dysfunction syndromes, such as acute radiation syndrome (ARS). Hematopoietic cells and enterocytes are particularly sensitive to radiation due to their self-renewal ability and rapid division, which leads to hematopoietic ARS (H-ARS) and gastrointestinal ARS (GI-ARS). We previously showed that a lipid-based small molecule, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), improved 30-day survival and alleviated H-ARS symptoms in BALB/c mice after a lethal dose (LD70/30) of gamma-ray TBI. In this study, we investigated the mitigating effects of PLAG on radiation-induced GI damage that occurs under the same conditions as H-ARS in BALB/c mice. Our study showed that PLAG facilitated the structural restoration of intestinal tissues by increasing villus height, crypt depth, crypt number, mucin-producing goblet cells, and proliferating cell nuclear antigen (PCNA)-positive crypt cells. PLAG significantly improved intestinal absorptive capacity and reduced intestinal injury-induced bacterial translocation. In addition, PLAG effectively inhibited radiation-induced necroptosis signaling activation in the intestinal crypt cells, which was responsible for sustained tissue damage and the release of high mobility group box 1 (HMGB1), a typical damage-associated molecular pattern. Overall, our findings support the radiation-mitigating potential of PLAG against GI-ARS after accidental radiation exposure.
Collapse
Affiliation(s)
- Jinseon Jeong
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| | - Sojung Sun
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Yong-Jae Kim
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| | - Ki-Young Sohn
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| | - Jae Wha Kim
- Division of Biomaterials Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jae Sam Lee
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| |
Collapse
|
3
|
Lin C, Xiang Y, Zhang Y, Yang Z, Chen N, Zhang W, Hu L, Chen J, Luo Y, Wang X, Xiao Y, Zhang Q, Ran X, Chen L, Dai J, Li Z, Ran Q. Interleukin-12 sustained release system promotes hematopoietic recovery after radiation injury. MedComm (Beijing) 2024; 5:e704. [PMID: 39268354 PMCID: PMC11391269 DOI: 10.1002/mco2.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted the hematopoietic recovery of mice who had received sublethal-dose irradiation. Local intra-bone marrow (intra-BM) injection of RGD-Alg/Laponite@IL-12 hydrogel effectively stimulated IL12 receptor-phosphoinositide 3-kinase/protein kinase B (IL-12R-PI3K/AKT) signaling axis, which promoted proliferation and hematopoietic growth factors secretion of BM mesenchymal stem/stromal cells. This signaling axis facilitates the repair of the hematopoietic microenvironment and plays a pivotal role in hematopoietic reconstitution. In conclusion, we describe a biomaterial-sustained release of IL-12 for the treatment of irradiated hematopoietic injury and provide a new therapeutic strategy for hematopoietic ARS.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yangyang Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Nanxi Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jianxin Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Ya Luo
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Xueying Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering Chongqing University Chongqing China
| | - Qing Zhang
- Institute of Respiratory Diseases The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Xi Ran
- Department of Clinical Laboratory The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jigang Dai
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
- Department of Thoracic Surgery The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| |
Collapse
|
4
|
Singh VK, Serebrenik AA, Wise SY, Petrus SA, Fatanmi OO, Kaytor MD. BIO 300: A Prophylactic Radiation Countermeasure for Acute Radiation Syndrome. Mil Med 2024; 189:390-398. [PMID: 39160790 DOI: 10.1093/milmed/usae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Exposure to high doses of ionizing radiation can result in hematopoietic acute radiation syndrome. Currently, there is no radiation medical countermeasure approved by the U.S. FDA which can be used before radiation exposure to protect exposed individuals. Here we aimed to evaluate the therapeutic potential of an aqueous suspension of synthetic genistein nanoparticles (BIO 300) as a radioprotectant in a pilot efficacy study using a nonhuman primate model of total body irradiation. MATERIALS AND METHODS Eight rhesus macaques were divided into two groups; four received vehicle and four received BIO 300 Injectable Suspension 24 h before 5.8 Gy total-body irradiation. Survival, blood cell counts, blood chemistry, and clinical parameters were monitored over the 60 days of the study. Tissues were collected at necropsy 60 days post-irradiation or from animals that met unscheduled euthanasia criteria and subjected to histopathological analysis. Tissues analyzed included the duodenum, jejunum, ileum, sternum, lung, heart, liver, kidney, spleen, gut-associated lymphoid tissue, and urinary bladder. RESULTS In this pilot study, all BIO 300 Injectable Suspension treated animals survived to day 60, while only 50% of the vehicle-treated animals survived. We found that BIO 300 Injectable Suspension did not mediate an improvement in blood cell counts (e.g., neutrophils, platelets, white blood cells). However, BIO 300 Injectable Suspension treated animals had a lower incidence of fever and febrile neutropenia, were able to better maintain their body weight post radiation exposure, and exhibited less anemia and faster recovery from anemia. Histopathological analysis revealed that BIO 300-treated animals had less irradiation-induced damage to the sternum and other tissues compared to vehicle controls. CONCLUSIONS BIO 300's mechanism of action is complex and protection against irradiation is attainable without much improvement in the complete blood count (CBC) profile. BIO 300's mechanism for radioprotection involves multiple biological pathways and systems.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah A Petrus
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
5
|
Wang Y, Cheng Y, Zhang P, Huang D, Zhai X, Feng Z, Fang D, Liu C, Du J, Cai J. FG-4592 protected haematopoietic system from ionising radiation in mice. Immunology 2024; 172:614-626. [PMID: 38685744 DOI: 10.1111/imm.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Ionising radiation exposure can lead to acute haematopoietic radiation syndrome. Despite significant advancements in the field of radioprotection, no drugs with high efficacy and low toxicity have yet been approved by the Food and Drug Administration. FG-4592, as a proline hydroxylase inhibitor, may play an important role in radioprotection of the haematopoietic system. Mice were peritoneal injected with FG-4592 or normal saline. After irradiation, the survival time, body weight, peripheral blood cell and bone marrow cell (BMC) count, cell apoptosis, pathology were analysed and RNA-sequence technique (RNA-Seq) was conducted to explore the mechanism of FG-4592 in the haematopoietic system. Our results indicated that FG-4592 improved the survival rate and weight of irradiated mice and protected the spleen, thymus and bone marrow from IR-induced injury. The number of BMCs was increased and protected against IR-induced apoptosis. FG-4592 also promoted the recovery of the blood system and erythroid differentiation. The results of RNA-Seq and Western blot showed that the NF-κB signalling pathway and hypoxia-inducible factor-1 (HIF-1) signalling pathway were upregulated by FG-4592. Meanwhile, RT-PCR results showed that FG-4592 could promote inflammatory response significantly. FG-4592 exhibited radioprotective effects in the haematopoietic system by promoting inflammatory response and targeting the NF-κB, HIF signalling pathway.
Collapse
Affiliation(s)
- Yuedong Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Pei Zhang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Daqian Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xuanlu Zhai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhenlan Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Duo Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Yang J, Luan H, Shen X, Xiong G, Wang X, Zhang X, Ji W, Jiang Y, Dai Y, Zhang E, Ou H, Cong Y, Wang X, Xing S, Yu Z. Single-dose Administration of Recombinant Human Thrombopoietin Enhances Survival and Hematopoietic Reconstruction in Canines Irradiated with 3 Gy Gamma Radiation. Radiat Res 2024; 202:51-58. [PMID: 38679421 DOI: 10.1667/rade-23-00206.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
We conducted this study to investigate the radioprotective effects of recombinant human thrombopoietin (rhTPO) on beagle dogs irradiated with 3.0 Gy 60Co gamma rays. Fifteen healthy adult beagles were randomly assigned to a control group with alleviating care, and 5 and 10 μg/kg rhTPO treatment group. All animals received total-body irradiation using 60Co γ-ray source at a dose of 3.0 Gy (dose rate was 69.1 cGy/min). The treatment group received intramuscular injection of rhTPO 5 and 10 μg/kg at 2 h postirradiation, and the control group was administrated the same volume of normal saline. The survival rate, clinical signs, peripheral hemogram, serum biochemistry, and histopathological examination of animals in each group were assessed. Single administration of 10 μg/kg rhTPO at 2 h postirradiation promoted the recovery of multilineage hematopoiesis and improved the survival rate of beagles irradiated with 3 Gy 60Co γ rays. The administration of 10 μg/kg rhTPO alleviated fever and bleeding, reduced the requirement for supportive care, and may have mitigated multiple organ damage.
Collapse
Affiliation(s)
- Jinkun Yang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Luan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xing Shen
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guolin Xiong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xun Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xuewen Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenyu Ji
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Jiang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yangyang Dai
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Enqi Zhang
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hongling Ou
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuwen Cong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinru Wang
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shuang Xing
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zuyin Yu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- School of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Siemionow M, Bieda K, Stawarz K, Cyran M, Chambily L, Kusza K. Donor-Recipient Chimeric Cell Transplantation as the Bridging Therapy for Mitigating Total Body Irradiation-Induced Injury. Stem Cells Dev 2024; 33:343-354. [PMID: 38753703 DOI: 10.1089/scd.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
In recent years, cell-based therapies have emerged as a promising approach for mitigating radiation-induced injury. Acute radiation syndrome (ARS) results from exposure to high doses of radiation over a short time period. This study aimed to compare the efficacy of donor-recipient chimeric cell (DRCC) therapy in mitigating ARS induced by a total body irradiation (TBI) dose of 10 gray (Gy). Thirty irradiated Lewis rats were employed as ARS models to assess the efficacy of systemic-intraosseous transplantation of different cellular therapies in five experimental groups (n = 6/group): saline control, isogenic bone marrow transplantation (isoBMT), allogeneic BMT (alloBMT), DRCC, and alloBMT+DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. The creation of DRCC and chimeric state was confirmed by flow cytometry (FC) and confocal microscopy (CM). Recovery of blood parameters was evaluated through complete blood count analysis. Graft-versus-host disease (GvHD) signs were assessed clinically and histopathologically using kidney, skin, and small intestine biopsies. FC and CM confirmed the fusion feasibility and the chimeric state of DRCC. A 100% mortality rate was observed in the saline control group, whereas a 100% survival was recorded following DRCC transplantation, correlating with significant recovery of peripheral blood parameters. In addition, no clinical or histopathological signs of GvHD were observed after DRCC and alloBMT+DRCC transplantation. These findings confirm efficacy of DRCC in mitigating GvHD, promoting hematopoietic recovery, and increasing animal survival following TBI-induced ARS. Moreover, tolerogenic and immunomodulatory properties of DRCC therapy support its feasibility for clinical applications. Therefore, this study introduces DRCC as an innovative bridging therapy for alleviating the acute effects of TBI, with broad implications for stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
- Chair and Department of Traumatology, Department of Orthopaedics, and Department of Surgery of the Hand, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Bieda
- Department of Anesthesiology, Department of Intensive Therapy, and Department of Pain Management, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Malgorzata Cyran
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Krzysztof Kusza
- Department of Anesthesiology, Department of Intensive Therapy, and Department of Pain Management, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Carpenter AD, Li Y, Wise SY, Fatanmi OO, Petrus SA, Fam CM, Carlson SJ, Cox GN, Cheema AK, Singh VK. Pharmacokinetic and Metabolomic Studies with a Promising Radiation Countermeasure, BBT-059 (PEGylated interleukin-11), in Rhesus Nonhuman Primates. Radiat Res 2024; 202:26-37. [PMID: 38714310 PMCID: PMC11295257 DOI: 10.1667/rade-23-00194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.
Collapse
Affiliation(s)
- Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sarah A. Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | | | | | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
9
|
Singh VK, Wise SY, Fatanmi OO, Petrus SA, Carpenter AD, Lugo-Roman LA, Lee SH, Hauer-Jensen M, Seed TM. Pathology of acute sub-lethal or near-lethal irradiation of nonhuman primates prophylaxed with the nutraceutical, gamma tocotrienol. Sci Rep 2024; 14:13315. [PMID: 38858439 PMCID: PMC11164941 DOI: 10.1038/s41598-024-64102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Luis A Lugo-Roman
- Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, 20814, USA
| |
Collapse
|
10
|
Carpenter AD, Li Y, Fatanmi OO, Wise SY, Petrus SA, Janocha BL, Cheema AK, Singh VK. Metabolomic Profiles in Tissues of Nonhuman Primates Exposed to Either Total- or Partial-Body Radiation. Radiat Res 2024; 201:371-383. [PMID: 38253059 DOI: 10.1667/rade-23-00091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 01/24/2024]
Abstract
A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Brianna L Janocha
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
11
|
Singh VK, Wise SY, Fatanmi OO, Petrus SA, Carpenter AD, Lee SH, Hauer-Jensen M, Seed TM. Histopathological studies of nonhuman primates exposed to supralethal doses of total- or partial-body radiation: influence of a medical countermeasure, gamma-tocotrienol. Sci Rep 2024; 14:5757. [PMID: 38459144 PMCID: PMC10923821 DOI: 10.1038/s41598-024-56135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, 20814, USA
| |
Collapse
|
12
|
Singh VK, Seed TM. The potential value of 5-androstenediol in countering acute radiation syndrome. Drug Discov Today 2024; 29:103856. [PMID: 38097137 DOI: 10.1016/j.drudis.2023.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
14
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
15
|
Garg TK, Garg S, Miousse IR, Wise SY, Carpenter AD, Fatanmi OO, van Rhee F, Singh VK, Hauer-Jensen M. Modulation of Hematopoietic Injury by a Promising Radioprotector, Gamma-Tocotrienol, in Rhesus Macaques Exposed to Partial-Body Radiation. Radiat Res 2024; 201:55-70. [PMID: 38059553 DOI: 10.1667/rade-23-00075.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Currently, no radioprotectors have been approved to mitigate hematopoietic injury after exposure to ionizing radiation. Acute ionizing radiation results in damage to both hematopoietic and immune system cells. Pre-exposure prophylactic agents are needed for first responders and military personnel. In this study, the ability of gamma-tocotrienol (GT3), a promising radioprotector and antioxidant, to ameliorate partial-body radiation-induced damage to the hematopoietic compartment was evaluated in a nonhuman primate (NHP) model. A total of 15 rhesus NHPs were divided into two groups, and were administered either GT3 or vehicle 24 h prior to 4 or 5.8 Gy partial-body irradiation (PBI), with 5% bone marrow (BM) sparing. Each group consisted of four NHPs, apart from the vehicle-treated group exposed to 5.8 Gy, which had only three NHPs. BM samples were collected 8 days prior to irradiation in addition to 2, 7, 14, and 30 days postirradiation. To assess the clonogenic ability of hematopoietic stem and progenitor cells (HSPCs), colony forming unit (CFU) assays were performed, and lymphoid cells were immunophenotyped using flow cytometry. As a result of GT3 treatment, an increase in HSPC function was evident by an increased recovery of CFU-granulocyte macrophages (CFU-GM). Additionally, GT3 treatment was shown to increase the percentage of CD34+ cells, including T and NK-cell subsets. Our data further affirm GT3's role in hematopoietic recovery and suggest the need for its further development as a prophylactic radiation medical countermeasure.
Collapse
Affiliation(s)
- Tarun K Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Isabelle R Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Frits van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
16
|
Day RM, Rittase WB, Slaven JE, Lee SH, Brehm GV, Bradfield DT, Muir JM, Wise SY, Fatanmi OO, Singh VK. Iron Deposition in the Bone Marrow and Spleen of Nonhuman Primates with Acute Radiation Syndrome. Radiat Res 2023; 200:593-600. [PMID: 37967581 PMCID: PMC10754359 DOI: 10.1667/rade-23-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
The risk of exposure to high levels of ionizing radiation from nuclear weapons or radiological accidents is an increasing world concern. Partial- or total-body exposure to high doses of radiation is potentially lethal through the induction of acute radiation syndrome (ARS). Hematopoietic cells are sensitive to radiation exposure; white blood cells primarily undergo apoptosis while red blood cells (RBCs) undergo hemolysis. Several laboratories demonstrated that the rapid hemolysis of RBCs results in the release of acellular iron into the blood. We recently demonstrated using a murine model of ARS after total-body irradiation (TBI) and the loss of RBCs, iron accumulated in the bone marrow and spleen, notably between 4-21 days postirradiation. Here, we investigated iron accumulation in the bone marrow and spleens from TBI nonhuman primates (NHPs) using histological stains. We observed trends in increased intracellular and extracellular brown pigmentation in the bone marrow after various doses of radiation, especially after 4-15 days postirradiation, but these differences did not reach significance. We observed a significant increase in Prussian blue-staining intracellular iron deposition in the spleen 13-15 days after 5.8-8.5 Gy of TBI. We observed trends of increased iron in the spleen after 30-60 days postirradiation, with varying doses of radiation, but these differences did not reach significance. The NHP model of ARS confirms our earlier findings in the murine model, showing iron deposition in the bone marrow and spleen after TBI.
Collapse
Affiliation(s)
- Regina M. Day
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - W. Bradley Rittase
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - John E. Slaven
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Grace V. Brehm
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Dmitry T. Bradfield
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
17
|
Wei W, Bai H, Zhang T, Cai S, Zhou Y, Liu M, Zhang Y, Chen Y, Hua J, He J, Ding N, Miao G, Wang J. Regulation of Circulating miR-342-3p Alleviates the Radiation-Induced Immune System Injury. Radiat Res 2023; 200:556-568. [PMID: 37874034 DOI: 10.1667/rade-23-00125.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. Expanding countermeasures for dealing with accidental or occupational radiation exposure is crucial for the protection of radiation injuries. Circulating microRNAs (miRNAs) have emerged as promising radiation biomarkers in recent years. However, the origin, distribution and functions of radiosensitive circulating miRNAs remain unclear, which obstructs their clinical applications in the future. In this study, we found that mmu-miR-342-3p (miR-342) in mouse serum presents a stable and significant decrease after X-ray total-body irradiation (TBI). Focusing on this miRNA, we investigated the influences of circulating miR-342 on the radiation-induced injury. Through tail vein injection of Cy5-labeled synthetic miR-342, we found the exogenous miR-342-Cy5 was mainly enriched in metabolic and immune organs. Besides, the bioinformatic analysis predicted that miR-342 might involve in immune-related processes or pathways. Further, mice were tail vein injected with synthetic miR-342 mimetics (Ago-miR-342) after irradiation to upregulate the level of miR-342 in circulating blood. The results showed that the upregulation of circulating miR-342 alleviated the radiation-induced depletion of CD3+CD4+ T lymphocytes and influenced the levels of IL-2 and IL-6 in irradiated mice. Moreover, the injection of Ago-miR-342 improved the survival rates of mice with acute radiation injury. Our findings demonstrate that upregulation of circulating miR-342 alleviates the radiation-induced immune system injury, which provides us new insights into the functions of circulating miRNAs and the prospect as the targets for mitigation of radiation injuries.
Collapse
Affiliation(s)
- Wenjun Wei
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hao Bai
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tianyi Zhang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shufan Cai
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yumeng Zhou
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Min Liu
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanan Zhang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yaxiong Chen
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junrui Hua
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinpeng He
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - GuoYing Miao
- Department of Radiation Oncology, Gansu Provincial Central Hospital, Lanzhou 730000, China
| | - Jufang Wang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
18
|
Kumari P, Kumar R, Singh D, Kumar R. N-acetyl-L-tryptophan (NAT) provides protection to intestinal epithelial cells (IEC-6) against radiation-induced apoptosis via modulation of oxidative stress and mitochondrial membrane integrity. Mol Biol Rep 2023; 50:6381-6397. [PMID: 37322322 DOI: 10.1007/s11033-023-08579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ionizing radiation generates oxidative stress in biological systems via inducing free radicals. Gastro-intestinal system has been known for its high radiosensitivity. Therefore, to develop an effective radiation countermeasure for gastrointestinal system, N-acetyl L-tryptophan was evaluated for its radioprotective efficacy using intestinal epithelial cells-6 (IEC-6) cells as the experimental model. METHODS AND RESULTS Cellular metabolic and lysosomal activity of L-NAT and L-NAT treated irradiated IEC-6 cells were assessed by MTT and NRU staining, respectively. ROS and mitochondrial superoxide levels along with mitochondrial disruption were detected using specific fluorescent probes. Endogenous antioxidants (CAT, SOD, GST, GPx) activities were determined using calorimetric assay. Apoptosis and DNA damage were assessed using flow cytometery and Comet assay, respectively. Results of the study were demonstrated that L-NAT pre-treatment (- 1 h) to irradiated IEC-6 cells significantly contribute to ensuring 84.36% to 87.68% (p < 0.0001) survival at 0.1 μg/mL concentration against LD50 radiation dose (LD50; 20 Gy). Similar level of radioprotection was observed with a clonogenic assay against γ radiation (LD50; 5 Gy). L-NAT was found to provide radioprotection by neutralizing radiation-induced oxidative stress, enhancing antioxidant enzymes (CAT, SOD, GST, and GPx), and protecting DNA from radiation-induced damage. Further, significant restoration of mitochondrial membrane integrity along with apoptosis inhibition was observed with irradiated IEC-6 cells upon L-NAT pretreatment.
Collapse
Affiliation(s)
- Pratibha Kumari
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ravi Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Darshana Singh
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
19
|
Guan B, Li D, Meng A. Development of radiation countermeasure agents for acute radiation syndromes. Animal Model Exp Med 2023; 6:329-336. [PMID: 37642199 PMCID: PMC10486342 DOI: 10.1002/ame2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
The risk of internal and external exposure to ionizing radiation (IR) has increased alongside the development and implementation of nuclear technology. Therefore, serious security issues have emerged globally, and there has been an increase in the number of studies focusing on radiological prevention and medical countermeasures. Radioprotective drugs are particularly important components of emergency medical preparedness strategies for the clinical management of IR-induced injuries. However, a few drugs have been approved to date to treat such injuries, and the related mechanisms are not entirely understood. Thus, the aim of the present review was to provide a brief overview of the World Health Organization's updated list of essential medicines for 2023 for the proper management of national stockpiles and the treatment of radiological emergencies. This review also discusses the types of radiation-induced health injuries and the related mechanisms, as well as the development of various radioprotective agents, including Chinese herbal medicines, for which significant survival benefits have been demonstrated in animal models of acute radiation syndrome.
Collapse
Affiliation(s)
- Bowen Guan
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal Sciences Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), National Center of Technology Innovation for Animal ModelBeijingChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical CollegeTianjinChina
| | - Aimin Meng
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal Sciences Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), National Center of Technology Innovation for Animal ModelBeijingChina
| |
Collapse
|
20
|
Singh VK, Carpenter AD, Janocha BL, Petrus SA, Fatanmi OO, Wise SY, Seed TM. Radiosensitivity of rhesus nonhuman primates: consideration of sex, supportive care, body weight, and age at time of exposure. Expert Opin Drug Discov 2023; 18:797-814. [PMID: 37073409 PMCID: PMC10330264 DOI: 10.1080/17460441.2023.2205123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Animal models are vital for the development of radiation medical countermeasures for the prophylaxis or treatment of acute radiation syndrome and for the delayed effects of acute radiation exposure. Nonhuman primates (NHPs) play an important role in the regulatory approval of such agents by the United States Food and Drug Administration following the Animal Rule. Reliance on such animal models requires that such models are well characterized. METHODS Data gathered from both male and female animals under the same conditions and gathered concurrently are limited; therefore, the authors compared and contrasted here the radiosensitivity of both male and female NHPs provided different levels of clinical support over a range of acute, total-body gamma irradiation, as well as the influence of age and body weight. RESULTS Under matched experimental conditions, the authors observed only marginal, but clearly evident differences between acutely irradiated male and female NHPs relative to the measured response endpoints (rates of survival, blood cell changes, and cytokine fluctuations). These differences appeared to be accentuated by the level of exposure as well as by the nature of clinical support. CONCLUSION Additional studies with both sexes under various experimental conditions and different radiation qualities run concurrently are needed.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Brianna L. Janocha
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah A. Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Thomas M. Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
21
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
22
|
Feldman RJ, Kazzi Z, Walter FG. Radiation Injuries: Acute Radiation Syndrome in Children. Pediatr Ann 2023; 52:e231-e237. [PMID: 37280005 DOI: 10.3928/19382359-20230411-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The conflict in Ukraine has raised the specter of radiological and nuclear incidents, including fighting at the Zaporizhzhia nuclear plant, the largest nuclear powerplant in Europe; concerns that a radiological dispersion device ("dirty bomb") may be used; and threats to deploy tactical nuclear weapons. Children are more susceptible than adults to immediate and delayed radiation health effects. This article reviews the diagnosis and treatment of acute radiation syndrome. Although definitive treatment of radiation injuries should involve consultation with specialists, nonspecialists should learn to recognize the distinctive signs of radiation injury and make an initial assessment of severity of exposure. [Pediatr Ann. 2023;52(6):e231-e237.].
Collapse
|
23
|
Vellichirammal NN, Sethi S, Avuthu N, Wise SY, Carpenter AD, Fatanmi OO, Guda C, Singh VK. Transcriptome profile changes in the jejunum of nonhuman primates exposed to supralethal dose of total- or partial-body radiation. BMC Genomics 2023; 24:274. [PMID: 37217865 DOI: 10.1186/s12864-023-09385-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
The risk of exposure of the general public or military personnel to high levels of ionizing radiation from nuclear weapons or radiological accidents is a dire national security matter. The development of advanced molecular biodosimetry methods, those that measure biological response, such as transcriptomics, to screen large populations of radiation-exposed victims is key to improving survival outcomes during radiological mass casualty scenarios. In this study, nonhuman primates were exposed to either 12.0 Gy cobalt-60 gamma (total-body irradiation, TBI) or X-ray (partial-body irradiation, PBI) 24 h after administration of a potential radiation medical countermeasure, gamma-tocotrienol (GT3). Changes in the jejunal transcriptomic profiles in GT3-treated and irradiated animals were compared to healthy controls to assess the extent of radiation damage. No major effect of GT3 on radiation-induced transcriptome at this radiation dose was identified. About 80% of the pathways with a known activation or repression state were commonly observed between both exposures. Several common pathways activated due to irradiation include FAK signaling, CREB signaling in the neurons, phagosome formation, and G-protein coupled signaling pathway. Sex-specific differences associated with excessive mortality among irradiated females were identified in this study, including Estrogen receptor signaling. Differential pathway activation was also identified across PBI and TBI, pointing towards altered molecular response for different degrees of bone marrow sparing and radiation doses. This study provides insight into radiation-induced changes in jejunal transcriptional profiles, supporting the investigation for the identification of biomarkers for radiation injury and countermeasure efficacy.
Collapse
Affiliation(s)
| | - Sahil Sethi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
24
|
Kalashnikova M, Belyavsky A. Hematopoietic System under Physiological Conditions and Following Hematopoietic Reconstitution or Stress. Int J Mol Sci 2023; 24:ijms24108983. [PMID: 37240328 DOI: 10.3390/ijms24108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The hematopoietic system performs the most vital functions in the human body, integrating the work of various organs while producing enormous numbers of mature cells daily [...].
Collapse
Affiliation(s)
- Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| |
Collapse
|
25
|
Yamaguchi M, Kashiwakura I. The Acute Radiation Syndrome-Mitigator Romiplostim and Secreted Extracellular Vesicles Improved Survival in Mice Acutely Exposed to Myelosuppressive Doses of Ionizing Radiation. Biomolecules 2023; 13:biom13050837. [PMID: 37238707 DOI: 10.3390/biom13050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, and the mechanism of RP action may be related to EVs that reflect the radio-mitigative information. We investigated the radio-mitigative effects of EVs on mice with severe ARS. C57BL/6 mice exposed to lethal TBI were treated with RP, and the EVs were isolated from the serum and intraperitoneally injected into other mice with severe ARS. The 30-day survival rate of lethal TBI mice drastically improved by 50-100% with the administration of EVs in the sera collected weekly from the mice in which radiation damage was alleviated and mortality was avoided by the administration of RP. Four responsive miRNAs, namely, miR-144-5p, miR-3620-5p, miR-6354, and miR-7686-5p showed significant expression changes in an array analysis. In particular, miR-144-5p was expressed only in the EVs of RP-treated TBI mice. Specific EVs may exist in the circulating blood of mice that escaped mortality with an ARS mitigator, and their membrane surface and endogenous molecules may be the key to the survival of mice with severe ARS.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| |
Collapse
|
26
|
Carpenter AD, Li Y, Janocha BL, Wise SY, Fatanmi OO, Maniar M, Cheema AK, Singh VK. Analysis of the Proteomic Profile in Serum of Irradiated Nonhuman Primates Treated with Ex-Rad, a Radiation Medical Countermeasure. J Proteome Res 2023; 22:1116-1126. [PMID: 36977373 PMCID: PMC10088047 DOI: 10.1021/acs.jproteome.2c00458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
There are currently four radiation medical countermeasures that have been approved by the United States Food and Drug Administration to mitigate hematopoietic acute radiation syndrome, all of which are repurposed radiomitigators. The evaluation of additional candidate drugs that may also be helpful for use during a radiological/nuclear emergency is ongoing. A chlorobenzyl sulfone derivative (organosulfur compound) known as Ex-Rad, or ON01210, is one such candidate medical countermeasure, being a novel, small-molecule kinase inhibitor that has demonstrated efficacy in the murine model. In this study, nonhuman primates exposed to ionizing radiation were subsequently administered Ex-Rad as two treatment schedules (Ex-Rad I administered 24 and 36 h post-irradiation, and Ex-Rad II administered 48 and 60 h post-irradiation) and the proteomic profiles of serum using a global molecular profiling approach were assessed. We observed that administration of Ex-Rad post-irradiation is capable of mitigating radiation-induced perturbations in protein abundance, particularly in restoring protein homeostasis, immune response, and mitigating hematopoietic damage, at least in part after acute exposure. Taken together, restoration of functionally significant pathway perturbations may serve to protect damage to vital organs and provide long-term survival benefits to the afflicted population.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Brianna L Janocha
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Manoj Maniar
- Onconova Therapeutics, Inc., 375 Pheasant Run, Newtown, Pennsylvania 18940, United States
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| |
Collapse
|
27
|
Singh VK, Serebrenik AA, Fatanmi OO, Wise SY, Carpenter AD, Janocha BL, Kaytor MD. The Radioprotectant, BIO 300, Protects the Lungs from Total-Body Irradiation Injury in C57L/J Mice. Radiat Res 2023; 199:294-300. [PMID: 36689635 DOI: 10.1667/rade-22-00142.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
Acute exposure to high dose radiation can cause acute radiation syndrome (ARS), a potentially life-threatening illness. Individuals that survive ARS are at risk of developing the delayed effects of acute radiation exposure, with the lungs being particularly susceptible (DEARE-lung). For individuals at risk of radiation exposure, there are no Food and Drug Administration-approved medical countermeasures (MCMs) for prophylactic or post-exposure use that can prevent or mitigate DEARE-lung. BIO 300 is a novel formulation of synthetic genistein that has been extensively studied as a prophylactic MCM for the hematopoietic subsyndrome of ARS (H-ARS). Here, we used a C57L/J mouse model of total-body irradiation (TBI) to investigate whether prophylactic administration of BIO 300 is able to prevent animals from developing DEARE-lung. Oral and parenteral formulations of BIO 300 administered prior to TBI were compared against standard of care, PEGfilgrastim, administered shortly after radiation exposure, and the combination of oral BIO 300 administered prior to TBI and with PEGfilgrastim administered post-exposure. All animals were exposed to 7.75 Gy cobalt-60 gamma-radiation and the primary endpoint was lung histopathology at 180 days post-TBI. Animals treated with BIO 300 had a significant reduction in the incidence of interstitial lung inflammation compared to vehicle groups for both the oral (0% vs. 47%) and parenteral (13% vs. 44%) routes of administration. Similar results were obtained for the incidence and severity of pulmonary fibrosis in animals treated with oral BIO 300 (incidence, 47% vs. 100% and mean severity score, 0.53 vs. 1.3) and parenteral BIO 300 (incidence, 63% vs. 100% and mean severity score, 0.69 vs. 1.7). PEGfilgrastim alone had no significant effect in reducing the incidence of inflammation or fibrosis compared to vehicle. The combination of oral BIO 300 and PEGfilgrastim significantly reduced the incidence of interstitial inflammation (13% vs. 46%) and the severity of pulmonary fibrosis (mean severity score, 0.93 vs. 1.6). Results in the C57L/J mice were compared to those in CD2F1 mice, which are less prone to lung injury following total-body irradiation. Taken together, these studies indicate that BIO 300 is a promising MCM that is able to prophylactically protect against DEARE-lung.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Brianna L Janocha
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | |
Collapse
|
28
|
Chmil V, Filipová A, Tichý A. Looking for the phoenix: the current research on radiation countermeasures. Int J Radiat Biol 2023; 99:1148-1166. [PMID: 36745819 DOI: 10.1080/09553002.2023.2173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Ionizing radiation (IR) is widely applied in radiotherapy for the treatment of over 50% of cancer patients. IR is also intensively used in medical diagnostics on a daily basis in imaging. Moreover, recent geopolitical events have re-ignited the real threat of the use of nuclear weapons. Medical radiation countermeasures represent one of the effective protection strategies against the effects of IR. The aim of this review was to summarize the most commonly used strategies and procedures in the development of radiation countermeasures and to evaluate the current state of their research, with a focus on those in the clinical trial phase. METHODS Clinical trials for this review were selected in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was performed in the clinicaltrials.gov database as of May 2022. RESULTS Our search returned 263 studies, which were screened and of which 25 were included in the review. 10 of these studies had been completed, 3 with promising results: KMRC011 increased G-CSF, IL-6, and neutrophil counts suggesting potential for the treatment of hematopoietic acute radiation syndrome (H-ARS); GC4419 reduced the number of patients with severe oral mucositis and its duration; the combination of enoxaparin, pentoxifylline, and ursodeoxycholic acid reduced the incidence of focal radiation-induced liver injury. CONCLUSION The agents discovered so far show significant side effects or low efficacy, and hence most of the tested agents terminate in the early stages of development. In addition, the low profitability of this type of drug demotivates the private sector to invest in such research. To overcome this problem, there is a need to involve more public resources in funding. Among the technological opportunities, a deeper use of in silico approaches seems to be prospective.
Collapse
Affiliation(s)
- Vojtěch Chmil
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
29
|
Singh VK, Seed TM. The safety and efficacy of interleukin 11 for radiation injury. Expert Opin Drug Saf 2023; 22:105-109. [PMID: 36846931 DOI: 10.1080/14740338.2023.2185604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
30
|
Singh VK, Seed TM. Development of gamma-tocotrienol as a radiation medical countermeasure for the acute radiation syndrome: current status and future perspectives. Expert Opin Investig Drugs 2023; 32:25-35. [PMID: 36655861 DOI: 10.1080/13543784.2023.2169127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The possibility of exposure to high doses of total- or partial-body ionizing radiation at a high dose rate due to radiological/nuclear accidents or terrorist attacks is increasing. Despite research and development during the last six decades, there is a shortage of nontoxic, safe, and effective radiation medical countermeasures (MCMs) for radiological and nuclear emergencies. To date, the US Food and Drug Administration (US FDA) has approved only four agents for the mitigation of hematopoietic acute radiation syndrome (H-ARS). AREA COVERED We present the current status of a promising radiation countermeasure, gamma-tocotrienol (GT3; a component of vitamin E) as a radiation MCM that has been investigated in murine and nonhuman primate models of H-ARS. There is significant work with this agent using various omic platforms during the last few years to identify its efficacy biomarkers. EXPERT OPINION GT3 is a newer type of radioprotector having significant injury-countering potential and is currently under advanced development for H-ARS. As a pre-exposure drug, it requires only single doses, lacks significant toxicity, and has minimal, ambient temperature storage requirements; thus, GT3 appears to be an ideal MCM for military and first responders as well as for storage in the Strategic National Stockpile.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
31
|
Chen C, Xiangwei C. ELECTROCHEMICAL SENSOR FOR ANTI-DOPING IN ATHLETES. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Introduction: Several athletes use steroids such as nandrolone aiming at muscle hypertrophy and performance gain. The current research focused on developing a GO-TiO2 nanostructure as an electrochemical sensor for detecting Nandrolone (ND) like doping agents. Objective: Develop a graphene oxide and carbon paste-modified TiO2 nanocomposite electrode (TiO2-GO/CPE) as an electrochemical biosensor for the detection of anabolic steroids in the urine of athletes. Methods: The hydrothermal approach was employed to make GO-TiO2 nanocomposites, while the modified Hummers approach was used to make GO nanofilaments. Results: The interaction of TiO2 nanostructures with GOES resulted in the anchoring of TiO2 nanoparticles on the surface of GO nanowires, as demonstrated by structural investigations of the generated nanocomposite using SEM. The DPV approach was used to investigate the electrochemical properties of an anabolic steroid sensor, which revealed a stable and selective response to anabolic steroids and superior performance to previously reported anabolic steroid sensors. Conclusion: RSD values ranged from 3.20% to 4.45%, indicating that the developed electrochemical anabolic steroid sensor can be used as a viable detection technique to identify anabolic steroids in human biological fluids. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
|
32
|
Garg TK, Garg S, Miousse IR, Wise SY, Carpenter AD, Fatanmi OO, van Rhee F, Singh VK, Hauer-Jensen M. Gamma-Tocotrienol Modulates Total-Body Irradiation-Induced Hematopoietic Injury in a Nonhuman Primate Model. Int J Mol Sci 2022; 23:ijms232416170. [PMID: 36555814 PMCID: PMC9784560 DOI: 10.3390/ijms232416170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques divided into two groups received either vehicle or GT3, 24 h prior to TBI. Four animals in each treatment group were exposed to either 4 or 5.8 Gy TBI. Flow cytometry was used to immunophenotype the bone marrow (BM) lymphoid cell populations, while clonogenic ability of hematopoietic stem cells (HSCs) was assessed by colony forming unit (CFU) assays on day 8 prior to irradiation and days 2, 7, 14, and 30 post-irradiation. Both radiation doses showed significant changes in the frequencies of B and T-cell subsets, including the self-renewable capacity of HSCs. Importantly, GT3 accelerated the recovery in CD34+ cells, increased HSC function as shown by improved recovery of CFU-granulocyte macrophages (CFU-GM) and burst-forming units erythroid (B-FUE), and aided the recovery of circulating neutrophils and platelets. These data elucidate the role of GT3 in hematopoietic recovery, which should be explored as a potential medical countermeasure to mitigate radiation-induced injury to the hematopoietic system.
Collapse
Affiliation(s)
- Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Frits van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (V.K.S.); (M.H.-J.); Tel.: +1-301-295-2347 (V.K.S.); +1-501-686-7912 (M.H.-J.); Fax: +1-501-421-0022 (M.H.-J.)
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (V.K.S.); (M.H.-J.); Tel.: +1-301-295-2347 (V.K.S.); +1-501-686-7912 (M.H.-J.); Fax: +1-501-421-0022 (M.H.-J.)
| |
Collapse
|
33
|
Singh VK, Fatanmi OO, Wise SY, Carpenter AD, Olsen CH. Determination of Lethality Curve for Cobalt-60 Gamma-Radiation Source in Rhesus Macaques Using Subject-Based Supportive Care. Radiat Res 2022; 198:599-614. [PMID: 36279323 PMCID: PMC10224762 DOI: 10.1667/rade-22-00101.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Well-characterized and validated animal models are required for the development of medical countermeasures (MCMs) for acute radiation syndrome to mitigate injury due to high doses of total- or partial-body irradiation. Animal models used in MCM development must reflect a radiation dose- and time-dependent relationship, clinical presentation, and pathogenesis of organ injuries in humans. The objective of the current study was to develop the lethality curve for the Armed Forces Radiobiology Research Institute high level cobalt-60 gamma-radiation source in nonhuman primates (NHPs) after total-body irradiation. A dose-response relationship was determined using NHPs (rhesus macaques, N = 36, N = 6/radiation dose) irradiated with 6 doses in the range of 6.0 to 8.5 Gy, with 0.5 Gy increments at a dose rate of 0.6 Gy/min. Animals were provided subject-based supportive care including blood transfusions and were monitored for 60 days postirradiation. Survival was the primary endpoint of the study and the secondary endpoint included hematopoietic recovery. The lethality curve suggested LD30/60, LD50/60, and LD70/60 values as 5.71, 6.78, and 7.84 Gy, respectively. The results of this study will be valuable to provide specific doses for various lethalities of 60Co-gamma radiation to test radiation countermeasures in rhesus macaques using subject-based supportive care including blood transfusion.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Cara H. Olsen
- Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
34
|
Chen W, Zhu L, Wang L, Zeng J, Wen M, Xu X, Zou L, Huang F, Huang Q, Qin D, Mei Q, Yang J, Wang Q, Wu J. A Novel Antithrombocytopenia Agent, Rhizoma cibotii, Promotes Megakaryopoiesis and Thrombopoiesis through the PI3K/AKT, MEK/ERK, and JAK2/STAT3 Signaling Pathways. Int J Mol Sci 2022; 23:ijms232214060. [PMID: 36430539 PMCID: PMC9694118 DOI: 10.3390/ijms232214060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cibotii rhizoma (CR) is a famous traditional Chinese medicine (TCM) used to treat bleeding, rheumatism, lumbago, etc. However, its therapeutic effects and mechanism against thrombocytopenia are still unknown so far. In the study, we investigated the effects of aqueous extracts of Cibotii rhizoma (AECRs) against thrombocytopenia and its molecular mechanism. METHODS Giemsa staining, phalloidin staining, and flow cytometry were performed to measure the effect of AECRs on the megakaryocyte differentiation in K562 and Meg-01 cells. A radiation-induced thrombocytopenia mouse model was constructed to assess the therapeutic actions of AECRs on thrombocytopenia. Network pharmacology and experimental verification were carried out to clarify its mechanism against thrombocytopenia. RESULTS AECRs promoted megakaryocyte differentiation in K562 and Meg-01 cells and accelerated platelet recovery and megakaryopoiesis with no systemic toxicity in radiation-induced thrombocytopenia mice. The PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways contributed to AECR-induced megakaryocyte differentiation. The suppression of the above signaling pathways by their inhibitors blocked AERC-induced megakaryocyte differentiation. CONCLUSIONS AECRs can promote megakaryopoiesis and thrombopoiesis through activating PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways, which has the potential to treat radiation-induced thrombocytopenia in the clinic.
Collapse
Affiliation(s)
- Wang Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Linjie Zhu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Min Wen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiyan Xu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - LiLe Zou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Qiaozhi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Correspondence: (Q.W.); (J.W.); Tel.: 86-18015728611 (Q.W.); 86-13982416641 (J.W.)
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Correspondence: (Q.W.); (J.W.); Tel.: 86-18015728611 (Q.W.); 86-13982416641 (J.W.)
| |
Collapse
|
35
|
Singh VK, Seed TM. Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences perspective on space radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:20-29. [PMID: 36336365 DOI: 10.1016/j.lssr.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
There is a need to develop and deploy medical countermeasures (MCMs) in order to support astronauts during space missions against excessive exposures to ionizing radiation exposure. The radiation environment of extraterrestrial space is complex and is characterized by nearly constant fluences of elemental atomic particles (protons being a dominant particle type) with widely different energies and ionization potentials. Chronic exposure to such ionizing radiation carries both near- and long-term health risks, which are generally related to the relative intensity and duration of exposure. These radiation-associated health risks can be managed only to a limited extent by physical means, but perhaps they might be more effectively managed biomedically. The Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences has a long history of researching and developing MCMs specifically designed to support terrestrial-based military missions involving a radiation-threat component. The development of MCMs for both low and high doses of radiation are major aims of current research, and as such can provide lessons learned for the development of countermeasures applicable to future space missions and its extraterrestrial radiation environment.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
36
|
Pre-Administration of PLX-R18 Cells Protects Mice from Radiation-Induced Hematopoietic Failure and Lethality. Genes (Basel) 2022; 13:genes13101756. [PMID: 36292639 PMCID: PMC9601513 DOI: 10.3390/genes13101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Acute Radiation Syndrome (ARS) is a syndrome involving damage to multiple organs caused by exposure to a high dose of ionizing radiation over a short period of time; even low doses of radiation damage the radiosensitive hematopoietic system and causes H-ARS. PLacenta eXpanded (PLX)-R18 is a 3D-expanded placenta-derived stromal cell product designated for the treatment of hematological disorders. These cells have been shown in vitro to secrete hematopoietic proteins, to stimulate colony formation, and to induce bone marrow migration. Previous studies in mice showed that PLX-R18 cells responded to radiation-induced hematopoietic failure by transiently secreting hematopoiesis related proteins to enhance reconstitution of the hematopoietic system. We assessed the potential effect of prophylactic PLX-R18 treatment on H-ARS. PLX-R18 cells were administered intramuscularly to C57BL/6 mice, −1 and 3 days after (LD70/30) total body irradiation. PLX R18 treatment significantly increased survival after irradiation (p < 0.0005). In addition, peripheral blood and bone marrow (BM) cellularity were monitored at several time points up to 30 days. PLX-R18 treatment significantly increased the number of colony-forming hematopoietic progenitors in the femoral BM and significantly raised peripheral blood cellularity. PLX-R18 administration attenuated biomarkers of bone marrow aplasia (EPO, FLT3L), sepsis (SAA), and systemic inflammation (sP-selectin and E-selectin) and attenuated radiation-induced inflammatory cytokines/chemokines and growth factors, including G-CSF, MIP-1a, MIP-1b, IL-2, IL-6 and MCP-1, In addition, PLX-R18 also ameliorated radiation-induced upregulation of pAKT. Taken together, prophylactic PLX-R18 administration may serve as a protection measure, mitigating bone marrow failure symptoms and systemic inflammation in the H-ARS model.
Collapse
|
37
|
Model for Evaluating Antimicrobial Therapy To Prevent Life-Threatening Bacterial Infections following Exposure to a Medically Significant Radiation Dose. Antimicrob Agents Chemother 2022; 66:e0054622. [PMID: 36154387 DOI: 10.1128/aac.00546-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More evidence is needed to support recommendations for medical management of acute radiation syndrome (ARS) and associated infections resulting from a radiological/nuclear event. While current guidelines recommend the administration of antibiotics to chemotherapy patients with febrile neutropenia, the clinical benefit is unclear for acute radiation injury patients. A well-characterized nonhuman primate (NHP) model of hematopoietic ARS was developed that incorporates supportive care postirradiation. This model evaluated the efficacy of myeloid growth factors within 24 to 48 h after total body irradiation (TBI). However, in this model, NHPs continued to develop life-threatening bacterial infections, even when granulocyte colony-stimulating factor or granulocyte-macrophage colony-stimulating factor was administered in combination with antibiotic monotherapy. In this study, we evaluated the efficacy of combination antibiotic therapies administered to NHPs following 7.4-Gy TBI to understand the occurrence of bacterial infection in NHPs with hematopoietic ARS. We compared enrofloxacin-linezolid, enrofloxacin-cefepime, and enrofloxacin-ertapenem to enrofloxacin monotherapy. The primary endpoint was 60-day postirradiation mortality, with secondary endpoints of overall survival time, incidence of bacterial infection, and bacteriologic culture with antimicrobial susceptibility testing. We observed that enrofloxacin-ertapenem significantly increased survival compared to enrofloxacin monotherapy. Bacteria isolated from nonsurviving macaques with systemic bacterial infections exhibited uniform resistance to enrofloxacin and variable resistance to beta-lactam antibiotics, linezolid, gentamicin, and azithromycin. Multidrug antibiotic resistance was observed in Enterococcus spp. and Escherichia coli. We conclude that antibiotic combination therapies appear to be more effective than monotherapy alone but acknowledge that more work is needed to identify an optimal antimicrobial therapy.
Collapse
|
38
|
Garg S, Garg TK, Miousse IR, Wise SY, Fatanmi OO, Savenka AV, Basnakian AG, Singh VK, Hauer-Jensen M. Effects of Gamma-Tocotrienol on Partial-Body Irradiation-Induced Intestinal Injury in a Nonhuman Primate Model. Antioxidants (Basel) 2022; 11:1895. [PMID: 36290618 PMCID: PMC9598988 DOI: 10.3390/antiox11101895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to high doses of radiation, accidental or therapeutic, often results in gastrointestinal (GI) injury. To date, there are no therapies available to mitigate GI injury after radiation exposure. Gamma-tocotrienol (GT3) is a promising radioprotector under investigation in nonhuman primates (NHP). We have shown that GT3 has radioprotective function in intestinal epithelial and crypt cells in NHPs exposed to 12 Gy total-body irradiation (TBI). Here, we determined GT3 potential in accelerating the GI recovery in partial-body irradiated (PBI) NHPs using X-rays, sparing 5% bone marrow. Sixteen rhesus macaques were treated with either vehicle or GT3 24 h prior to 12 Gy PBI. Structural injuries and crypt survival were examined in proximal jejunum on days 4 and 7. Plasma citrulline was assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Crypt cell proliferation and apoptotic cell death were evaluated using Ki-67 and TUNEL staining. PBI significantly decreased mucosal surface area and reduced villous height. Interestingly, GT3 increased crypt survival and enhanced stem cell proliferation at day 4; however, the effects seemed to be minimized by day 7. GT3 did not ameliorate a radiation-induced decrease in citrulline levels. These data suggest that X-rays induce severe intestinal injury post-PBI and that GT3 has minimal radioprotective effect in this novel model.
Collapse
Affiliation(s)
- Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
39
|
Li Y, Girgis M, Jayatilake M, Serebrenik AA, Cheema AK, Kaytor MD, Singh VK. Pharmacokinetic and metabolomic studies with a BIO 300 Oral Powder formulation in nonhuman primates. Sci Rep 2022; 12:13475. [PMID: 35931769 PMCID: PMC9356050 DOI: 10.1038/s41598-022-17807-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/01/2022] [Indexed: 01/08/2023] Open
Abstract
BIO 300, a pharmaceutical formulation of genistein, is being developed as a radiation countermeasure to treat hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Several studies have affirmed its safety and efficacy in alleviating the damaging effects of ionizing radiation. However, dose optimization of any drug has always been an important area of research because unnecessarily high drug doses may result in serious complications. In this study, we assessed the pharmacokinetics (PK) and metabolic profiles of two different doses of a novel solid-dosage formulation of BIO 300 (BIO 300 Oral Powder; 100 mg/kg and 200 mg/kg), when administered orally to nonhuman primates (NHPs). While the Tmax values of both doses remained the same, the area under the curve at 48 h (AUC0-48) was tripled by doubling the dose. Additionally, we monitored serum samples for global metabolomic/lipidomic changes using high resolution mass spectrometry followed by functional pathway analysis prior to and at various time points up to 48 h post drug administration. Interestingly, the metabolomic profiles of sera from NHPs that received the lower dose demonstrated a transient perturbation in numerous metabolites between the 4 and 12 h time points. Eventually, the metabolite abundance reverted to near-normal by 48 h. These study results are consistent with our previous studies focused on the PK and metabolomic analysis for parenteral and oral aqueous nanosuspension formulations of BIO 300. This study affirms that administration of a single dose of up to 200 mg/kg of BIO 300 Oral Powder is safe in NHPs and conferred no metabolomic-mediated safety features.
Collapse
Affiliation(s)
- Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
40
|
Dainiak N, Albanese J. Medical management of acute radiation syndrome. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:031002. [PMID: 35767939 DOI: 10.1088/1361-6498/ac7d18] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Acute radiation syndrome (ARS) is a clinical syndrome involving four organ systems, resulting in the hematopoietic syndrome (HS), gastrointestinal subsyndrome (GIS), neurovascular subsyndrome (NVS) and cutaneous subsyndrome (CS). Since few healthcare providers have seen an ARS case, evidence-based recommendations are needed to guide medical management in a mass casualty scenario. The authors reviewed recommendations from evidence-based and narrative reviews by expert consultants to the World Health Organisation (WHO), a subsequent review of published HS cases, and infectious disease guidelines for management of febrile neutropenia. The WHO Consultancy applied a rigorous grading system to evaluate treatment strategies described in published ARS cases as of 2009, strategies to manage HS in unirradiated persons, results of ARS studies in animal models of ARS, and recommendations of prior expert panels. Major findings for HS were (a) no randomised controlled studies have been performed, (b) data are restricted by the lack of comparator groups, and (c) reports of countermeasures for management of injury to non-hematopoietic organs are often incomplete. Strength of recommendations ranged from strong to weak. Countermeasures of potential benefit include cytokines and for a subgroup of HS patients, hematopoietic stem cell transplantation. These recommendations did not change in a subsequent analysis of HS cases. Recommendations also included fluoroquinolones, bowel decontamination, serotonin receptor antagonists, loperamide and enteral nutrition for GIS; supportive care for NVS; and topical steroids, antihistamines and antibiotics, and surgical excision/grafting for CS. Also reviewed are critical care management guidelines, the role of mesenchymal stem cells for CS, the potential of a platelet-stimulating cytokine for HS, and the author's approach to clinical management of microbial infections associated with ARS based on published guidelines of infectious disease experts. Today's management of HS is supported by evidence-based guidelines. Management of non-HS subsyndromes is supported by a narrative review of the literature and recommendations of infectious disease societies.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, United States of America
| | - Joseph Albanese
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, United States of America
- Center for Emergency Preparedness and Disaster Response, Yale New Haven Health, 99 Hawley Lane, Stratford, CT 06614, United States of America
| |
Collapse
|
41
|
Garg S, Garg TK, Wise SY, Fatanmi OO, Miousse IR, Savenka AV, Basnakian AG, Singh VK, Hauer-Jensen M. Effects of Gamma-Tocotrienol on Intestinal Injury in a GI-Specific Acute Radiation Syndrome Model in Nonhuman Primate. Int J Mol Sci 2022; 23:ijms23094643. [PMID: 35563033 PMCID: PMC9100017 DOI: 10.3390/ijms23094643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal (GI) system is highly susceptible to irradiation. Currently, there is no Food and Drug Administration (FDA)-approved medical countermeasures for GI radiation injury. The vitamin E analog gamma-tocotrienol (GT3) is a promising radioprotector in mice and nonhuman primates (NHP). We evaluated GT3-mediated GI recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques were divided into two groups; eight received vehicle and eight GT3 24 h prior to 12 Gy TBI. Proximal jejunum was assessed for structural injuries and crypt survival on day 4 and 7. Apoptotic cell death and crypt cell proliferation were assessed with TUNEL and Ki-67 immunostaining. Irradiation induced significant shortening of the villi and reduced mucosal surface area. GT3 induced an increase in crypt depth at day 7, suggesting that more stem cells survived and proliferated after irradiation. GT3 did not influence crypt survival after irradiation. GT3 treatment caused a significant decline in TUNEL-positive cells at both day 4 (p < 0.03) and 7 (p < 0.0003). Importantly, GT3 induced a significant increase in Ki-67-positive cells at day 7 (p < 0.05). These data suggest that GT3 has radioprotective function in intestinal epithelial and crypt cells. GT3 should be further explored as a prophylactic medical countermeasure for radiation-induced GI injury.
Collapse
Affiliation(s)
- Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.Y.W.); (O.O.F.); (V.K.S.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.Y.W.); (O.O.F.); (V.K.S.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.V.S.); (A.G.B.)
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.V.S.); (A.G.B.)
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.Y.W.); (O.O.F.); (V.K.S.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence: ; Tel.: +1-501-686-7912; Fax: +1-501-421-0022
| |
Collapse
|
42
|
Mitigation of total body irradiation-induced mortality and hematopoietic injury of mice by a thrombopoietin mimetic (JNJ-26366821). Sci Rep 2022; 12:3485. [PMID: 35241733 PMCID: PMC8894488 DOI: 10.1038/s41598-022-07426-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
The threat of a nuclear attack has increased in recent years highlighting the benefit of developing additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30-90% as compared to saline control treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 24 h post-TBI.
Collapse
|
43
|
Gamma-tocotrienol, a radiation countermeasure, reverses proteomic changes in serum following total-body gamma irradiation in mice. Sci Rep 2022; 12:3387. [PMID: 35233005 PMCID: PMC8888544 DOI: 10.1038/s41598-022-07266-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Radiological incidents or terrorist attacks would likely expose civilians and military personnel to high doses of ionizing radiation, leading to the development of acute radiation syndrome. We examined the effectiveness of prophylactic administration of a developmental radiation countermeasure, γ-tocotrienol (GT3), in a total-body irradiation (TBI) mouse model. CD2F1 mice received GT3 24 h prior to 11 Gy cobalt-60 gamma-irradiation. This dose of radiation induces severe hematopoietic acute radiation syndrome and moderate gastrointestinal injury. GT3 provided 100% protection, while the vehicle control group had 100% mortality. Two-dimensional differential in-gel electrophoresis was followed by mass spectrometry and Ingenuity Pathway Analysis (IPA). Analysis revealed a change in expression of 18 proteins in response to TBI, and these changes were reversed with prophylactic treatment of GT3. IPA revealed a network of associated proteins involved in cellular movement, immune cell trafficking, and inflammatory response. Of particular interest, significant expression changes in beta-2-glycoprotein 1, alpha-1-acid glycoprotein 1, alpha-2-macroglobulin, complement C3, mannose-binding protein C, and major urinary protein 6 were noted after TBI and reversed with GT3 treatment. This study reports the untargeted approach, the network, and specific serum proteins which could be translated as biomarkers of both radiation injury and protection by countermeasures.
Collapse
|