1
|
Rudd SG, Bianchi J, Doherty AJ. PrimPol-A new polymerase on the block. Mol Cell Oncol 2014; 1:e960754. [PMID: 27308331 PMCID: PMC4905188 DOI: 10.4161/23723548.2014.960754] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/22/2014] [Accepted: 07/25/2014] [Indexed: 12/27/2022]
Abstract
The DNA-directed primase-polymerase PrimPol of the archaeo-eukaryotic primase superfamily represents an ancient solution to the many problems faced during genome duplication. This versatile enzyme is capable of initiating de novo DNA/RNA synthesis, DNA chain elongation, and has the capacity to bypass modifications that stall the replisome by trans-lesion synthesis or origin-independent re-priming, thus allowing discontinuous synthesis of the leading strand. Recent studies have shown that PrimPol is an important new player in replication fork progression in eukaryotic cells; this review summarizes our current understanding of PrimPol and highlights important questions that remain to be addressed.
Collapse
Affiliation(s)
- Sean G Rudd
- Genome Damage and Stability Center; University of Sussex ; Brighton, UK
| | - Julie Bianchi
- Present address: Department of Oncology-Pathology; Cancer Center Karolinska; Karolinska Institutet ; Stockholm, Sweden
| | - Aidan J Doherty
- Genome Damage and Stability Center; University of Sussex ; Brighton, UK
| |
Collapse
|
2
|
Nakanishi M, Katsuno Y, Niida H, Murakami H, Shimada M. Chk1-cyclin A/Cdk1 axis regulates origin firing programs in mammals. Chromosome Res 2010; 18:103-13. [PMID: 20013152 DOI: 10.1007/s10577-009-9086-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is key to ensuring the complete duplication of genomic DNA prior to mitosis and is tightly regulated by both cell cycle machinery and checkpoint signals. Regulation of the S phase program occurs at several stages, affecting origin firing, replication fork elongation, fork velocity, and fork stability, all of which are dependent on S-phase-promoting kinase activity. Somatic mammalian cells use well-established origin programs by which specific regions of the genome are replicated at precise times. However, the mechanisms by which S phase kinases regulate origin firing in mammals are largely unknown. Here, we discuss recent advances in the understanding of how S phase programs are regulated in mammals at the correct regions and at the appropriate times.
Collapse
Affiliation(s)
- Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | | | | | | | | |
Collapse
|
3
|
Willis N, Rhind N. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div 2009; 4:13. [PMID: 19575778 PMCID: PMC2714077 DOI: 10.1186/1747-1028-4-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/03/2009] [Indexed: 11/29/2022] Open
Abstract
Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM). Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.
Collapse
Affiliation(s)
- Nicholas Willis
- Biochemistry and Molecular Pharmacology, University on Massachusetts Medical School, Worcester MA 01605, USA.
| | | |
Collapse
|
4
|
Affiliation(s)
- J. Thacker
- DNA Repair and Mutagenesis Group, MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD, UK
| |
Collapse
|
5
|
Abstract
Damage induced in the DNA after exposure of cells to ionizing radiation activates checkpoint pathways that inhibit progression of cells through the G1 and G2 phases and induce a transient delay in the progression through S phase. Checkpoints together with repair and apoptosis are integrated in a circuitry that determines the ultimate response of a cell to DNA damage. Checkpoint activation typically requires sensors and mediators of DNA damage, signal transducers and effectors. Here, we review the current state of knowledge regarding mechanisms of checkpoint activation and proteins involved in the different steps of the process. Emphasis is placed on the role of ATM and ATR, as well on CHK1 and CHK2 kinases in checkpoint response. The roles of downstream effectors, such as P53 and the CDC25 family of proteins, are also described, and connections between repair and checkpoint activation are attempted. The role of checkpoints in genomic stability and the potential of improving the treatment of cancer by DNA damage inducing agents through checkpoint abrogation are also briefly outlined.
Collapse
Affiliation(s)
- George Iliakis
- Institute of Medical Radiation Biology, University of Essen Medical School, Hufelanstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
6
|
Miao H, Seiler JA, Burhans WC. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J Biol Chem 2003; 278:4295-304. [PMID: 12424256 DOI: 10.1074/jbc.m204264200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
DNA replication is inhibited by DNA damage through cis effects on replication fork progression and trans effects associated with checkpoints. In this study, we employed a combined pulse labeling and neutral-neutral two-dimensional gel-based approach to compare the effects of a DNA damaging agent frequently employed to invoke checkpoints, UVC radiation, on the replication of cellular and simian virus 40 (SV40) chromosomes in intact cells. UVC radiation induced similar inhibitory effects on the initiation and elongation phases of cellular and SV40 DNA replication. The initiation-inhibitory effects occurred independently of p53 and were abrogated by the ATM and ATR kinase inhibitor caffeine, or the Chk1 kinase inhibitor UCN-01. Inhibition of cellular origins was also abrogated by the expression of a dominant-negative Chk1 mutant. These results indicate that UVC induces a Chk1- and ATR or ATM-dependent checkpoint that targets both cellular and SV40 viral replication origins. Loss of Chk1 and ATR or ATM function also stimulated initiation of cellular and viral DNA replication in the absence of UVC radiation, revealing the existence of a novel intrinsic checkpoint that targets both cellular and SV40 viral origins of replication in the absence of DNA damage or stalled DNA replication forks. This checkpoint inhibits the replication in early S phase cells of a region of the repetitive rDNA locus that replicates in late S phase. The ability to detect these checkpoints using the well characterized SV40 model system should facilitate analysis of the molecular basis for these effects.
Collapse
Affiliation(s)
- Huiyi Miao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
7
|
Maser RS, Mirzoeva OK, Wells J, Olivares H, Williams BR, Zinkel RA, Farnham PJ, Petrini JH. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol Cell Biol 2001; 21:6006-16. [PMID: 11486038 PMCID: PMC87318 DOI: 10.1128/mcb.21.17.6006-6016.2001] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that the Mre11 complex associates with E2F family members via the Nbs1 N terminus. This association and Nbs1 phosphorylation are correlated with S-phase checkpoint proficiency, whereas neither is sufficient individually for checkpoint activation. The Nbs1 E2F interaction occurred near the Epstein-Barr virus origin of replication as well as near a chromosomal replication origin in the c-myc promoter region and was restricted to S-phase cells. The Mre11 complex colocalized with PCNA at replication forks throughout S phase, both prior to and coincident with the appearance of nascent DNA. These data suggest that the Mre11 complex suppresses genomic instability through its influence on both the regulation and progression of DNA replication.
Collapse
Affiliation(s)
- R S Maser
- Laboratory of Genetics, University of Wisconsin Medical School, 445 Henry Mall, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bullock SK, Kaufmann WK, Cordeiro-Stone M. Enhanced S phase delay and inhibition of replication of an undamaged shuttle vector in UVC-irradiated xeroderma pigmentosum variant. Carcinogenesis 2001; 22:233-41. [PMID: 11181443 DOI: 10.1093/carcin/22.2.233] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Xeroderma pigmentosum variant (XP-V) cells are defective in bypass replication of UVC-induced thymine dimers in DNA because they lack a novel DNA polymerase (polymerase eta). In this study the effects of UVC on S phase cells were compared in fibroblasts derived from normal donors (IDH4) and XP-V patients (CTag) and immortalized by expression of the SV40 large T antigen. These transformed fibroblasts did not activate the G(1) checkpoint or inhibit replicon initiation when damaged by UVC or gamma-rays. The transformed XP-V cells (CTag) retained the increased sensitivity to UVC-induced inhibition of DNA strand growth previously observed with their diploid counterpart. Cell cycle progression analyses showed that CTag cells displayed a stronger S phase delay than transformed fibroblasts from normal individuals (IDH4) after treatment with only 2 J/m(2) UVC. Low doses of UVC also caused a lag in CTag cell proliferation. The extent of replication of an episomal DNA (pSV011), not previously exposed to radiation, was measured after the host cells were irradiated with 1-3 J/m(2) UVC. Replication of pSV011 was barely affected in irradiated IDH4 cells. Plasmid replication was inhibited by 50% in irradiated CTag cells and this inhibition could not be accounted for by increased killing of host cells by UVC. These results suggest that even in transformed cells UVC induces DNA damage responses that are reflected in transient cell cycle arrest, delay in proliferation and inhibition of episomal DNA replication. These responses are enhanced in CTag cells, presumably because of their bypass replication defect. The accumulation of replication complexes blocked at thymine dimers and extended single-stranded regions in chromosomal DNA might sequester replication factors that are needed for plasmid and chromosomal replication. Alternatively, aberrant replication structures might activate a signal transduction pathway that down-regulates DNA synthesis.
Collapse
Affiliation(s)
- S K Bullock
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, 517 Brinkhous-Bullitt Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | | | | |
Collapse
|
9
|
Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev 2001; 15:158-72. [PMID: 11157773 PMCID: PMC312610 DOI: 10.1101/gad.187501] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA polymerase eta carries out translesion synthesis past UV photoproducts and is deficient in xeroderma pigmentosum (XP) variants. We report that poleta is mostly localized uniformly in the nucleus but is associated with replication foci during S phase. Following treatment of cells with UV irradiation or carcinogens, it accumulates at replication foci stalled at DNA damage. The C-terminal third of poleta is not required for polymerase activity. However, the C-terminal 70 aa are needed for nuclear localization and a further 50 aa for relocalization into foci. Poleta truncations lacking these domains fail to correct the defects in XP-variant cells. Furthermore, we have identified mutations in two XP variant patients that leave the polymerase motifs intact but cause loss of the localization domains.
Collapse
Affiliation(s)
- P Kannouche
- MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton BN1 9RR, UK
| | | | | | | | | | | |
Collapse
|
10
|
Christensen PU, Bentley NJ, Martinho RG, Nielsen O, Carr AM. Mik1 levels accumulate in S phase and may mediate an intrinsic link between S phase and mitosis. Proc Natl Acad Sci U S A 2000; 97:2579-84. [PMID: 10716991 PMCID: PMC15971 DOI: 10.1073/pnas.97.6.2579] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two paradigms exist for maintaining order during cell-cycle progression: intrinsic controls, where passage through one part of the cell cycle directly affects the ability to execute another, and checkpoint controls, where external pathways impose order in response to aberrant structures. By studying the mitotic inhibitor Mik1, we have identified evidence for an intrinsic link between unperturbed S phase and mitosis. We propose a model in which S/M linkage can be generated by the production and stabilization of Mik1 protein during S phase. The production of Mik1 during unperturbed S phase is independent of the Rad3- and Cds1-dependent checkpoint controls. In response to perturbed S phase, Rad3-Cds1 checkpoint controls are required to maintain high levels of Mik1, probably indirectly by extending the S phase period, where Mik1 is stable. In addition, we find that Mik1 protein can be moderately induced in response to irradiation of G(2) cells in a Chk1-dependent manner.
Collapse
Affiliation(s)
- P U Christensen
- Medical Research Council Cell Mutation Unit, Sussex University, Falmer, Sussex, BN1 9RR, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Guan J, DiBiase S, Iliakis G. The catalytic subunit DNA-dependent protein kinase (DNA-PKcs) facilitates recovery from radiation-induced inhibition of DNA replication. Nucleic Acids Res 2000; 28:1183-92. [PMID: 10666461 PMCID: PMC102621 DOI: 10.1093/nar/28.5.1183] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Revised: 01/04/2000] [Accepted: 01/11/2000] [Indexed: 11/13/2022] Open
Abstract
Exposure of cells to ionizing radiation inhibits DNA replication in a dose-dependent manner. The dose response is biphasic and the initial steep component reflects inhibition of replicon initiation thought to be mediated by activation of the S-phase checkpoint. In mammalian cells, inhibition of replicon initiation requires the ataxia telagiectasia mutated ( ATM ) gene, a member of the phosphatidyl inositol kinase-like (PIKL) family of protein kinases. We studied the effect on replicon initiation of another member of the PI-3 family of protein kinases, the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) by measuring either total DNA synthesis, or size distribution of nascent DNA using alkaline sucrose gradient centrifugation. Exposure of human cells proficient in DNA-PKcs (HeLa or M059-K) to 10 Gy inhibited replicon initiation in a time-dependent manner. Inhibition was at a maximum 1 h after irradiation and recovered at later times. Similar treatment of human cells deficient in DNA-PKcs (M059-J) inhibited replicon initiation to a similar level and with similar kinetics; however, no evidence for recovery, or only limited recovery, was observed for up to 8 h after irradiation. In addition a defect was observed in the maturation of nascent DNA. Similarly, a Chinese hamster cell line deficient in DNA-PKcs (irs-20) showed little evidence for recovery of DNA replication inhibition up to 6 h after irradiation, whereas the parental CHO cells showed significant recovery and an irs-20 derivative expressing the human DNA-PKcs complete recovery within 4 h. Normal kinetics of recovery were observed in xrs-5 cells, deficient in Ku80; in 180BR cells, deficient in DNA ligase IV; as well as XR-1 cells, deficient in XRCC4, an accessory factor of DNA ligase IV. Since all these cell lines share the DNA double strand break rejoining defect of M059-J and irs20 cells, the lack of recovery of DNA replication in the latter cells may not be attributed entirely to the prolonged presence of unrepaired DNA dsb. We propose that DNA-PKcs, in addition to its functions in the rejoining of DNA dsb and in DNA replication, also operates in a pathway that in normal cells facilitates recovery of DNA replication after irradiation.
Collapse
Affiliation(s)
- J Guan
- Department of Radiation Oncology of Kimmel Cancer Center, Thompson Building, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- D Coppola
- Pathology Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, 33612, USA
| |
Collapse
|
13
|
Larner JM, Lee H, Little RD, Dijkwel PA, Schildkraut CL, Hamlin JL. Radiation down-regulates replication origin activity throughout the S phase in mammalian cells. Nucleic Acids Res 1999; 27:803-9. [PMID: 9889276 PMCID: PMC148250 DOI: 10.1093/nar/27.3.803] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An asynchronous culture of mammalian cells responds acutely to ionizing radiation by inhibiting the overall rate of DNA replication by approximately 50% for a period of several hours, presumably to allow time to repair DNA damage. At low and moderate doses, this S phase damage-sensing (SDS) pathway appears to function primarily at the level of individual origins of replication, with only a modest inhibition of chain elongation per se. We have shown previously that the majority of the inhibition observed in an asynchronous culture can be accounted for by late G1cells that were within 2-3 h of entering the S period at the time of irradiation and which then fail to do so. A much smaller effect was observed on the overall rate of replication in cells that had already entered the S phase. This raised the question whether origins of replication that are activated within S phase per se are inhibited in response to ionizing radiation. Here we have used a two-dimensional gel replicon mapping strategy to show that cells with an intact SDS pathway completely down-regulate initiation in both early- and late-firing rDNA origins in human cells. We also show that initiation in mid- or late-firing rDNA origins is not inhibited in cells from patients with ataxia telangiectasia, confirming the suggestion that these individuals lack the SDS pathway.
Collapse
Affiliation(s)
- J M Larner
- Department of Therapeutic Radiology and Oncology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA,
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- L H Mullenders
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, Netherlands.
| |
Collapse
|
15
|
Mallya SM, Sikpi MO. Evidence of the involvement of p53 in gamma-radiation-induced DNA repair in human lymphoblasts. Int J Radiat Biol 1998; 74:231-8. [PMID: 9712552 DOI: 10.1080/095530098141618] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To determine the involvement of p53 in ionizing radiation-induced excision and recombination repair. MATERIALS AND METHODS Shuttle vector pZ189 containing radiation-induced single strand breaks plus base damage (ocDNA), ultraviolet-radiation damage (uvDNA), or a restriction enzyme-produced double strand break (linDNA) were processed in unirradiated or irradiated p53wt and p53mut lymphoblasts. Mutation frequencies in the supF-tRNA target gene and survival of plasmids processed in p53wt and p53mut hosts were compared. RESULTS Mutation frequencies of oc-, uv- or linDNA were similar after processing in unirradiated p53wt and p53mut hosts. However, the mutation frequency of ocDNA and uvDNA decreased 50% when processed in irradiated p53wt hosts but was unaltered in irradiated p53mut hosts. In contrast, linDNA mutation frequencies varied similarly whether processed in irradiated p53wt or p53mut hosts: mutation frequency decreased twofold when linDNA was transfected immediately after host irradiation but increased twofold when transfection was delayed by 2h. Double strand break rejoining capacity, determined by the ratio of the number of progenies from linDNA to that from undamaged pZ189, differed both qualitatively and quantitatively in irradiated p53wt and p53mut hosts. CONCLUSIONS These studies show induction of DNA repair in mammalian cells by ionizing radiation and indicate the involvement of p53 in the modulation of excision repair fidelity and double strand break rejoining capacity.
Collapse
Affiliation(s)
- S M Mallya
- Department of Oral Diagnosis, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
16
|
Kunnev D, Tsvetkov L, Anachkova B, Russev G. Clusters of replicons that fire simultaneously may be organized into superloops. DNA Cell Biol 1997; 16:1059-65. [PMID: 9324308 DOI: 10.1089/dna.1997.16.1059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study the relation between replicon initiation and nuclear organization of DNA, mouse erythroleukemia F4N cells were irradiated with 60Co source and the rates of initiation of DNA synthesis were determined by a sensitive assay based on the introduction of Trioxsalen cross-links in DNA in vivo and determination of the amount of short nascent DNA fragments synthesized between the cross-links. In parallel, nuclear organization of DNA was monitored using the nucleoid sedimentation technique. The results show that DNA initiation rate and relative nucleoid sedimentation change sharply and simultaneously at doses of about 1 Gy, which suggests the existence of relationship between them. This suggestion was supported by the finding, that during the after-irradiation period, first DNA organization was restored and only after this process had been completed, the restoration of replicon initiation commenced. When cells were treated with novobiocin, an agent that is known to slow down the recovery of nucleoid sedimentation rate, initiation of DNA synthesis was also postponed. A hypothesis is put forward that replicon clusters represent groups of adjacent DNA loops organized in superloop domains and that the intact superloop domain structure is necessary for activation of the cluster.
Collapse
Affiliation(s)
- D Kunnev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | |
Collapse
|
17
|
Ye XS, Fincher RR, Tang A, Osmani SA. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. EMBO J 1997; 16:182-92. [PMID: 9009279 PMCID: PMC1169625 DOI: 10.1093/emboj/16.1.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.
Collapse
Affiliation(s)
- X S Ye
- The Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | | | | | | |
Collapse
|
18
|
Keegan KS, Holtzman DA, Plug AW, Christenson ER, Brainerd EE, Flaggs G, Bentley NJ, Taylor EM, Meyn MS, Moss SB, Carr AM, Ashley T, Hoekstra MF. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev 1996; 10:2423-37. [PMID: 8843195 DOI: 10.1101/gad.10.19.2423] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A number of cell-cycle checkpoint genes have been shown to play important roles in meiosis. We have characterized the human and mouse counterpart of the Schizosaccharomyces pombe Rad3 protein, named Atr (for ataxia-telangiectasia- and rad3-related), and the protein that is mutated in ataxia-telangiectasia, Atm. We demonstrate that ATR mRNA and protein are expressed in human and mouse testis. More detailed analysis of specific cells in seminiferous tubules shows localization of Atr to the nuclei of cells in the process of meiosis I. Using immunoprecipitation and immunoblot analysis, we show that Atr and Atm proteins are approximately 300 and 350 kD relative molecular mass, respectively, and further demonstrate that both proteins have associated protein kinase activity. Further, we demonstrate that Atr and Atm interact directly with meiotic chromosomes and show complementary localization patterns on synapsing chromosomes. Atr is found at sites along unpaired or asynapsed chromosomal axes, whereas Atm is found along synapsed chromosomal axes. This is the first demonstration of a nuclear association of Atr and Atm proteins with meiotic chromosomes and suggests a direct role for these proteins in recognizing and responding to DNA strand interruptions that occur during meiotic recombination.
Collapse
Affiliation(s)
- K S Keegan
- ICOS Corporation, Bothell, Washington 98021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cobuzzi RJ, Burhans WC, Beerman TA. Inhibition of initiation of simian virus 40 DNA replication in infected BSC-1 cells by the DNA alkylating drug adozelesin. J Biol Chem 1996; 271:19852-9. [PMID: 8702695 DOI: 10.1074/jbc.271.33.19852] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adozelesin is a member of a family of extraordinarily cytotoxic DNA damaging agents that bind to the DNA minor groove in a sequence-specific manner and form covalent adducts with adenines. Previous studies employing purified enzymes and adozelesin-modified template DNAs suggested that adozelesin-DNA adducts inhibit DNA replication at the level of nascent DNA chain elongation. In this study, neutral/neutral two-dimensional agarose gel electrophoresis was employed to analyze simian virus 40 (SV40) DNA replication intermediates recovered from adozelesin-treated SV40 virus-infected cells. SV40 replication intermediates rapidly disappeared from infected cells when they were treated with adozelesin, but not when the cells were also treated with aphidicolin to block maturation of replicating SV40 DNA. We conclude that the disappearance of SV40 replication intermediates induced by adozelesin treatment was a consequence of maturation of these intermediates in the absence of new initiation events. Adozelesin inhibition of nascent chain elongation is first observed at concentrations above those needed to block initiation. Adozelesin treatment inhibits SV40 DNA replication at concentrations that produce adducts on just a small fraction of the intracellular population of SV40 DNA molecules.
Collapse
Affiliation(s)
- R J Cobuzzi
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
20
|
Wang YC, Hsu MT. Inhibition of initiation of simian virus 40 DNA replication during acute response of cells irradiated by ultraviolet light. Nucleic Acids Res 1996; 24:3149-57. [PMID: 8774894 PMCID: PMC146069 DOI: 10.1093/nar/24.16.3149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To study the mechanism by which ultraviolet (UV) light inhibits DNA replication, we examined the effects of UV 254 nm irradiation on the replication of simian virus 40 (SV40) DNA and SV40-based plasmid in monkey cells. The study was designed to determine the relative contributions made by inhibition of replication initiation and chain elongation to the immediate inhibition of DNA replication following UV irradiation. We used two-dimensional neutral-alkaline electrophoresis to examine the behaviour of replication intermediates unambiguously. Kinetic analysis using this technique showed that initiation of replication started to decline at 15 min post-irradiation. When the pulse label incorporated in SV40 replication intermediates before irradiation was chased for 1 h, most of the label was found in mature Form I and II molecules. This indicated that replication elongation took place on damaged template. We also used a transfection technique to show that heavily irradiated plasmids replicated efficiently in unirradiated transfected cells. By the transfection technique, we observed that UV irradiation of host cells dose-dependently inhibited replication of transfected non-irradiated plasmids, suggesting that the inhibition of DNA replication is due to a global change in cellular physiology induced by UV. This change was also apparent from poor staining of the chromatin by fluorescent-DNA-binding dyes immediately after UV irradiation of intact cells. We conclude that a significant fraction of chain elongation proceeds on damaged templates and DNA replication during the acute response of cells irradiated with UV is mainly controlled by the inhibition of replication initiation.
Collapse
Affiliation(s)
- Y C Wang
- Institute of Toxicology, Chung Shan Medical and Dental College, Taichung, Taiwan, Republic of China
| | | |
Collapse
|
21
|
Tsvetkov L, Russev G. Decreased rates of replicon initiation in mammalian cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:489-95. [PMID: 8647090 DOI: 10.1111/j.1432-1033.1996.0489k.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have designed an assay to measure the rate of initiation of DNA synthesis in Friend erythroleukemia cells and have shown that this parameter is reduced by gamma-radiation and treatment with 4'-demethyl-epipodophyllotoxin-9-(4,6-O-ethylene-beta-D-glucopyranoside) (VP-16). It is concluded, that double-strand breaks in DNA are the immediate cause for this effect. The decrease in the rate of replicon initiation is affected differently by different agents such as cis-diamminedichloroplatinum(II), cycloheximide, staurosporine, and 3-aminobenzamide. The analysis of these results indicates that the observed partial decrease of the rate of DNA initiation is most probably transmitted from the site of damage to the initiation site by one or more phosphorylation/dephosphorylation steps. It does not require de novo synthesis of protein factors, but is probably dependent on poly(ADP-ribosyl)ation of chromatin at the site of DNA breaks.
Collapse
Affiliation(s)
- L Tsvetkov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
22
|
Sjöblom T, Parvinen M, Lähdetie J. Stage-specific DNA synthesis of rat spermatogenesis as an indicator of genotoxic effects of vinblastine, mitomycin C and ionizing radiation on rat spermatogonia and spermatocytes. Mutat Res 1995; 331:181-90. [PMID: 7500976 DOI: 10.1016/0027-5107(95)00067-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have studied the effects of three known mutagens: vinblastine sulphate, mitomycin C and local irradiation of testes on the stage-specific DNA synthesis in the rat testis by using transillumination assisted microdissection of rat seminiferous tubules. It enables us to investigate the sensitivity of different types of spermatogonia and preleptotene spermatocytes to the genotoxic effects of these agents. According to our results, spermatogonia and preleptotene spermatocytes are quite resistant to the action of vinblastine at the treatment times and the doses used. After treatment with mitomycin C, type A2, A3 and A4 spermatogonia seem to be the first cell types affected, which shows itself as a reduction in the DNA synthesis at stages I, II-III, XIII-XIV of the epithelial cycle two and/or three days after the treatment. It also seems that they are mostly affected during the S-phase of their cell cycles. In addition, preleptotene spermatocytes are also sensitive to the action of mitomycin C when they are treated in the G1 phase of the cell cycle. The local irradiation of 3 Gy has severe effects on the spermatogonia of rat testis which can be seen already 18 h after the treatment and becomes more evident 42 and 66 h after the treatment as a reduction of DNA synthesis at stages XII-V. Type A spermatogonia (A1-A4) seem to be the most sensitive cell types to the action of irradiation. This study indicates that the novel method of stage-specific DNA synthesis in rat spermatogenesis allows detailed studies of sensitivities in differentiating spermatogonia to genotoxic agents.
Collapse
Affiliation(s)
- T Sjöblom
- Department of Medical Genetics, University of Turku, Finland
| | | | | |
Collapse
|
23
|
Affiliation(s)
- W Siede
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| |
Collapse
|
24
|
Murnane JP. Cell cycle regulation in response to DNA damage in mammalian cells: a historical perspective. Cancer Metastasis Rev 1995; 14:17-29. [PMID: 7606817 DOI: 10.1007/bf00690208] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell cycle delay has long been known to occur in mammalian cells after exposure to DNA-damaging agents. It has been hypothesized that the function of this delay is to provide additional time for repair of DNA before the cell enters critical periods of the cell cycle, such as DNA synthesis in S phase or chromosome condensation in G2 phase. Recent evidence that p53 protein is involved in the delay in G1 in response to ionizing radiation has heightened interest in the importance of cell cycle delay, because mutations in p53 are commonly found in human cancer cells. Because mammalian cells defective in p53 protein show increased genomic instability, it is tempting to speculate that the instability is due to increased chromosome damage resulting from the lack of a G1 delay. Although this appears at first glance to be a highly plausible explanation, a review of the research performed on cell cycle regulation and DNA damage in mammalian cells provides little evidence to support this hypothesis. Studies involving cells treated with caffeine, cells from humans with the genetic disease ataxia telangiectasia, and cells that are deficient in p53 show no correlation between G1 delay and increased cell killing or chromosome damage in response to ionizing radiation. Instead, G1 delay appears to be only one aspect of a complex cellular response to DNA damage that also includes delays in S phase and G2 phase, apoptosis and chromosome repair. The exact mechanism of the genomic instability associated with p53, and its relationship to the failure to repair DNA before progression through the cell cycle, remains to be determined.
Collapse
Affiliation(s)
- J P Murnane
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, USA
| |
Collapse
|
25
|
Abstract
It has recently been shown that the tumor suppressor p53 mediates a signal transduction pathway that responds to DNA damage by arresting cells in the late G1 period of the cell cycle. However, the operation of this pathway alone cannot explain the 50% reduction in the rate of DNA synthesis that occurs within 30 min of irradiation of an asynchronous cell population. We are using the amplified dihydrofolate reductase (DHFR) domain in the methotrexate-resistant CHO cell line, CHOC 400, as a model replicon in which to study this acute radiation effect. We first show that the CHOC 400 cell line retains the classical acute-phase response but does not display the late G1 arrest that characterizes the p53-mediated checkpoint. Using a two-dimensional gel replicon-mapping method, we then show that when asynchronous cultures are irradiated with 900 cGy, initiation in the DHFR locus is completely inhibited within 30 min and does not resume for 3 to 4 h. Since initiation in this locus occurs throughout the first 2 h of the S period, this result implies the existence of a p53-independent S-phase damage-sensing pathway that functions at the level of individual origins. Results obtained with the replication inhibitor mimosine define a position near the G1/S boundary beyond which cells are unable to prevent initiation at early-firing origins in response to irradiation. This is the first direct demonstration at a defined chromosomal origin that radiation quantitatively down-regulates initiation.
Collapse
|
26
|
Abstract
It has recently been shown that the tumor suppressor p53 mediates a signal transduction pathway that responds to DNA damage by arresting cells in the late G1 period of the cell cycle. However, the operation of this pathway alone cannot explain the 50% reduction in the rate of DNA synthesis that occurs within 30 min of irradiation of an asynchronous cell population. We are using the amplified dihydrofolate reductase (DHFR) domain in the methotrexate-resistant CHO cell line, CHOC 400, as a model replicon in which to study this acute radiation effect. We first show that the CHOC 400 cell line retains the classical acute-phase response but does not display the late G1 arrest that characterizes the p53-mediated checkpoint. Using a two-dimensional gel replicon-mapping method, we then show that when asynchronous cultures are irradiated with 900 cGy, initiation in the DHFR locus is completely inhibited within 30 min and does not resume for 3 to 4 h. Since initiation in this locus occurs throughout the first 2 h of the S period, this result implies the existence of a p53-independent S-phase damage-sensing pathway that functions at the level of individual origins. Results obtained with the replication inhibitor mimosine define a position near the G1/S boundary beyond which cells are unable to prevent initiation at early-firing origins in response to irradiation. This is the first direct demonstration at a defined chromosomal origin that radiation quantitatively down-regulates initiation.
Collapse
Affiliation(s)
- J M Larner
- Department of Radiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
27
|
Lallev A, Anachkova B, Russev G. Effect of ionizing radiation and topoisomerase II inhibitors on DNA synthesis in mammalian cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:177-81. [PMID: 8396027 DOI: 10.1111/j.1432-1033.1993.tb18130.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have used a novel, quantitative approach to study the effect of gamma-radiation and topoisomerase-II inhibitors on the initiation of DNA synthesis in eukaryotic cells. We found out that mild gamma-irradiation caused an almost immediate decrease in the rate of initiation of genomic DNA replication and stimulated DNA repair. This held true for two different cell lines. Ehrlich ascites tumor cells and Friend transformed erythroid cells, although the effect of gamma-radiation on Friend cells was more pronounced. At the same time, the synthesis of mitochondrial DNA was not affected by the irradiation. The effect of topoisomerase-II inhibitors on DNA initiation closely paralleled that of gamma irradiation, but did not stimulate repair. The fact that gamma-radiation and topoisomerase-II inhibitors, two types of agents that differ so profoundly, have practically the same effect on DNA synthesis speaks strongly in favour of the idea that eukaryotic cells have a general mechanism for coping with any disturbances in DNA integrity and chromatin structure. This mechanism is probably similar to the SOS-mechanism of prokaryotic cells and includes, as an early step, a slowdown of the initiation of replicative DNA synthesis.
Collapse
Affiliation(s)
- A Lallev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | |
Collapse
|
28
|
Milner AE, Gordon DJ, Turner BM, Vaughan AT. A correlation between DNA-nuclear matrix binding and relative radiosensitivity in two human squamous cell carcinoma cell lines. Int J Radiat Biol 1993; 63:13-20. [PMID: 8093463 DOI: 10.1080/09553009314550031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three aspects of DNA topology were examined in two human squamous cell carcinoma lines of differing radiosensitivity (SQ-9G, D0 = 1.46 Gy; and SQ-20B, D0 = 2.36 Gy). High-salt-extracted nuclei (nucleoids) were taken from gamma-irradiated cells, stained with ethidium bromide and examined by flow cytometry. After 5 Gy, nucleoids from SQ-9G cells became 30% less efficient at adopting positive DNA supercoils than were unirradiated controls. In contrast, only a 4% difference was found with the radioresistant SQ-20B line. Both lines produced positive supercoils more efficiently after irradiation if first exposed to the topoisomerase II inhibitor VP16. Ethidium bromide titration of nucleoids was consistent with each containing similar numbers and sizes of DNA loops. In each line approximately 30-35% of DNA was accessible to trioxsalen, as shown by inter-strand crosslinking after UV photo-activation. Exhaustive digestion of nuclear DNA by DNase I removed more DNA from the radiosensitive than from the radioresistant cell line (12% vs 28% remaining). This difference was thought to be due to the increased accessibility of SQ-9G DNA in vitro. We suggest that a looser association of SQ-9G DNA with the nuclear matrix both promotes DNase I digestion and affects the ability of SQ-9G nucleoids to maintain positive DNA supercoils after irradiation. These data implicate the DNA matrix attachment region in the expression of radiation sensitivity in the cell lines studied.
Collapse
Affiliation(s)
- A E Milner
- Department of Immunology, Medical School, University of Birmingham, UK
| | | | | | | |
Collapse
|
29
|
|
30
|
Karran P, Bignami M. Self-destruction and tolerance in resistance of mammalian cells to alkylation damage. Nucleic Acids Res 1992; 20:2933-40. [PMID: 1620587 PMCID: PMC312419 DOI: 10.1093/nar/20.12.2933] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- P Karran
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | |
Collapse
|
31
|
Abstract
DNA damage-inducible responses in mammalian cells tend to lack specificity and can be activated by any one of a number of damaging agents. Although a number of different induced proteins have been described, their involvement in DNA processing and transcriptional control remains unresolved. We describe the appearance of a previously unreported, specific DNA-binding protein in nuclei from human cells exposed to ionizing radiation, which was not detected in nuclear extracts from unperturbed cells. The distal part of the simian virus 40 enhancer (without the AP-1 site) and oligonucleotide sequences derived from that sequence were used in binding studies. The appearance of this activity was dose dependent and transient, reaching a maximum at 1 h postirradiation and disappearing from nuclei by 9 h. This protein was induced in cells by a mechanism not requiring de novo protein synthesis, and the response was specific for ionizing radiation and radiomimetic agents; neither UV nor heat shock invoked a response. The DNA-binding protein was present in the cytoplasm of untreated cells, apparently being translocated to the nucleus only after radiation exposure. Southwestern (DNA-protein) analysis demonstrated that the nuclear and cytoplasmic proteins were approximately the same size, 43,000 daltons. The protected DNA-binding motif, using the distal fragment of the simian virus 40 enhancer as the substrate, was shown by DNase I footprint analysis to be pTGTCAGTTAGGGTACAGTCAATCCCAp. This was confirmed by dimethyl sulfate footprinting.
Collapse
|
32
|
Abstract
DNA damage-inducible responses in mammalian cells tend to lack specificity and can be activated by any one of a number of damaging agents. Although a number of different induced proteins have been described, their involvement in DNA processing and transcriptional control remains unresolved. We describe the appearance of a previously unreported, specific DNA-binding protein in nuclei from human cells exposed to ionizing radiation, which was not detected in nuclear extracts from unperturbed cells. The distal part of the simian virus 40 enhancer (without the AP-1 site) and oligonucleotide sequences derived from that sequence were used in binding studies. The appearance of this activity was dose dependent and transient, reaching a maximum at 1 h postirradiation and disappearing from nuclei by 9 h. This protein was induced in cells by a mechanism not requiring de novo protein synthesis, and the response was specific for ionizing radiation and radiomimetic agents; neither UV nor heat shock invoked a response. The DNA-binding protein was present in the cytoplasm of untreated cells, apparently being translocated to the nucleus only after radiation exposure. Southwestern (DNA-protein) analysis demonstrated that the nuclear and cytoplasmic proteins were approximately the same size, 43,000 daltons. The protected DNA-binding motif, using the distal fragment of the simian virus 40 enhancer as the substrate, was shown by DNase I footprint analysis to be pTGTCAGTTAGGGTACAGTCAATCCCAp. This was confirmed by dimethyl sulfate footprinting.
Collapse
|