1
|
Maeda J, Chailapakul P, Kato TA. ATM and ATR gene editing mediated by CRISPR/Cas9 in Chinese Hamster cells. Mutat Res 2024; 829:111871. [PMID: 39024734 DOI: 10.1016/j.mrfmmm.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Piyawan Chailapakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Averdunk L, Huetzen MA, Moreno-Andrés D, Kalb R, McKee S, Hsieh TC, Seibt A, Schouwink M, Lalani S, Faqeih EA, Brunet T, Boor P, Neveling K, Hoischen A, Hildebrandt B, Graf E, Lu L, Jin W, Schaper J, Omer JA, Demaret T, Fleischer N, Schindler D, Krawitz P, Mayatepek E, Wieczorek D, Wang LL, Antonin W, Jachimowicz RD, von Felbert V, Distelmaier F. Biallelic variants in CRIPT cause a Rothmund-Thomson-like syndrome with increased cellular senescence. Genet Med 2023; 25:100836. [PMID: 37013901 DOI: 10.1016/j.gim.2023.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.
Collapse
Affiliation(s)
- Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Maxim A Huetzen
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne and Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Reinhard Kalb
- Institute for Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast HSC Trust, Belfast, United Kingdom
| | - Tzung-Chien Hsieh
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marten Schouwink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Seema Lalani
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - Eissa Ali Faqeih
- Division of Medical Genetics, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Theresa Brunet
- Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Peter Boor
- Institute of Pathology and Electron Microscopy Facility, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Hildebrandt
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Elisabeth Graf
- Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany
| | - Linchao Lu
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Weidong Jin
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Joerg Schaper
- Center of Rare Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jamal A Omer
- Department of General Pediatrics, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tanguy Demaret
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | | | - Detlev Schindler
- Institute for Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Peter Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa L Wang
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Ron D Jachimowicz
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne and Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Verena von Felbert
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Pizzamiglio L, Focchi E, Antonucci F. ATM Protein Kinase: Old and New Implications in Neuronal Pathways and Brain Circuitry. Cells 2020; 9:E1969. [PMID: 32858941 PMCID: PMC7564642 DOI: 10.3390/cells9091969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite that the human autosomal recessive disease ataxia telangiectasia (A-T) is a rare pathology, interest in the function of ataxia-telangiectasia mutated protein (ATM) is extensive. From a clinical point of view, the role of ATM in the central nervous system (CNS) is the most impacting, as motor disability is the predominant symptom affecting A-T patients. Coherently, spino-cerebellar neurodegeneration is the principal hallmark of A-T and other CNS regions such as dentate and olivary nuclei and brain stem are implicated in A-T pathophysiology. Recently, several preclinical studies also highlighted the involvement of ATM in the cerebral cortex and hippocampus, thus extending A-T symptomatology to new brain areas and pathways. Here, we review old and recent evidence that largely demonstrates not only the historical ATM account in DNA damage response and cell cycle regulation, but the multiple pathways through which ATM controls oxidative stress homeostasis, insulin signalling pathways, epigenetic regulation, synaptic transmission, and excitatory-inhibitory balance. We also summarise recent evidence on ATM implication in neurological and cognitive diseases beyond A-T, bringing out ATM as new pathological substrate and potential therapeutic target.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Institute of Molecular and Cellular Pharmacology (IPMC), Université Côte d’Azur (UCA), CNRS UMR7275, 06560 Valbonne-Sophia Antipolis, France;
| | - Elisa Focchi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20100 Milan, Italy;
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20100 Milan, Italy;
| |
Collapse
|
4
|
Mondal T, Nautiyal A, Patwari A, Ozukum A, Mitra D, Goel A, Dey SK. DNA double strand breaks, repair and apoptosis following 511 keV
γ
-rays exposure using 18 fluorine positron emitter: an
in-vitro
study. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae5b9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8279560. [PMID: 27057549 PMCID: PMC4736819 DOI: 10.1155/2016/8279560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70-85% of the AT viable cells (TUNEL-negative) carried ≥ 10 γH2AX foci/cell, while only 12-27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥ 10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.
Collapse
|
6
|
Wang GZ, Liu YQ, Cheng X, Zhou GB. Celastrol induces proteasomal degradation of FANCD2 to sensitize lung cancer cells to DNA crosslinking agents. Cancer Sci 2015; 106:902-8. [PMID: 25891850 PMCID: PMC4520643 DOI: 10.1111/cas.12679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a key role in interstrand crosslink (ICL) repair and maintenance of the genomic stability, while inhibition of this pathway may sensitize cancer cells to DNA ICL agents and ionizing radiation (IR). The active FA core complex acts as an E3 ligase to monoubiquitinate FANCD2, which is a functional readout of an activated FA pathway. In the present study, we aimed to identify FANCD2-targeting agents, and found that the natural compound celastrol induced degradation of FANCD2 through the ubiquitin–proteasome pathway. We demonstrated that celastrol downregulated the basal and DNA damaging agent-induced monoubiquitination of FANCD2, followed by proteolytic degradation of the substrate. Furthermore, celastrol treatment abrogated the G2 checkpoint induced by IR, and enhanced the ICL agent-induced DNA damage and inhibitory effects on lung cancer cells through depletion of FANCD2. These results indicate that celastrol is a FANCD2 inhibitor that could interfere with the monoubiquitination and protein stability of FANCD2, providing a novel opportunity to develop FA pathway inhibitor and combinational therapy for malignant neoplasms.
Collapse
Affiliation(s)
- Gui-Zhen Wang
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Qiang Liu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Cheng
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guang-Biao Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Kabacik S, Manning G, Raffy C, Bouffler S, Badie C. Time, Dose and Ataxia Telangiectasia Mutated (ATM) Status Dependency of Coding and Noncoding RNA Expression after Ionizing Radiation Exposure. Radiat Res 2015; 183:325-37. [DOI: 10.1667/rr13876.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Mangone FR, Miracca EC, Feilotter HE, Mulligan LM, Nagai MA. ATM gene mutations in sporadic breast cancer patients from Brazil. SPRINGERPLUS 2015; 4:23. [PMID: 25625042 PMCID: PMC4298590 DOI: 10.1186/s40064-015-0787-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 01/02/2015] [Indexed: 12/30/2022]
Abstract
Purpose The Ataxia-telangiectasia mutated (ATM) gene encodes a multifunctional kinase, which is linked to important cellular functions. Women heterozygous for ATM mutations have an estimated relative risk of developing breast cancer of 3.8. However, the pattern of ATM mutations and their role in breast cancer etiology has been controversial and remains unclear. In the present study, we investigated the frequency and spectrum of ATM mutations in a series of sporadic breast cancers and controls from the Brazilian population. Methods Using PCR-Single Strand Conformation Polymorphism (SSCP) analysis and direct DNA sequencing, we screened a panel of 100 consecutive, unselected sporadic breast tumors and 100 matched controls for all 62 coding exons and flanking introns of the ATM gene. Results Several polymorphisms were detected in 12 of the 62 coding exons of the ATM gene. These polymorphisms were observed in both breast cancer patients and the control population. In addition, evidence of potential ATM mutations was observed in 7 of the 100 breast cancer cases analyzed. These potential mutations included six missense variants found in exon 13 (p.L546V), exon 14 (p.P604S), exon 20 (p.T935R), exon 42 (p.G2023R), exon 49 (p.L2307F), and exon 50 (p.L2332P) and one nonsense mutation in exon 39 (p.R1882X), which was predicted to generate a truncated protein. Conclusions Our results corroborate the hypothesis that sporadic breast tumors may occur in carriers of low penetrance ATM mutant alleles and these mutations confer different levels of breast cancer risk. Electronic supplementary material The online version of this article (doi:10.1186/s40064-015-0787-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia Rotea Mangone
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Av Dr Arnaldo, 251, 8th Floor, CEP 01246-000 São Paulo, Brazil
| | - Elisabete C Miracca
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Av Dr Arnaldo, 251, 8th Floor, CEP 01246-000 São Paulo, Brazil
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, 88 Stuart Street, Kingston, Ontario K7L 3N6 Canada
| | - Lois M Mulligan
- Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen's University, Botterell Hall, 10 Stuart Street, Kingston, Ontario K7L 3N6 Canada
| | - Maria Aparecida Nagai
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Av Dr Arnaldo, 251, 8th Floor, CEP 01246-000 São Paulo, Brazil ; Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, Av Dr Arnaldo, 455, 4th Floor, CEP 01246-903 São Paulo, Brazil
| |
Collapse
|
9
|
Lim YC, Roberts TL, Day BW, Stringer BW, Kozlov S, Fazry S, Bruce ZC, Ensbey KS, Walker DG, Boyd AW, Lavin MF. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Mol Oncol 2014; 8:1603-15. [PMID: 25017126 DOI: 10.1016/j.molonc.2014.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma is deemed the most malignant form of brain tumour, particularly due to its resistance to conventional treatments. A small surviving group of aberrant stem cells termed glioma initiation cells (GICs) that escape surgical debulking are suggested to be the cause of this resistance. Relatively quiescent in nature, GICs are capable of driving tumour recurrence and undergo lineage differentiation. Most importantly, these GICs are resistant to radiotherapy, suggesting that radioresistance contribute to their survival. In a previous study, we demonstrated that GICs had a restricted double strand break (DSB) repair pathway involving predominantly homologous recombination (HR) associated with a lack of functional G1/S checkpoint arrest. This unusual behaviour led to less efficient non-homologous end joining (NHEJ) repair and overall slower DNA DSB repair kinetics. To determine whether specific targeting of the HR pathway with small molecule inhibitors could increase GIC radiosensitivity, we used the Ataxia-telangiectasia mutated inhibitor (ATMi) to ablate HR and the DNA-dependent protein kinase inhibitor (DNA-PKi) to inhibit NHEJ. Pre-treatment with ATMi prior to ionizing radiation (IR) exposure prevented HR-mediated DNA DSB repair as measured by Rad51 foci accumulation. Increased cell death in vitro and improved in vivo animal survival could be observed with combined ATMi and IR treatment. Conversely, DNA-PKi treatment had minimal impact on GICs ability to resolve DNA DSB after IR with only partial reduction in cell survival, confirming the major role of HR. These results provide a mechanistic insight into the predominant form of DNA DSB repair in GICs, which when targeted may be a potential translational approach to increase patient survival.
Collapse
Affiliation(s)
- Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia; The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, Queensland 4029, Australia
| | - Tara L Roberts
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia; The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, Queensland 4029, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - Sergei Kozlov
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - Shazrul Fazry
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - Kathleen S Ensbey
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - David G Walker
- BrizBrain and Spine, The Wesley Hospital, Evan Thomson Building, Level 10, Auchenflower, Queensland 4066, Australia
| | - Andrew W Boyd
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia
| | - Martin F Lavin
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4029, Australia; The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, Queensland 4029, Australia.
| |
Collapse
|
10
|
DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat 2013; 143:47-55. [DOI: 10.1007/s10549-013-2785-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
|
11
|
Di Francesco A, De Pittà C, Moret F, Barbieri V, Celotti L, Mognato M. The DNA-damage response to γ-radiation is affected by miR-27a in A549 cells. Int J Mol Sci 2013; 14:17881-96. [PMID: 24002026 PMCID: PMC3794758 DOI: 10.3390/ijms140917881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022] Open
Abstract
Perturbations during the cell DNA-Damage Response (DDR) can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs), small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR) exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB) repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Cristiano De Pittà
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova via Gattamelata 64, Padova 35128, Italy; E-Mail:
| | - Lucia Celotti
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
- INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro 35020, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| |
Collapse
|
12
|
Claes K, Depuydt J, Taylor AMR, Last JI, Baert A, Schietecatte P, Vandersickel V, Poppe B, De Leeneer K, D'Hooghe M, Vral A. Variant ataxia telangiectasia: clinical and molecular findings and evaluation of radiosensitive phenotypes in a patient and relatives. Neuromolecular Med 2013; 15:447-57. [PMID: 23632773 DOI: 10.1007/s12017-013-8231-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/23/2013] [Indexed: 12/01/2022]
Abstract
Variant ataxia telangiectasia (A-T) may be an underdiagnosed entity. We correlate data from radiosensitivity and kinase assays with clinical and molecular data from a patient with variant A-T and relatives. The coding region of ATM was sequenced. To evaluate the functional effect of the mutations, we performed kinase assays and developed a novel S-G2 micronucleus test. Our patient presented with mild dystonia, moderately dysarthric speech, increased serum α-fetoprotein but no ataxia nor telangiectasias, no nystagmus or oculomotor dyspraxia. She has a severe IgA deficiency, but does not have recurrent infections. She is compound heterozygote for ATM c.8122G>A (p.Asp2708Asn) and c.8851-1G>T, leading to in frame loss of 63 nucleotides at the cDNA level. A trace amount of ATM protein is translated from both alleles. Residual kinase activity is derived only from the p.Asp2708Asn allele. The conventional G0 micronucleus test, based on irradiation of resting lymphocytes, revealed a radiosensitive phenotype for the patient, but not for the heterozygous relatives. As ATM is involved in homologous recombination and G2/M cell cycle checkpoint, we optimized an S-G2 micronucleus assay, allowing to evaluate micronuclei in lymphocytes irradiated in the S and G2 phases. This test showed increased radiosensitivity for both the patient and the heterozygous carriers. Intriguingly, heterozygous carriers of c.8851-1G>T (mutation associated with absence of kinase activity) showed a stronger radiosensitive phenotype with this assay than heterozygous carriers of p.Asp2708Asn (mutation associated with residual kinase activity). The modified S-G2 micronucleus assay provided phenotypic insight into complement the diagnosis of this atypical A-T patient.
Collapse
Affiliation(s)
- Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Regal JA, Festerling TA, Buis JM, Ferguson DO. Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms. Hum Mol Genet 2013; 22:5146-59. [PMID: 23912341 DOI: 10.1093/hmg/ddt368] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) can lead to instability of the genome if not repaired correctly. The MRE11/RAD50/NBS1 (MRN) complex binds DSBs and initiates damage-induced signaling cascades via activation of the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia- and rad3-related (ATR) kinases. Mutations throughout MRE11 cause ataxia-telangiectasia-like disorder (ATLD) featuring cerebellar degeneration, and cancer-predisposition in certain kindreds. Here, we have examined the impact on DNA damage signaling of several disease-associated MRE11A alleles to gain greater understanding of the mechanisms underlying the diverse disease sequelae of ATLD. To this end, we have designed a system whereby endogenous wild-type Mre11a is conditionally deleted and disease-associated MRE11 mutants are stably expressed at physiologic levels. We find that mutations in the highly conserved N-terminal domain impact ATM signaling by perturbing both MRE11 interaction with NBS1 and MRE11 homodimerization. In contrast, an inherited allele in the MRE11 C-terminus maintains MRN interactions and ATM/ATR kinase activation. These findings reveal that ATLD patients have reduced ATM activation resulting from at least two distinct mechanisms: (i) N-terminal mutations destabilize MRN interactions, and (ii) mutation of the extreme C-terminus maintains interactions but leads to low levels of the complex. The N-terminal mutations were found in ATLD patients with childhood cancer; thus, our studies suggest a clinically relevant dichotomy in MRE11A alleles. More broadly, these studies underscore the importance of understanding specific effects of hypomorphic disease-associated mutations to achieve accurate prognosis and appropriate long-term medical surveillance.
Collapse
Affiliation(s)
- Joshua A Regal
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
14
|
Stewart R, Kozlov S, Matigian N, Wali G, Gatei M, Sutharsan R, Bellette B, Wraith-Kijas A, Cochrane J, Coulthard M, Perry C, Sinclair K, Mackay-Sim A, Lavin MF. A patient-derived olfactory stem cell disease model for ataxia-telangiectasia. Hum Mol Genet 2013; 22:2495-509. [PMID: 23474819 DOI: 10.1093/hmg/ddt101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The autosomal recessive disorder ataxia-telangiectasia (A-T) is characterized by genome instability, cancer predisposition and neurodegeneration. Although the role of ataxia-telangiectasia mutated (ATM) protein, the protein defective in this syndrome, is well described in the response to DNA damage, its role in protecting the nervous system is less clear. We describe the establishment and characterization of patient-specific stem cells that have the potential to address this shortcoming. Olfactory neurosphere (ONS)-derived cells were generated from A-T patients, which expressed stem cell markers and exhibited A-T molecular and cellular characteristics that included hypersensitivity to radiation, defective radiation-induced signaling and cell cycle checkpoint defects. Introduction of full-length ATM cDNA into these cells corrected defects in the A-T cellular phenotype. Gene expression profiling and pathway analysis revealed defects in multiple cell signaling pathways associated with ATM function, with cell cycle, cell death and DNA damage response pathways being the most significantly dysregulated. A-T ONS cells were also capable of differentiating into neural progenitors, but they were defective in neurite formation, number of neurites and length of these neurites. Thus, ONS cells are a patient-derived neural stem cell model that recapitulate the phenotype of A-T, do not require genetic reprogramming, have the capacity to differentiate into neurons and have potential to delineate the neurological defect in these patients.
Collapse
Affiliation(s)
- Romal Stewart
- Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gatei M, Jakob B, Chen P, Kijas AW, Becherel OJ, Gueven N, Birrell G, Lee JH, Paull TT, Lerenthal Y, Fazry S, Taucher-Scholz G, Kalb R, Schindler D, Waltes R, Dörk T, Lavin MF. ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J Biol Chem 2011; 286:31542-56. [PMID: 21757780 PMCID: PMC3173097 DOI: 10.1074/jbc.m111.258152] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/12/2011] [Indexed: 02/01/2023] Open
Abstract
The Mre11/Rad50/NBN complex plays a central role in coordinating the cellular response to DNA double-strand breaks. The importance of Rad50 in that response is evident from the recent description of a patient with Rad50 deficiency characterized by chromosomal instability and defective ATM-dependent signaling. We report here that ATM (defective in ataxia-telangiectasia) phosphorylates Rad50 at a single site (Ser-635) that plays an important adaptor role in signaling for cell cycle control and DNA repair. Although a Rad50 phosphosite-specific mutant (S635G) supported normal activation of ATM in Rad50-deficient cells, it was defective in correcting DNA damage-induced signaling through the ATM-dependent substrate SMC1. This mutant also failed to correct radiosensitivity, DNA double-strand break repair, and an S-phase checkpoint defect in Rad50-deficient cells. This was not due to disruption of the Mre11/Rad50/NBN complex revealing for the first time that phosphorylation of Rad50 plays a key regulatory role as an adaptor for specific ATM-dependent downstream signaling through SMC1 for DNA repair and cell cycle checkpoint control in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Magtouf Gatei
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Burkhard Jakob
- Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Philip Chen
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Amanda W. Kijas
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Olivier J. Becherel
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
- the University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland 4072, Australia
| | - Nuri Gueven
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Geoff Birrell
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Ji-Hoon Lee
- The Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Tanya T. Paull
- The Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Yaniv Lerenthal
- the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shazrul Fazry
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Gisela Taucher-Scholz
- Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Reinhard Kalb
- the Department of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | - Detlev Schindler
- the Department of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | | | - Thilo Dörk
- Gynecology, Hannover Medical School, D-30625 Hannover, Germany, and
| | - Martin F. Lavin
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
- the University of Queensland Centre for Clinical Research, Brisbane, Queensland 4029, Australia
| |
Collapse
|
16
|
Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest. Mol Cell Biol 2010; 30:3371-83. [PMID: 20421415 DOI: 10.1128/mcb.01644-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ATM-dependent initiation of the radiation-induced G(2)/M checkpoint arrest is well established. Recent results have shown that the majority of DNA double-strand breaks (DSBs) in G(2) phase are repaired by DNA nonhomologous end joining (NHEJ), while approximately 15% of DSBs are slowly repaired by homologous recombination. Here, we evaluate how the G(2)/M checkpoint is maintained in irradiated G(2) cells, in light of our current understanding of G(2) phase DSB repair. We show that ATM-dependent resection at a subset of DSBs leads to ATR-dependent Chk1 activation. ATR-Seckel syndrome cells, which fail to efficiently activate Chk1, and small interfering RNA (siRNA) Chk1-treated cells show premature mitotic entry. Thus, Chk1 significantly contributes to maintaining checkpoint arrest. Second, sustained ATM signaling to Chk2 contributes, particularly when NHEJ is impaired by XLF deficiency. We also show that cells lacking the mediator proteins 53BP1 and MDC1 initially arrest following radiation doses greater than 3 Gy but are subsequently released prematurely. Thus, 53BP1(-/-) and MDC1(-/-) cells manifest a checkpoint defect at high doses. This failure to maintain arrest is due to diminished Chk1 activation and a decreased ability to sustain ATM-Chk2 signaling. The combined repair and checkpoint defects conferred by 53BP1 and MDC1 deficiency act synergistically to enhance chromosome breakage.
Collapse
|
17
|
Lavin M, Khanna K, Beamish H, Teale B, Hobson K, Watters D. Defect in Radiation Signal Transduction in Ataxia-telangiectasia. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M.F. Lavin
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - K.K. Khanna
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| | - H. Beamish
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - B. Teale
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| | - K. Hobson
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - D. Watters
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| |
Collapse
|
18
|
Affiliation(s)
- A.M. Carr
- MRC Cell Mutation Unit, Sussex University, Falmer, BN1 9RR, UK
| |
Collapse
|
19
|
Meyn M, Strasfeld L, Allen C. Testing the Role of p53 in the Expression of Genetic Instability and Apoptosis in Ataxia-telangiectasia. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551971] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- M.S. Meyn
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - L. Strasfeld
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - C. Allen
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
20
|
Affiliation(s)
- J. Thacker
- DNA Repair and Mutagenesis Group, MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD, UK
| |
Collapse
|
21
|
Scott D, Spreadborough A, Roberts S. Radiation-induced G2 Delay and Spontaneous Chromosome Aberrations in Ataxia-telangiectasia Homozygotes and Heterozygotes. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551991] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- D. Scott
- Paterson Institute for Cancer Research, Christie CRC Research Centre, Manchester, M20 9BX, UK
| | - A.R. Spreadborough
- Paterson Institute for Cancer Research, Christie CRC Research Centre, Manchester, M20 9BX, UK
| | - S.A. Roberts
- Paterson Institute for Cancer Research, Christie CRC Research Centre, Manchester, M20 9BX, UK
| |
Collapse
|
22
|
Hosoi Y, Kapp L. Expression of a Candidate Ataxia-telangiectasia Group D Gene in Cultured Fibroblast Cell Lines and Human Tissues. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Y. Hosoi
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, CA, 94143-0750, USA
| | - L.N. Kapp
- SRI International, 333 Ravenswood Avenue, Menlo ParkCA, 94025, USA
| |
Collapse
|
23
|
|
24
|
Affiliation(s)
- D.G. Harnden
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 9BX, UK
| |
Collapse
|
25
|
Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dörk T. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 2009; 84:605-16. [PMID: 19409520 PMCID: PMC2681000 DOI: 10.1016/j.ajhg.2009.04.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/13/2009] [Accepted: 04/09/2009] [Indexed: 01/24/2023] Open
Abstract
The MRE11/RAD50/NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks (DSBs). Hypomorphic mutations in NBN (previously known as NBS1) and MRE11A give rise to the autosomal-recessive diseases Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively. To date, no disease due to RAD50 deficiency has been described. Here, we report on a patient previously diagnosed as probably having NBS, with microcephaly, mental retardation, 'bird-like' face, and short stature. At variance with this diagnosis, she never had severe infections, had normal immunoglobulin levels, and did not develop lymphoid malignancy up to age 23 years. We found that she is compound heterozygous for mutations in the RAD50 gene that give rise to low levels of unstable RAD50 protein. Cells from the patient were characterized by chromosomal instability; radiosensitivity; failure to form DNA damage-induced MRN foci; and impaired radiation-induced activation of and downstream signaling through the ATM protein, which is defective in the human genetic disorder ataxia-telangiectasia. These cells were also impaired in G1/S cell-cycle-checkpoint activation and displayed radioresistant DNA synthesis and G2-phase accumulation. The defective cellular phenotype was rescued by wild-type RAD50. In conclusion, we have identified and characterized a patient with a RAD50 deficiency that results in a clinical phenotype that can be classified as an NBS-like disorder (NBSLD).
Collapse
Affiliation(s)
- Regina Waltes
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
- Institute of Radiation Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Reinhard Kalb
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Magtouf Gatei
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Amanda W. Kijas
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Markus Stumm
- Institute of Human Genetics, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Alexandra Sobeck
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Britta Wieland
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
- Institute of Radiation Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Raymonda Varon
- Institute of Human Genetics, Alexander von Humboldt University, D-13353 Berlin, Germany
| | - Yaniv Lerenthal
- Department of Human Genetics and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
- University of Queensland, Centre for Clinical Research, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
26
|
D'Arce LPG, Bassi CL, Fachin AL, Passos GAS, Sakamoto-Hojo ET. Occurrence of TRGV-BJ hybrid gene in SV40-transformed fibroblast cell lines. Genetica 2009; 136:471-8. [PMID: 19142737 DOI: 10.1007/s10709-008-9348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.
Collapse
Affiliation(s)
- L P G D'Arce
- Laboratório de Citogenética e Mutagênese, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
27
|
Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9:759-69. [PMID: 18813293 DOI: 10.1038/nrm2514] [Citation(s) in RCA: 660] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
First described over 80 years ago, ataxia-telangiectasia (A-T) was defined as a clinical entity 50 years ago. Although not encountered by most clinicians, it is a paradigm for cancer predisposition and neurodegenerative disorders and has a central role in our understanding of the DNA-damage response, signal transduction and cell-cycle control. The discovery of the protein A-T mutated (ATM) that is deficient in A-T paved the way for rapid progress on understanding how ATM functions with a host of other proteins to protect against genome instability and reduce the risk of cancer and other pathologies.
Collapse
|
28
|
Stiff T, Cerosaletti K, Concannon P, O'Driscoll M, Jeggo PA. Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1. Hum Mol Genet 2008; 17:3247-53. [PMID: 18664457 DOI: 10.1093/hmg/ddn220] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) is a phosphoinositol-3-kinase like kinase (PIKK) that initiates a signal transduction response to replication fork stalling. Defects in ATR signalling have been reported in several disorders characterized by microcephaly and growth delay. Here, we gain insight into factors influencing the ATR signalling pathway and consider how they can be exploited for diagnostic purposes. Activation of ATR at stalled replication forks leads to intra-S and G2/M phase checkpoint arrest. ATR also phosphorylates gamma-H2AX at single-stranded (ss) DNA regions generated during nucleotide excision repair (NER) in non-replicating cells, but the critical analysis of any functional consequence has not been reported. Here, we show that UV irradiation of G2 phase cells causes ATR-dependent but replication-independent G2/M checkpoint arrest. This process requires the Nbs1 N-terminus encompassing the FHA and BRCT domains but not the Nbs1 C-terminus in contrast to ATM-dependent activation of G2/M arrest in response to ionizing radiation. Thus, Nbs1 has a function in ATR signalling in a manner distinct to any role at stalled replication forks. Replication-independent ATR signalling also requires the mediator proteins, 53BP1 and MDC1, providing direct evidence for their role in ATR signalling, but not H2AX. Finally, the process is activated in Cockayne's syndrome but not Xeroderma pigmentosum group A cells providing evidence that ssDNA regions generated during NER are the ATR-pathway-specific activating lesion. Replication-independent G2/M checkpoint arrest represents a suitable assay to specifically identify patients with defective ATR signalling, including Seckel syndrome, Nijmegen breakage syndrome and MCPH-1-dependent primary microcephaly.
Collapse
Affiliation(s)
- Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
29
|
Lavin MF, Gueven N, Grattan-Smith P. Defective responses to DNA single- and double-strand breaks in spinocerebellar ataxia. DNA Repair (Amst) 2008; 7:1061-76. [PMID: 18467193 DOI: 10.1016/j.dnarep.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure to maintain the integrity of DNA/chromatin can result in genome instability and an increased risk of cancer. The description of a number of human genetic disorders characterised not only by cancer predisposition but by a broader phenotype including neurodegeneration suggests that maintaining genome stability is also important for preserving post-mitotic neurons. The identification of genes associated with other neurodegenerative disorders provides further evidence for the importance of DNA damage response and DNA repair genes in protecting against neurodegeneration. This theme is further developed in this review.
Collapse
Affiliation(s)
- Martin F Lavin
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | |
Collapse
|
30
|
Gurley KE, Kemp CJ. Ataxia-telangiectasia mutated is not required for p53 induction and apoptosis in irradiated epithelial tissues. Mol Cancer Res 2008; 5:1312-8. [PMID: 18171989 DOI: 10.1158/1541-7786.mcr-07-0223] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ataxia-telangiectasia mutated (Atm) protein kinase is a central regulator of the cellular response to DNA damage. Although Atm can regulate p53, it is not known if this Atm function varies between tissues. Previous studies showed that the induction of p53 and apoptosis by whole-body ionizing radiation varies greatly between tissue and tumor types, so here we asked if Atm also had a tissue-specific role in the ionizing radiation response. Irradiated Atm-null mice showed impaired p53 induction and apoptosis in thymus, spleen, and brain. In contrast, radiation-induced p53, apoptosis, phosphorylation of Chk2, and G(2)-M cell cycle arrest were slightly delayed in Atm(-/-) epithelial cells of the small intestine but reached wild-type levels by 4 h. Radiation-induced p53 and apoptosis in Atm(-/-) hair follicle epithelial cells were not impaired at any of the time points examined. Thus, Atm is essential for radiation-induced apoptosis in lymphoid tissues but is largely dispensable in epithelial cells. This indicates that marked differences in DNA damage signaling pathways exist between tissues, which could explain some of the tissue-specific phenotypes, especially tumor suppression, associated with Atm deficiency.
Collapse
Affiliation(s)
- Kay E Gurley
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, C1-015, Seattle, WA 90109-1024, USA
| | | |
Collapse
|
31
|
Lavin MF, Kozlov S. DNA damage-induced signalling in ataxia-telangiectasia and related syndromes. Radiother Oncol 2007; 83:231-7. [PMID: 17512070 DOI: 10.1016/j.radonc.2007.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/22/2007] [Indexed: 01/16/2023]
Abstract
ATM, the protein mutated in the human genetic disorder ataxia-telangiectasia, functions by responding to radiation damage to DNA, primarily DNA double strand breaks (dsb), to reduce the risk of genome instability, cancer and neurodegeneration. ATM is rapidly activated as an existing protein to phosphorylate a number of downstream proteins that are involved in DNA repair and cell cycle checkpoint activation. While the exact mechanism of activation of ATM has not been determined, it is now evident that it relies heavily on the Mre11 complex (Mre11/Rad50/Nbs1) and a series of post-translational events for this activation. The Mre11 complex acts as a sensor for the break, recruits ATM to this site where it is autophosphorylated and then is capable of phosphorylating substrates that participate in DNA repair and cell cycle control. A greater understanding of how ATM is activated and functions through different signalling pathways is paramount to devising therapeutic strategies for the treatment of A-T patients. This knowledge can also be used to advantage in sensitizing cells to radiation and ultimately deriving novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
32
|
Li W, Jian W, Xiaoping X, Yingfeng L, Tao X, Xiaoyan X. Enhanced radiation-mediated cell killing of human cervical cancer cells by small interference RNA silencing of ataxia telangiectasia-mutated protein. Int J Gynecol Cancer 2006; 16:1620-30. [PMID: 16884376 DOI: 10.1111/j.1525-1438.2006.00636.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ataxia telangiectasia-mutated (ATM) protein, which is mutated in the inherited disease ataxia telangiectasia (AT), is a key activator of cell cycle checkpoint, initiating cell response to DNA damage and ensuring genomic stability. AT cells exhibit defects in all cellular responses to ionizing radiation and radiomimetic chemicals. Inactivation of ATM may therefore make cells fail to execute many responses to DNA damage and improve the cells' sensitivity to radiation. Recent developments in the use of small interference RNA molecules (siRNAs) to inhibit specific protein expression have highlighted the potential use of siRNA as a therapeutic agent. In this study, we have designed and exogenously delivered plasmids encoding siRNAs targeting ATM to human cervical carcinoma SiHa cells and generated a stable cell line, SiHa(ATM). SiHa(ATM) cells displayed minimal levels of ATM protein and showed a marked increase in sensitivity to radiation. Together, these data provide strong evidence for the potential use of siRNA as a novel radiation/chemotherapy-sensitizing agent.
Collapse
Affiliation(s)
- W Li
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Choi EK, Ji IM, Lee SR, Kook YH, Griffin RJ, Lim BU, Kim JS, Lee DS, Song CW, Park HJ. Radiosensitization of tumor cells by modulation of ATM kinase. Int J Radiat Biol 2006; 82:277-83. [PMID: 16690595 DOI: 10.1080/09553000600702346] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To elucidate the relationship between the radiation-induced activation of ataxia telangiectasia mutated (ATM) kinase, G2 arrest and the caffeine-induced radiosensitization. METHOD RKO cells (human colorectal cancer cells) and ATM kinase over-expressing RKO/ATM cells were used. The cellular radiosensitivity was determined with clonogenic survival assay and the cell cycle progression, including G2 arrest, was studied with flow cytometry. The activity of ATM kinase, check point 2 (Chk2) kinase and cycline B1/cell division cycle 2 (Cdc2) kinase was investigated. The radiosensitivity of RKO xenografts grown in nude mice was studied. RESULTS RKO/ATM cells were radioresistant as compared with RKO cells. There was a greater increase in ATM kinase activity and G2 arrest in RKO/ATM cells than in RKO cells. Caffeine also sensitized both RKO cells and RKO/ATM cells to radiation. The caffeine treatment suppressed the radiation-induced activation of ATM kinase, suppressed the activation of Chk2 kinase and inhibited the accumulation of cells in G2 phase. The activity of cycline B1/Cdc2 kinase increased earlier but decayed rapidly in the presence of caffeine. Caffeine enhanced radiation-induced growth delay of RKO xenografts. CONCLUSIONS Caffeine inhibited the radiation-induced activation of ATM kinase, thereby preventing the accumulation of cells in G2 phase. Consequently, radiosensitivity of cells increased in the presence of caffeine both in vitro and in vivo.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Department of Therapeutic Radiology, College of Medicine, University of Ulsan, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roy K, Wang L, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun 2006; 344:821-6. [PMID: 16631604 DOI: 10.1016/j.bbrc.2006.03.222] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 11/29/2022]
Abstract
Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells.
Collapse
Affiliation(s)
- Kanaklata Roy
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
35
|
Innes CL, Heinloth AN, Flores KG, Sieber SO, Deming PB, Bushel PR, Kaufmann WK, Paules RS. ATM requirement in gene expression responses to ionizing radiation in human lymphoblasts and fibroblasts. Mol Cancer Res 2006; 4:197-207. [PMID: 16547157 DOI: 10.1158/1541-7786.mcr-05-0154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function.
Collapse
Affiliation(s)
- Cynthia L Innes
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, PO Box 12233, MD D2-03, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang H, Tang B, Xia K, Hu Z, Shen L, Tang J, Zhao G, Zhang Y, Cai F, Pan Q, Long Z, Wang G, Dai H. Mutation analysis of the ATM gene in two Chinese patients with ataxia telangiectasia. J Neurol Sci 2006; 241:1-6. [PMID: 16380133 DOI: 10.1016/j.jns.2005.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/26/2005] [Accepted: 08/29/2005] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia, telangiectasia, immunodeficiency, elevated alpha-fetoprotein level, chromosomal instability, predisposition to cancer, and radiation sensitivity. Although a lot of mutations in the ATM gene have been described, there is still no report about ATM mutations in Chinese population. Using a molecular approach, we screened for ATM mutations in two patients from two unrelated Chinese families. 100 normal controls were analyzed to exclude possibility of polymorphism. Two novel mutations in the ATM gene were identified. The first one is a novel, homozygous, 1346G>C (Gly449Ala) missense mutation. The second one is a compound heterozygous mutation, which consists of a novel, 610G>T (Gly204Stop) nonsense mutation, combined with a previously reported, 6679C>T (Arg2227Cys) missense mutation. The transversions 1346G>C (Gly449Ala) and 610G>T (Gly204Stop) are not localized either in the conserved PI-3 kinase domain or in the other domains of the ATM protein. The phenotypic features were characterized by progressive cerebellar ataxia, ocular telangiectasia, elevated alpha-fetoprotein level, immunodeficiency (agammaglo-bulinemia and T-cell defect), and rearrangements of chromosomes 7 and 14; brain MRI showed cerebellar atrophy, brain SPECT showed cerebellar regional cerebral blood flow (rCBF) hypoperfusion. To our knowledge, this is the first report of ATM mutations in Mainland China, in which the transversions 1346G>C (Gly449Ala) and 610G>T (Gly204Stop) are two novel, disease-causing mutations.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Atm and cellular response to DNA damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:457-76. [PMID: 18727511 DOI: 10.1007/1-4020-3764-3_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
38
|
Truman JP, Gueven N, Lavin M, Leibel S, Kolesnick R, Fuks Z, Haimovitz-Friedman A. Down-regulation of ATM protein sensitizes human prostate cancer cells to radiation-induced apoptosis. J Biol Chem 2005; 280:23262-72. [PMID: 15837784 PMCID: PMC1855286 DOI: 10.1074/jbc.m503701200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Treatment with the protein kinase C activator 12-O-tetradecanoylphorbol 12-acetate (TPA) enables radiation-resistant LNCaP human prostate cancer cells to undergo radiation-induced apoptosis, mediated via activation of the enzyme ceramide synthase (CS) and de novo synthesis of the sphingolipid ceramide (Garzotto, M., Haimovitz-Friedman, A., Liao, W. C., White-Jones, M., Huryk, R., Heston, D. W. W., Cardon-Cardo, C., Kolesnick, R., and Fuks, Z. (1999) Cancer Res. 59, 5194-5201). Here, we show that TPA functions to decrease the cellular level of the ATM (ataxia telangiectasia mutated) protein, known to repress CS activation (Liao, W.-C., Haimovitz-Friedman, A., Persaud, R., McLoughlin, M., Ehleiter, D., Zhang, N., Gatei, M., Lavin, M., Kolesnick, R., and Fuks, Z. (1999) J. Biol. Chem. 274, 17908-17917). Gel shift analysis in LNCaP and CWR22-Rv1 cells demonstrated a significant reduction in DNA binding of the Sp1 transcription factor to the ATM promoter, and quantitative reverse transcription-PCR showed a 50% reduction of ATM mRNA between 8 and 16 h of TPA treatment, indicating that TPA inhibits ATM transcription. Furthermore, treatment of LNCaP, CWR22-Rv1, PC-3, and DU-145 human prostate cells with antisense-ATM oligonucleotides, which markedly reduced cellular ATM levels, significantly enhanced radiation-induced CS activation and apoptosis, leading to apoptosis at doses as a low as 1 gray. These data suggest that the CS pathway initiates a generic mode of radiation-induced apoptosis in human prostate cancer cells, regulated by a suppressive function of ATM, and that ATM might represent a potential target for pharmacologic inactivation with potential clinical applications in human prostate cancer.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu A, Takakuwa T, Fujita S, Ham MF, Luo WJ, Daibata M, Aozasa K. Alterations of DNA damage-response genes ATM and ATR in pyothorax-associated lymphoma. J Transl Med 2005; 85:436-46. [PMID: 15696190 DOI: 10.1038/labinvest.3700235] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pyothorax-associated lymphoma (PAL) is non-Hodgkin's lymphoma that develops from chronic inflammation. Free radicals and oxidative stress generated in the inflammatory lesions could cause DNA damage and thus provide a basis for lymphomagenesis. Ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) genes are responsive genes for DNA damage, therefore potential involvement of these genes in PAL lymphomagenesis was examined in eight PAL cell lines and clinical samples from five cases. ATM mutations were detected in five of eight PAL lines. All but one of these mutations affected the phosphatidylinositol 3-kinase domain, indicating the loss-of-function mutation of ATM gene. Heterozygous mutations of ATR were found in two of eight lines; one a missense and the other a truncation mutation. ATR mutations were also detected in two of five cases in clinical samples from PAL. PAL cells with ATR mutation showed a delay or abrogation in repair for ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) or ultraviolet (UV)-induced DNA single-strand breaks (SSBs), and exhibited a defect in p53 accumulation and failure in cell cycle checkpoint at G1-S phase. These findings showed that mutations of ATR gene result in failure for DNA DSB and SSB repair, suggesting the role of ATM and ATR gene mutations in PAL lymphomagenesis.
Collapse
Affiliation(s)
- Angen Liu
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Syljuåsen RG, Sørensen CS, Nylandsted J, Lukas C, Lukas J, Bartek J. Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing Radiation. Cancer Res 2005; 64:9035-40. [PMID: 15604269 DOI: 10.1158/0008-5472.can-04-2434] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The human checkpoint kinase Chk1 has been suggested as a target for cancer treatment. Here, we show that a new inhibitor of Chk1 kinase, CEP-3891, efficiently abrogates both the ionizing radiation (IR)-induced S and G(2) checkpoints. When the checkpoints were abrogated by CEP-3891, the majority (64%) of cells showed fragmented nuclei at 24 hours after IR (6 Gy). The formation of nuclear fragmentation in IR-treated human cancer cells was directly visualized by time-lapse video microscopy of U2-OS cells expressing a green fluorescent protein-tagged histone H2B protein. Nuclear fragmentation occurred as a result of defective chromosome segregation when irradiated cells entered their first mitosis, either prematurely without S and G(2) checkpoint arrest in the presence of CEP-3891 or after a prolonged S and G(2) checkpoint arrest in the absence of CEP-3891. The nuclear fragmentation was clearly distinguishable from apoptosis because caspase activity and nuclear condensation were not induced. Finally, CEP-3891 not only accelerated IR-induced nuclear fragmentation, it also increased the overall cell killing after IR as measured in clonogenic survival assays. These results demonstrate that transient Chk1 inhibition by CEP-3891 allows premature mitotic entry of irradiated cells, thereby leading to accelerated onset of mitotic nuclear fragmentation and increased cell death.
Collapse
Affiliation(s)
- Randi G Syljuåsen
- Department of Cell Cycle and Cancer and Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
42
|
Demonacos C, Krstic-Demonacos M, Smith L, Xu D, O'Connor DP, Jansson M, La Thangue NB. A new effector pathway links ATM kinase with the DNA damage response. Nat Cell Biol 2004; 6:968-76. [PMID: 15448695 DOI: 10.1038/ncb1170] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 08/03/2004] [Indexed: 12/17/2022]
Abstract
The related kinases ATM (ataxia-telangiectasia mutated) and ATR (ataxia-telangiectasia and Rad3-related) phosphorylate a limited number of downstream protein targets in response to DNA damage. Here we report a new pathway in which ATM kinase signals the DNA damage response by targeting the transcriptional cofactor Strap. ATM phosphorylates Strap at a serine residue, stabilizing nuclear Strap and facilitating formation of a stress-responsive co-activator complex. Strap activity enhances p53 acetylation, and augments the response to DNA damage. Strap remains localized in the cytoplasm in cells derived from ataxia telangiectasia individuals with defective ATM, as well as in cells expressing a Strap mutant that cannot be phosphorylated by ATM. Targeting Strap to the nucleus reinstates protein stabilization and activates the DNA damage response. These results indicate that the nuclear accumulation of Strap is a critical regulator in the damage response, and argue that this function can be assigned to ATM through the DNA damage-dependent phosphorylation of Strap.
Collapse
Affiliation(s)
- Constantinos Demonacos
- Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen S, Wang G, Makrigiorgos GM, Price BD. Stable siRNA-mediated silencing of ATM alters the transcriptional profile of HeLa cells. Biochem Biophys Res Commun 2004; 317:1037-44. [PMID: 15094373 DOI: 10.1016/j.bbrc.2004.03.149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Indexed: 11/30/2022]
Abstract
The ATM protein, which is mutated in the inherited disease ataxia telangiectasia (AT), is a key regulator of the cells' DNA damage response. AT cells also exhibit constitutive activation of transcriptional regulators such as p53, E2F, AP1, and NFkappaB. Inactivation of ATM may therefore alter the cells' transcriptional profile. ATM expression in HeLa cells was silenced with siRNA expressed from a plasmid based vector, generating a stable cell line, HeLaATM601. HeLaATM601 cells displayed minimal levels of ATM protein and had a 10-fold increase in sensitivity to ionizing radiation. DNA microarray analysis demonstrated that 35 genes were upregulated and five genes were downregulated in HeLaATM601 cells. Genes upregulated in the absence of ATM included interferon-response proteins, cell cycle regulators, integral membrane proteins, and adhesion and extracellular matrix proteins. Using real-time PCR, these genes were also upregulated in cells derived from AT patients. Inactivation of the ATM protein therefore has a significant impact on the transcriptional profile of the cell.
Collapse
Affiliation(s)
- Shujuan Chen
- Department of Radiation Oncology, JF513, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Kühne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Löbrich M. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 2004; 64:500-8. [PMID: 14744762 DOI: 10.1158/0008-5472.can-03-2384] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ATM protein, which is mutated in individuals with ataxia telangiectasia (AT), is central to cell cycle checkpoint responses initiated by DNA double-strand breaks (DSBs). ATM's role in DSB repair is currently unclear as is the basis underlying the radiosensitivity of AT cells. We applied immunofluorescence detection of gamma-H2AX nuclear foci and pulsed-field gel electrophoresis to quantify the repair of DSBs after X-ray doses between 0.02 and 80 Gy in confluence-arrested primary human fibroblasts from normal individuals and patients with mutations in ATM and DNA ligase IV, a core component of the nonhomologous end-joining (NHEJ) repair pathway. Cells with hypomorphic mutations in DNA ligase IV exhibit a substantial repair defect up to 24 h after treatment but continue to repair for several days and finally reach a level of unrepaired DSBs similar to that of wild-type cells. Additionally, the repair defect in NHEJ mutants is dose dependent. ATM-deficient cells, in contrast, repair the majority of DSBs with normal kinetics but fail to repair a subset of breaks, irrespective of the initial number of lesions induced. Significantly, after biologically relevant radiation doses and/or long repair times, the repair defect in AT cells is more pronounced than that of NHEJ mutants and correlates with radiosensitivity. NHEJ-defective cells analyzed for survival following delayed plating after irradiation show substantial recovery while AT cells fail to show any recovery. These data argue that the DSB repair defect underlies a significant component of the radiosensitivity of AT cells.
Collapse
Affiliation(s)
- Martin Kühne
- Fachrichtung Biophysik, Universität des Saarlandes, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Fukao T, Chen P, Ren J, Kaneko H, Zhang GX, Kondo M, Yamamoto KI, Furuichi Y, Takeda S, Kondo N, Lavin MF. Disruption of the BLM gene in ATM-null DT40 cells does not exacerbate either phenotype. Oncogene 2004; 23:1498-506. [PMID: 14985700 DOI: 10.1038/sj.onc.1207276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM(-/-) in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM(-/-) cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM(-/-) cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500-8076, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang L, Jia G, Li WM, Guo RF, Cui JT, Yang L, Lu YY. Alteration of the ATM gene occurs in gastric cancer cell lines and primary tumors associated with cellular response to DNA damage. Mutat Res 2004; 557:41-51. [PMID: 14706517 DOI: 10.1016/j.mrgentox.2003.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is the gene mutated in the genetic disorder ataxia telangiectasia (AT), the symptoms of which include sensitivity to radiation and an increased risk of cancer. ATM is a kinase involved in activating the appropriate damage-response pathway, leading to either cell-cycle arrest or apoptosis, and is therefore a key checkpoint molecule in regulating cell-cycle response to DNA damage and responsible for maintenance of genome integrity. However, little is known about the association of ATM mutations with human gastric cancer (HGC). In order to determine the mutation and mRNA expression changes of the ATM gene in HGC, we performed analyses by denaturing high-performance liquid chromatography (DHPLC), DNA sequencing and RT-PCR technique on 13 human gastric tumor cell lines and 30 cases of fresh tumor specimens matched normal tissue. We compared the potential effect of the ATM gene mutation and cell behavior including cell-cycle arrest and induction of apoptosis in the tumor cell lines MGC803 and BGC823 with and without ionizing radiation (IR) exposure. Our data show that frequent variations were observed at 10 exons and 2 cDNA fragments which covered 8 other exons of the ATM gene as 5 out of 13 on the cell lines (38.5%) and 2 out of 30 cases in the tissue specimens (6.7%). All point mutations were confirmed as base substitutions (5982T-C; 6620A-G; 8684G-G/A; 9389C-G) and deletions (1079delC) by use of DNA sequencing. Among the mutations, one was reported previously in breast cancer, the other five have not yet been reported. The expression of ATM was significantly lower in five cell lines (MGC803; MKN45; SGC7901; GES and SUN-1) than in two others (BGC823 and RF48). G2/M cell-cycle arrest and apoptosis were observed in ATM-deficient MGC803 cells challenged with IR. A transient up-regulation of p53 occurred 1h post-IR in BGC823 cells but not in MGC803 cells. Our findings suggest that ATM mutations might be a pathogenic factor for an increased risk of gastric cancer, and the dysfunction of ATM may lead to a hypersensitivity to ionizing radiation in gastric cancer cells, possibly by a p53-dependent pathway.
Collapse
Affiliation(s)
- Lian Zhang
- Beijing Molecular Oncology Laboratory, School of Oncology, Beijing Institute for Cancer Research, Peking University, 1 Da-Hong-Luo-Chang Street, Western District, Beijing 100034, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Furuno-Fukushi I, Masumura KI, Furuse T, Noda Y, Takahagi M, Saito T, Hoki Y, Suzuki H, Wynshaw-Boris A, Nohmi T, Tatsumi K. Effect ofAtmDisruption on Spontaneously Arising and Radiation-Induced Deletion Mutations in Mouse Liver. Radiat Res 2003; 160:549-58. [PMID: 14565827 DOI: 10.1667/rr3073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Deletion mutations were efficiently recovered in mouse liver after total-body irradiation with X rays by using a transgenic mouse "gpt-delta" system that harbored a lambda EG10 shuttle vector with the red and gam genes for Spi- (sensitive to P2 lysogen interference) selection. We incorporated this system into homozygous Atm-knockout mice as a model of the radiosensitive hereditary disease ataxia telangiectasia (AT). Lambda phages recovered from the livers of X-irradiated mice with the Atm+/+ genotype showed a dose-dependent increase in the Spi- mutant frequency up to sixfold at 50 Gy over the unirradiated control of 2.8x10(-6). The livers from Atm-/- mice yielded a virtually identical dose-response curve for X rays with a background fraction of 2.4x10(-6). Structural analyses revealed no significant difference in the proportion of -1 frameshifts and larger deletions between Atm+/+ and Atm-/- mice, although larger deletions prevailed in X-ray-induced Spi- mutants irrespective of Atm status. While a possible defect in DNA repair after irradiation has been strongly indicated in the literature for nondividing cultured cells in vitro from AT patients, the Atm disruption does not significantly affect radiation mutagenesis in the stationary mouse liver in vivo.
Collapse
Affiliation(s)
- Ikuko Furuno-Fukushi
- Research Center for Radiation Safety, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang X, Khadpe J, Hu B, Iliakis G, Wang Y. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells. J Biol Chem 2003; 278:30869-74. [PMID: 12791699 DOI: 10.1074/jbc.m301876200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response. The mechanism for this ataxia telangiectasia (AT)-independent G2-checkpoint response remains unknown. We report here that the G2 checkpoint in irradiated human AT cells derives from an overactivation of the ATR/CHK1 pathway. Chk1 small interfering RNA abolishes the IR-induced prolonged G2 checkpoint and radiosensitizes AT cells to killing. These results link the activation of ATR/CHK1 with the prolonged G2 arrest in AT cells and show that activation of this G2 checkpoint contributes to the survival of AT cells.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
49
|
Kozlov S, Gueven N, Keating K, Ramsay J, Lavin MF. ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 2003; 278:9309-17. [PMID: 12645530 DOI: 10.1074/jbc.m300003200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.
Collapse
Affiliation(s)
- Sergei Kozlov
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston Qld 4029, Australia
| | | | | | | | | |
Collapse
|
50
|
Abstract
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.
Collapse
Affiliation(s)
- Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | |
Collapse
|