1
|
Alulema-Pullupaxi P, Espinoza-Montero PJ, Sigcha-Pallo C, Vargas R, Fernández L, Peralta-Hernández JM, Paz JL. Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. CHEMOSPHERE 2021; 281:130821. [PMID: 34000653 DOI: 10.1016/j.chemosphere.2021.130821] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Water pollution is an environmental problem in constant raising because of population growing, industrial development, agricultural frontier expansion, and principally because of the lack of wastewater treatment technology to remove organic recalcitrant and toxic pollutants from industrial and domestic wastewater. Recalcitrant compounds are a serious environmental and health problem mainly due to their toxicity and potential hazardous effects on living organisms, including human beings. Conventional wastewater treatments have not been able to remove efficiently pollutants from water; however, electrochemical advanced oxidation processes (EAOPs) are able to solve this environmental concern. One of the most recent EAOPs technology is photoelectrocatalysis (PEC), it consists in applying an external bias potential to a semiconductor film placed over a conductive substrate to avoid the recombination of photogenerated electron-hole (e-/h+) pairs, increasing h+ availability and hydroxyl radicals' formation, responsible for promoting the degradation/mineralization of organic pollutants in aqueous medium. This review summarizes the recent advances in PEC as a promising technology for wastewater treatment. It addresses the fundamentals and kinetic aspects of PEC. An analysis of photoanode materials and of the configuration of photoelectrochemical reactors is also presented, including an analysis of the influence of the main operational parameters on the treatment of contaminated water. Finally, the most recent applications of PEC are reviewed, and the challenges and perspectives of PEC in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Paulina Alulema-Pullupaxi
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador
| | - Patricio J Espinoza-Montero
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador.
| | - Carol Sigcha-Pallo
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino, Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Departamento de Química, Universidad Simón Bolívar (USB), Apartado 89000, 1080A, Caracas, Venezuela
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
2
|
Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview. Catalysts 2020. [DOI: 10.3390/catal10040439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Industrial sources of environmental pollution generate huge amounts of industrial wastewater containing various recalcitrant organic and inorganic pollutants that are hazardous to the environment. On the other hand, industrial wastewater can be regarded as a prospective source of fresh water, energy, and valuable raw materials. Conventional sewage treatment systems are often not efficient enough for the complete degradation of pollutants and they are characterized by high energy consumption. Moreover, the chemical energy that is stored in the wastewater is wasted. A solution to these problems is an application of photoelectrocatalytic treatment methods, especially when they are coupled with energy generation. The paper presents a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants. The fundamentals of photoelectrocatalytic reactions and the mechanism of pollutants treatment as well as parameters affecting the treatment process are presented. Examples of different semiconductor photoelectrodes that are applied in treatment processes are described in order to present the strengths and weaknesses of the photoelectrocatalytic treatment of industrial wastewater. This overview is an addition to the existing knowledge with a particular focus on the main experimental conditions employed in the photoelectrocatalytic degradation of various pollutants with the application of semiconductor photoelectrodes.
Collapse
|
3
|
Garcia-Segura S, Brillas E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.005] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Meng X, Zhang Z, Li X. Synergetic photoelectrocatalytic reactors for environmental remediation: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ozmen M, Güngördü A, Erdemoglu S, Ozmen N, Asilturk M. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:144-153. [PMID: 26037099 DOI: 10.1016/j.aquatox.2015.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts.
Collapse
Affiliation(s)
- Murat Ozmen
- Inonu University, Faculty of Science, Department of Biology, Malatya, Turkey.
| | - Abbas Güngördü
- Inonu University, Faculty of Science, Department of Biology, Malatya, Turkey
| | - Sema Erdemoglu
- Inonu University, Faculty of Science, Department of Chemistry, Malatya, Turkey
| | - Nesrin Ozmen
- Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya, Turkey
| | - Meltem Asilturk
- Akdeniz University, Department of Materials Science and Engineering, Antalya, Turkey
| |
Collapse
|
6
|
Boduroğlu G, Kiliç NK, Dönmez G. Bioremoval of Reactive Blue 220 by Gonium sp. biomass. ENVIRONMENTAL TECHNOLOGY 2014; 35:2410-2415. [PMID: 25145195 DOI: 10.1080/09593330.2014.908240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gonium sp. was tested for the bioremoval of Reactive Blue 220 (RB220) dye at different conditions such as pH values, initial dye concentrations and biomass concentrations to evaluate the possibility of using this microalga in treating wastewaters. According to the data obtained from the experiments, microalgae removed RB220 with the highest yield (54.2%) at pH 8, and could treat the applied dye with the highest removal percentage as 84.2% at the lowest dye concentration (26.2 mg/L RB220). Increasing Gonium sp. biomass concentration from 0.21 to 0.53 g/L stimulated RB220 removal rate from 87.7% to 96.8%. The present study clearly indicated that Gonium sp. biomass could be used as a bioremediation biosorbent in treating RB220 dye in the related wastewaters.
Collapse
|
7
|
Lofrano G, Carotenuto M, Uyguner-Demirel CS, Vitagliano A, Siciliano A, Guida M. An integrated chemical and ecotoxicological assessment for the photocatalytic degradation of vancomycin. ENVIRONMENTAL TECHNOLOGY 2014; 35:1234-1242. [PMID: 24701920 DOI: 10.1080/09593330.2013.865085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The photocatalytic degradation of an antibiotic, vancomycin B hydrochloride (VAN-B), has been investigated in aqueous suspensions of titanium dioxide (TiO2) by monitoring the change in its concentration as well as the production of ammonia and chlorides as a function of irradiation time. The removal of 50mg L(-1) VAN-B solution yields maximum concentrations of 2.45 and 2.53 mg N-NH3 L(-1) after 120 min of photocatalytic oxidation using 0.1 and 0.2 g TiO2 L(-1), respectively. When 0.2 g TiO2 L(-1) were applied up to 87% of the stoichiometric amount of chloride was reached within 120 min of irradiation, corresponding to 0.087 mmol L(-1). A set ofbioassays (Daphnia magna, Pseudokirchneriella subcapitata and Ceriodaphnia dubia) was performed to evaluate the potential detoxification of VAN-B and its by-products of oxidation under chronic and acute tests. The toxicity of the treated VAN-B samples varied during the oxidation, due to the formation of some intermediate products more toxic than VAN-B. Despite almost total removal of VAN-B that was achieved within 120 min of irradiation, a significant increase in toxicity was observed in chronic tests proving that the chronic assays are more appropriate than acute ones to detect the impact of by-products formed during the photocatalytic degradation of antibiotics.
Collapse
|
8
|
Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8336-67. [PMID: 24687788 DOI: 10.1007/s11356-014-2783-1] [Citation(s) in RCA: 922] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 05/03/2023]
Abstract
In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.
Collapse
Affiliation(s)
- Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|