1
|
Aziz M, Palariya D, Mehtab S, Zaidi MGH, Vasseghian Y. Enhanced production of bioethanol through supercritical carbon dioxide-mediated pretreatment and saccharification of dewaxed bagasse. Sci Rep 2024; 14:21450. [PMID: 39271743 PMCID: PMC11399341 DOI: 10.1038/s41598-024-70727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The pretreatment and saccharification of dewaxed bagasse (DWB) has been investigated under various reaction conditions ranging 2000 to 3200 psi, at 70 ± 1 °C in supercritical carbon dioxide (SCC). This has been in attempt to transform the DWB into fermentable sugar and bioethanol in high yields. The effect of SCC mediated pretreatment and enzymatic hydrolysis on structural and morphological alterations in DWB has been ascertained through diverse analytical methods. The sugar has been released through cellulase (40 FPU/mL) mediated enzymatic hydrolysis of pretreated DWB in sodium acetate buffer (pH 4.7) within 1 h at SCC 2800 psi, 70 ± 1 °C. The released sugar was subsequently fermented in the presence of yeast (Saccharomyces crevices, 135 CFU) at 28 ± 1 °C over 72 h to afford the bioethanol. The SCC mediated process conducted in acetic acid:water media (1:1) at 2800 psi, 70 ± 1 °C over 6 h has afforded the pretreated DWB with maximum yield towards the production of fermentable sugar and bioethanol. The production of fermentable sugar and bioethanol has been electrochemically estimated through cyclic voltammetry (CV) and square wave voltammetry (SWV) over glassy carbon electrode in KOH (0.1 M). The electrochemical methods were found selective and in close agreement for estimation of the yields (%) of fermentable sugars and bioethanol. The yield (%) of fermentable sugar estimated from CV and SWV were 80.10 ± 5.34 and 79.00 ± 5.09 respectively. Whereas the yield (%) of bioethanol estimated from CV and SWV were 81.30 ± 2.78% and 78.6 ± 1.25% respectively. Present investigation delivers a SCC mediated green and sustainable method of pretreatment of DWB to afford the enhanced saccharification, to produce bioethanol in high yields.
Collapse
Affiliation(s)
- Mohammad Aziz
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Diksha Palariya
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Sameena Mehtab
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - M G H Zaidi
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Rapiya M, Ramoelo A, Truter W. Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1544. [PMID: 38012467 PMCID: PMC10682297 DOI: 10.1007/s10661-023-12133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Rangelands play a vital role in developing countries' biodiversity conservation and economic growth, since most people depend on rangelands for their livelihood. Aboveground-biomass (AGB) is an ecological indicator of the health and productivity of rangeland and provides an estimate of the amount of carbon stored in the vegetation. Thus, monitoring seasonal AGB is important for understanding and managing rangelands' status and resilience. This study assesses the impact of seasonal dynamics and fire on biophysical parameters using Sentinel-1 (S1) and Sentinel-2 (S2) image data in the mesic rangeland of Limpopo, South Africa. Six sites were selected (3/area), with homogenous vegetation (10 plots/site of 30m2). The seasonal measurements of LAI and biomass were undertaken in the early summer (December 2020), winter (July-August 2021), and late summer (March 2022). Two regression approaches, random forest (RF) and stepwise multiple linear regression (SMLR), were used to estimate seasonal AGB. The results show a significant difference (p < 0.05) in AGB seasonal distribution and occurrence between the fire (ranging from 0.26 to 0.39 kg/m2) and non-fire areas (0.24-0.35 kg/m2). In addition, the seasonal predictive models derived from random forest regression (RF) are fit to predict disturbance and seasonal variations in mesic tropical rangelands. The S1 variables were excluded from all models due to high moisture content. Hence, this study analyzed the time series to evaluate the correlation between seasonal estimated and field AGB in mesic tropical rangelands. A significant correlation between backscattering, AGB and ecological parameters was observed. Therefore, using S1 and S2 data provides sufficient data to obtain the seasonal changes of biophysical parameters in mesic tropical rangelands after disturbance (fire) and enhanced assessments of critical phenology stages.
Collapse
Affiliation(s)
- Monde Rapiya
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0001, South Africa.
| | - Abel Ramoelo
- Centre for Environmental Studies, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, 0001, South Africa
| | - Wayne Truter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
3
|
Kant Bhatia S, Ahuja V, Chandel N, Gurav R, Kant Bhatia R, Govarthanan M, Kumar Tyagi V, Kumar V, Pugazendhi A, Rajesh Banu J, Yang YH. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. BIORESOURCE TECHNOLOGY 2022; 358:127437. [PMID: 35680087 DOI: 10.1016/j.biortech.2022.127437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Urbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Arivalagan Pugazendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Guiao KS, Tzoganakis C, Mekonnen TH. Green mechano-chemical processing of lignocellulosic biomass for lignin recovery. CHEMOSPHERE 2022; 293:133647. [PMID: 35063558 DOI: 10.1016/j.chemosphere.2022.133647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Lignin extraction from biomass is heavily dependent on chemical processes that are harmful to the environment and the quality of the recovered lignin. Ionic liquid solvents are some of the latest solutions in green processing; however, their implementation for lignin recovery is limited by their high cost, typically high loadings requirements, and long processing times. To overcome these issues, in this study, high loadings of mixed hardwood flour (MHF) were processed with 1-butyl-3-methylimidazolium chloride (BmimCl) in a batch mixer. The rheological behaviour of the biomass and ionic liquid mixture was studied. The mixture had a high complex viscosity (approx. 107 Pa s) at low shear rates and displayed pronounced shear thinning behavior at 50 wt% MHF loading. A 22 factorial design was also implemented to study the effects of MHF solid loading amount and residence time on lignin extraction yield. A maximum yield of 36.6% was obtained at the maximum solid loading amount and residence time (50 wt% and 45 min, respectively). The extracted lignin samples were also characterized in comparison with commercial Kraft lignin and lignosulfonate. The novelty of this study is the successful lignin extraction at high solid loadings and shorter residence times compared to previous biomass pre-treatments with ionic liquids that employs low solid loading and long processing times.
Collapse
Affiliation(s)
- Karelle S Guiao
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Costas Tzoganakis
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
5
|
Zabihi S, Sharafi A, Motamedi H, Esmaeilzadeh F, Doherty WOS. Environmentally friendly acetic acid/steam explosion/supercritical carbon dioxide system for the pre-treatment of wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37867-37881. [PMID: 33723770 DOI: 10.1007/s11356-021-13410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
It is well established that pretreatment of lignocellulosic biomass is required to achieve an effective enzymatic saccharification process. At the present time, most of the touted pre-treatment technologies would cause environmental pollution and unsustainable water use for the pretreated material prior to enzymatic saccharification. To address these shortcomings, the pretreatment technology which combines the supercritical CO2, SC-CO2 (a green solvent), acetic acid, and steam explosion was used to assess the pretreatment of wheat straw for enzymatic saccharification. The effects of solvent concentration, impregnation temperature and time, pre-treatment time, and temperature, as well as SC-CO2 pressure, contact time, and temperature, were evaluated. The results identified that at the optimum SC-CO2 pressure of 18 MPa, the highest amount of reducing sugars (RS) was produced from the cellulosic pulp using Acetic acid/Steam/SC-CO2 at 200 °C for 30 min, a value 20% more than the pulp produced with the Water/Steam/SC-CO2. The effectiveness of the pretreatment process was attributed not only to delignification and defibrillation but also to the exposure of the cellulose structure evidenced from the proportion of the β-glycosidic linkages as shown by FTIR. Passing SC-CO2 after the pretreatment reduces the amounts of fermentation inhibitors and eliminates the use of wash water.
Collapse
Affiliation(s)
- Samyar Zabihi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Amir Sharafi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Hossein Motamedi
- Department of Biology Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Feridun Esmaeilzadeh
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, University, Shiraz, Shiraz, 7134851154, Iran.
| | - William O S Doherty
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Göncü B, Gülşen H, Hoşgün EZ. Bioethanol production from pistachio ( pistacia vera L.) shells applying ozone pretreatment and subsequent enzymatic hydrolysis. ENVIRONMENTAL TECHNOLOGY 2021; 42:2438-2446. [PMID: 33719935 DOI: 10.1080/09593330.2021.1903565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Pistachio (pistacia vera L.) is a lignocellulosic raw material. One of the most pistachio produced three countries in the World is Turkey and Şanlıurfa is the city that most pistachio production in Turkey. As a result of this production, a large amount of pistachio waste is generated. Therefore, this study was conducted considering the abundant pistachio waste and furthermore, the effects of ozone and combined (ozone and hot water) pretreatments for bioethanol production from pistachio shells were investigated. Initially, the ozone and combined pretreatments were applied to the pistachio shells. It has been observed that applying the combined pretreatment provides better lignin removal than only ozone pretreatment and on the other hand, the ozone pretreatment provides better lignin removal than the hot water pretreatment. Scanning electron microscopy (SEM) images of pretreated and untreated pistachio shells were compared. Enzyme activity was measured, and 30-60 FPU enzyme loading was applied in an enzymatic hydrolysis. The enzymatic hydrolysis was applied to obtain fermentable sugar from the pistachio shells after pretreatments. As a result of enzymatic hydrolysis, 2.34-8.24 g/L reducing sugar was obtained. On the other hand, 1.21-2.33 g/L ethanol concentration was obtained end of the fermentation process. Fermentation efficiency was calculated between 42% and 55%. As a result, this study showed that combined pretreatment was more effective than the single pretreatment in the ethanol production process.
Collapse
Affiliation(s)
- Betül Göncü
- Department of Environmental Engineering, Harran University, Şanlıurfa, Turkey
| | - Hakki Gülşen
- Department of Environmental Engineering, Harran University, Şanlıurfa, Turkey
| | - Emir Zafer Hoşgün
- Department of Chemical Engineering, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
7
|
Sinitsyn AP, Sinitsyna OA. Bioconversion of Renewable Plant Biomass. Second-Generation Biofuels: Raw Materials, Biomass Pretreatment, Enzymes, Processes, and Cost Analysis. BIOCHEMISTRY (MOSCOW) 2021; 86:S166-S195. [PMID: 33827407 DOI: 10.1134/s0006297921140121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses various aspects of renewable plant biomass conversion and production of the second-generation biofuels, including the types of plant biomass, its composition and reaction ability in the enzymatic hydrolysis, and various pretreatment methods for increasing the biomass reactivity. Conversion of plant biomass into sugars requires the use of a complex of enzymes, the composition of which should be adapted to the biomass type and the pretreatment method. The efficiency of enzymatic hydrolysis can be increased by optimizing the composition of the enzymatic complex and by increasing the catalytic activity and operational stability of its constituent enzymes. The availability of active enzyme producers also plays an important role. Examples of practical implementation and scaling of processes for the production of second-generation biofuels are presented together with the cost analysis of bioethanol production.
Collapse
Affiliation(s)
- Arkadij P Sinitsyn
- Bakh Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Sinitsyna
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Abstract
The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
Collapse
|
9
|
Lignocellulose Pretreatment Combining Continuous Alkaline Single-Screw Extrusion and Ultrasonication to Enhance Biosugar Production. ENERGIES 2020. [DOI: 10.3390/en13215636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pretreatment to improve the enzymatic digestibility of highly crystallized lignocellulosic biomass is essential in biorefinery processes. This study investigates the combination of lignocellulose pretreatment with continuous alkaline single-screw extrusion and ultrasonication for biosugar production. Miscanthus sacchariflorus was used because it is a promising bioenergy crop. The results show that ultrasonication with continuous alkaline pretreatment increased the enzymatic digestibility of carbohydrates and reduced the use of chemicals during pretreatment. An hour of ultrasonication following 0.2 M NaOH (2.25 mol-NaOH/kg-biomass) continuous alkaline pretreatment resulted in a 6.7% increase in total biosugar production (83.1% of theoretical yield), a decrease of up to 26.1% in chemical usage, and a 17.0% increase in lignin removal compared with the case without ultrasonication. The developed method can be considered an effective and eco-friendly approach to the production of bio-based materials.
Collapse
|
10
|
Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P, de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 2020; 161:1099-1116. [PMID: 32526298 DOI: 10.1016/j.ijbiomac.2020.06.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Lignocellulosic material has drawn significant attention among the scientific community due to its year-round availability as a renewable resource for industrial consumption. Being an economic substrate alternative, various industries are reevaluating processes to incorporate derived compounds from these materials. Varieties of fungi and bacteria have the ability to depolymerize lignocellulosic biomass by synthesizing degrading enzymes. Owing to catalytic activity stability and high yields of conversion, lignocellulolytic enzymes derived from fungi currently have a high spectrum of industrial applications. Moreover, these materials are cost effective, eco-friendly and nontoxic while having a low energy input. Techno-economic analysis for current enzyme production technologies indicates that synthetic production is not commercially viable. Instead, the economic projection of the use of naturally-produced ligninolytic enzymes is promising. This approach may improve the economic feasibility of the process by lowering substrate expenses and increasing lignocellulosic by-product's added value. The present review will discuss the classification and enzymatic degradation pathways of lignocellulolytic biomass as well as the potential and current industrial applications of the involved fungal enzymes.
Collapse
Affiliation(s)
- Sara Saldarriaga-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Carolina Velasco-Ayala
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Paulina Leal-Isla Flores
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico.
| |
Collapse
|
11
|
Li H, Wu H, Yu Z, Zhang H, Yang S. CO 2 -Enabled Biomass Fractionation/Depolymerization: A Highly Versatile Pre-Step for Downstream Processing. CHEMSUSCHEM 2020; 13:3565-3582. [PMID: 32285649 DOI: 10.1002/cssc.202000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is inevitably subject to fractionation and depolymerization processes for enhanced selectivity toward specific products, in most cases prior to catalytic upgrading of the three main fractions-cellulose, hemicellulose, and lignin. Among the developed pretreatment techniques, CO2 -assisted biomass processing exhibits some unique advantages such as the lowest critical temperature (31.0 °C) with moderate critical pressure, low cost, nontoxicity, nonflammability, ready availability, and the addition of acidity, alongside easy recovery by pressure release. This Review showcases progress in the study of sub- or supercritical CO2 -mediated thermal processing of lignocellulosic biomass-the key pre-step for downstream conversion processes. The auxo-action of CO2 in biomass pretreatment and fractionation, along with the involved variables, direct degradation of untreated biomass in CO2 by gasification, pyrolysis, and liquefaction with relevant conversion mechanisms, and CO2 -enabled depolymerization of lignocellulosic fractions with representative reaction pathways are summarized. Moreover, future prospects for the practical application of CO2 -assisted up- and downstream biomass-to-bioproduct conversion are also briefly discussed.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| |
Collapse
|
12
|
Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front Bioeng Biotechnol 2020; 8:252. [PMID: 32391337 PMCID: PMC7191036 DOI: 10.3389/fbioe.2020.00252] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomasses are primarily composed of cellulose, hemicelluloses and lignin and these biopolymers are bonded together in a heterogeneous matrix that is highly recalcitrant to chemical or biological conversion processes. Thus, an efficient pretreatment technique must be selected and applied to this type of biomass in order to facilitate its utilization in biorefineries. Classical pretreatment methods tend to operate under severe conditions, leading to sugar losses by dehydration and to the release of inhibitory compounds such as furfural (2-furaldehyde), 5-hydroxy-2-methylfurfural (5-HMF), and organic acids. By contrast, supercritical fluids can pretreat lignocellulosic materials under relatively mild pretreatment conditions, resulting in high sugar yields, low production of fermentation inhibitors and high susceptibilities to enzymatic hydrolysis while reducing the consumption of chemicals, including solvents, reagents, and catalysts. This work presents a review of biomass pretreatment technologies, aiming to deliver a state-of-art compilation of methods and results with emphasis on supercritical processes.
Collapse
Affiliation(s)
- Estephanie Laura Nottar Escobar
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Thiago Alessandre da Silva
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Cleverton Luiz Pirich
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Lúcio Corazza
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Luiz Pereira Ramos
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
13
|
Malaret F, Gschwend FJV, Lopes JM, Tu WC, Hallett JP. Eucalyptus red grandis pretreatment with protic ionic liquids: effect of severity and influence of sub/super-critical CO 2 atmosphere on pretreatment performance. RSC Adv 2020; 10:16050-16060. [PMID: 35493672 PMCID: PMC9052920 DOI: 10.1039/d0ra02040k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Deconstruction of lignocellulosic biomass with low-cost ionic liquids (ILs) has proven to be a promising technology that could be implemented in a biorefinery to obtain renewable materials, fuels and chemicals. This study investigates the pretreatment efficacy of the ionoSolv pretreatment of Eucalyptus red grandis using the low-cost ionic liquid triethylammonium hydrogen sulfate ([N2220][HSO4]) in the presence of 20 wt% water at 10% solids loading. The temperatures investigated were 120 °C and 150 °C. Also, the influence of performing the pretreatment under sub-critical and supercritical CO2 was investigated. The IL used is very effective in deconstructing eucalyptus, producing cellulose-rich pulps resulting in enzymatic saccharification yields of 86% for some pretreatment conditions. It has been found that under a CO2 atmosphere, the ionoSolv process is pressure independent. The good performance of this IL in the pretreatment of eucalyptus is promising for the development of a large-scale ionoSolv pretreatment processes.
Collapse
Affiliation(s)
- Francisco Malaret
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK http://www.imperial.ac.uk/people/j.hallett +44 (0)2075945388
| | - Florence J V Gschwend
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK http://www.imperial.ac.uk/people/j.hallett +44 (0)2075945388
| | - Joana M Lopes
- High Pressure Process Group, Department of Chemical Engineering and Environmental Technology, University of Valladolid Spain
| | - Wei-Chien Tu
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK http://www.imperial.ac.uk/people/j.hallett +44 (0)2075945388
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK http://www.imperial.ac.uk/people/j.hallett +44 (0)2075945388
| |
Collapse
|
14
|
Lin CY, Eudes A. Strategies for the production of biochemicals in bioenergy crops. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:71. [PMID: 32318116 PMCID: PMC7158082 DOI: 10.1186/s13068-020-01707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 05/12/2023]
Abstract
Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
15
|
Influence of supercritical carbon dioxide treatment on the physicochemical properties of cellulose extracted from cassava pulp waste. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Yim JH, Ha SJ, Lim JS. Measurement and correlation of CO2 solubility in 1-butyl-3-methylimidazolium ([BMIM]) cation-based ionic liquids: [BMIM][Ac], [BMIM][Cl], [BMIM][MeSO4]. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Gao J, Yuan W, Li Y, Bai F, Jiang Y. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Microb Cell Fact 2017; 16:181. [PMID: 29084541 PMCID: PMC5663110 DOI: 10.1186/s12934-017-0795-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple lignocellulose-derived inhibitors represent great challenges for bioethanol production from lignocellulosic materials. These inhibitors that are related to the levels of intracellular reactive oxidative species (ROS) make oxidoreductases a potential target for an enhanced tolerance in yeasts. RESULTS In this study, the thioredoxin and its reductase from Kluyveromyces marxianus Y179 was identified, which was subsequently achieved over-expression in Saccharomyces cerevisiae 280. In spite of the negative effects by expression of thioredoxin gene (KmTRX), the thioredoxin reductase (KmTrxR) helped to enhance tolerance to multiple lignocellulose-derived inhibitors, such as formic acid and acetic acid. In particular, compared with each gene expression, the double over-expression of KmTRX2 and KmTrxR achieved a better ethanol fermentative profiles under a mixture of formic acid, acetic acid, and furfural (FAF) with a shorter lag period. At last, the mechanism that improves the tolerance depended on a normal level of intracellular ROS for cell survival under stress. CONCLUSIONS The synergistic effect of KmTrxR and KmTRX2 provided the potential possibility for ethanol production from lignocellulosic materials, and give a general insight into the possible toxicity mechanisms for further theoretical research.
Collapse
Affiliation(s)
- Jiaoqi Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Wenjie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| | - Yimin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
18
|
Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Pensupa N, Leu SY, Hu Y, Du C, Liu H, Jing H, Wang H, Lin CSK. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. Top Curr Chem (Cham) 2017; 375:76. [DOI: 10.1007/s41061-017-0165-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
20
|
Schwede S, Thorin E, Lindmark J, Klintenberg P, Jääskeläinen A, Suhonen A, Laatikainen R, Hakalehto E. Using slaughterhouse waste in a biochemical-based biorefinery - results from pilot scale tests. ENVIRONMENTAL TECHNOLOGY 2017; 38:1275-1284. [PMID: 27575339 DOI: 10.1080/09593330.2016.1225128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
A novel biorefinery concept was piloted using protein-rich slaughterhouse waste, chicken manure and straw as feedstocks. The basic idea was to provide a proof of concept for the production of platform chemicals and biofuels from organic waste materials at non-septic conditions. The desired biochemical routes were 2,3-butanediol and acetone-butanol fermentation. The results showed that hydrolysis resulted only in low amounts of easily degradable carbohydrates. However, amino acids released from the protein-rich slaughterhouse waste were utilized and fermented by the bacteria in the process. Product formation was directed towards acidogenic compounds rather than solventogenic products due to increasing pH-value affected by ammonia release during amino acid fermentation. Hence, the process was not effective for 2,3-butanediol production, whereas butyrate, propionate, γ-aminobutyrate and valerate were predominantly produced. This offered fast means for converting tedious protein-rich waste mixtures into utilizable chemical goods. Furthermore, the residual liquid from the bioreactor showed significantly higher biogas production potential than the corresponding substrates. The combination of the biorefinery approach to produce chemicals and biofuels with anaerobic digestion of the residues to recover energy in form of methane and nutrients that can be utilized for animal feed production could be a feasible concept for organic waste utilization.
Collapse
Affiliation(s)
- Sebastian Schwede
- a School of Business Society and Engineering , Mälardalen University , Västerås , Sweden
| | - Eva Thorin
- a School of Business Society and Engineering , Mälardalen University , Västerås , Sweden
| | - Johan Lindmark
- a School of Business Society and Engineering , Mälardalen University , Västerås , Sweden
| | - Patrik Klintenberg
- a School of Business Society and Engineering , Mälardalen University , Västerås , Sweden
| | - Ari Jääskeläinen
- b Environmental Engineering , Savonia University of Applied Sciences , Kuopio , Finland
| | - Anssi Suhonen
- b Environmental Engineering , Savonia University of Applied Sciences , Kuopio , Finland
| | - Reino Laatikainen
- c School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Elias Hakalehto
- c School of Pharmacy , University of Eastern Finland , Kuopio , Finland
- d Finnoflag Oy , Kuopio , Finland
| |
Collapse
|
21
|
Capolupo L, Faraco V. Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 2016; 100:9451-9467. [PMID: 27714444 PMCID: PMC5071362 DOI: 10.1007/s00253-016-7884-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/01/2022]
Abstract
Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.
Collapse
Affiliation(s)
- Laura Capolupo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
- European Center "Europe Direct LUP", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
- Interdepartmental Center "R. d'Ambrosio, LUPT", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
| |
Collapse
|
22
|
Marriott PE, Gómez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. THE NEW PHYTOLOGIST 2016; 209:1366-81. [PMID: 26443261 DOI: 10.1111/nph.13684] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/24/2015] [Indexed: 05/17/2023]
Abstract
The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.
Collapse
Affiliation(s)
- Poppy E Marriott
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Leonardo D Gómez
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
23
|
Silveira MHL, Vanelli BA, Corazza ML, Ramos LP. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2015; 192:389-396. [PMID: 26056781 DOI: 10.1016/j.biortech.2015.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse.
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Federal University of Paraná (UFPR), P.O. Box 19032, Curitiba, PR 81531-980, Brazil
| | - Bruno Angelo Vanelli
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Federal University of Paraná (UFPR), P.O. Box 19032, Curitiba, PR 81531-980, Brazil
| | | | - Luiz Pereira Ramos
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Federal University of Paraná (UFPR), P.O. Box 19032, Curitiba, PR 81531-980, Brazil; INCT in Energy and Environment (INCT E&A), UFPR, Curitiba, PR 81531-980, Brazil
| |
Collapse
|
24
|
Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 157:20-48. [PMID: 25881150 DOI: 10.1016/j.jenvman.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 05/24/2023]
Abstract
Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale.
Collapse
Affiliation(s)
- M A Zumar Bundhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius.
| | | | - M Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
25
|
Panwar NL, Rathore NS. Environment friendly biomass gasifier cookstove for community cooking. ENVIRONMENTAL TECHNOLOGY 2015; 36:2308-2311. [PMID: 25745979 DOI: 10.1080/09593330.2015.1026290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Traditional community cookstoves have a low level of efficiency due to their poor heat transfer efficiency and incomplete combustion. The low efficiency results in a high consumption of fuel wood, thereby creating a need of more fuel wood. This paper deals with the development of a biomass cookstove suitable for community cooking. The stove exhibits approximately 36.38% thermal efficiency and has a thermal power rating of 5 kW. The maximum flame temperature recorded was 712°C. The data indicate that the developed cookstove can save approximately 7155 kg of CO2 per annum.
Collapse
Affiliation(s)
- N L Panwar
- a Department of Renewable Energy Engineering, College of Technology and Engineering , Maharana Pratap University of Agriculture and Technology , Udaipur , Rajasthan 313001 , India
| | | |
Collapse
|
26
|
Yeasmin S, Kim CH, Islam SMA, Lee JY. Comparison between solid-state and powder-state alkali pretreatment on saccharification and fermentation for bioethanol production from rice straw. Prep Biochem Biotechnol 2015; 46:229-37. [PMID: 25806867 DOI: 10.1080/10826068.2015.1015563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.
Collapse
Affiliation(s)
- Shabina Yeasmin
- a Department of Forest Products, IALS , Gyeongsang National University , Jinju , South Korea
| | - Chul-Hwan Kim
- a Department of Forest Products, IALS , Gyeongsang National University , Jinju , South Korea
| | - Shah Md Asraful Islam
- b Department of Plant Pathology , Patuakhali Science and Technology University , Dumki , Patuakhali , Bangladesh
| | - Ji-Young Lee
- a Department of Forest Products, IALS , Gyeongsang National University , Jinju , South Korea
| |
Collapse
|
27
|
Sheikh MMI, Kim CH, Park HH, Nam HG, Lee GS, Jo HS, Lee JY, Kim JW. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:843-850. [PMID: 25408101 DOI: 10.1002/jsfa.7004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 10/25/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Barley straw (Hordeum vulgare L.) is an attractive lignocellulosic material and one of the most abundant renewable resources for fuel ethanol production. Although it has high cellulose and hemicellulose contents, there are several challenges and limitations in the process of converting it to fuel ethanol. High ash, silica and lignin contents in barley straw make it an inferior feedstock for enzymatic hydrolysis. Therefore pretreatment of barley straw could play an important role in inducing structural and compositional changes that increase the efficiency of enzymatic hydrolysis and make the whole process economically viable. RESULTS Saccharification was enhanced using various concentrations (0.0, 0.5, 1.0, 2.0 and 3.0% v/v) of a solution of sodium hypochlorite (NaClO) and hydrogen peroxide (H₂O₂) and various reaction times (15, 30 and 45 min) during pretreatment at 121 °C. The highest yield of glucose (447 mg g⁻¹) was achieved by pretreatment with 2.0% NaClO+H₂O₂ solution for 30 min, representing an increase of 65.99% compared with untreated barley straw (152 mg g⁻¹). During fermentation, the highest amount of ethanol (207 mg g⁻¹) was obtained under anaerobic plus 0.4 mmol L⁻¹ benzoic acid conditions, representing an increase of 57.49, 38.16 and 10.14% compared with untreated sample (88 mg g⁻¹), aerobic (128 mg g⁻¹) and anaerobic (186 mg g⁻¹) conditions respectively. CONCLUSION The results suggest that pretreatment with 2.0% NaClO+H₂O₂ solution disrupted the recalcitrant structure of barley straw and enhanced the glucose yield and subsequent bioethanol production.
Collapse
MESH Headings
- Benzoic Acid/pharmacology
- Biofuels/analysis
- Cell Wall/chemistry
- Cell Wall/drug effects
- Cell Wall/ultrastructure
- Crops, Agricultural/chemistry
- Crops, Agricultural/drug effects
- Crops, Agricultural/metabolism
- Crops, Agricultural/microbiology
- Drug Synergism
- Ethanol/analysis
- Ethanol/chemistry
- Ethanol/metabolism
- Fermentation
- Glucose/analysis
- Glucose/chemistry
- Glucose/metabolism
- Hordeum/chemistry
- Hordeum/drug effects
- Hordeum/metabolism
- Hordeum/microbiology
- Hydrogen Peroxide/agonists
- Hydrogen Peroxide/pharmacology
- Hydrolysis
- Kinetics
- Lignin/analysis
- Lignin/chemistry
- Lignin/metabolism
- Microscopy, Electron, Scanning
- Oxidants/agonists
- Oxidants/pharmacology
- Plant Components, Aerial/chemistry
- Plant Components, Aerial/drug effects
- Plant Components, Aerial/metabolism
- Plant Components, Aerial/microbiology
- Republic of Korea
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Sodium Hypochlorite/agonists
- Sodium Hypochlorite/pharmacology
- Surface Properties
Collapse
Affiliation(s)
- Md Mominul Islam Sheikh
- Department of Environmental Material Science, IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu Y, Chen J, Wu X, Wang K, Su X, Chen L, Zhou H, Xiong X. Insights into the effects of γ-irradiation on the microstructure, thermal stability and irradiation-derived degradation components of microcrystalline cellulose (MCC). RSC Adv 2015. [DOI: 10.1039/c5ra03300d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microstructure, thermal stability and irradiated degradation components of microcrystalline cellulose were investigated under 60Co γ-irradiation (0–1400 kGy).
Collapse
Affiliation(s)
- Yun Liu
- Beijing Key Laboratory of Bioprocessing
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jingping Chen
- Biotechnology Research Center
- Hunan Academy of Agricultural Sciences
- Changsha 410125
- China
| | - Xiaofeng Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding
- Hunan Collaborative Utilization of Botanical Functional Ingredients
- Hunan Academy of Agricultural Sciences
- Changsha 410125
- China
| | - Keqin Wang
- Hunan Institute of Nuclear Agricultural Science and Space Breeding
- Hunan Collaborative Utilization of Botanical Functional Ingredients
- Hunan Academy of Agricultural Sciences
- Changsha 410125
- China
| | - Xiaojun Su
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization
- Hunan Agricultural University
- Changsha 410128
- China
| | - Liang Chen
- Hunan Institute of Nuclear Agricultural Science and Space Breeding
- Hunan Collaborative Utilization of Botanical Functional Ingredients
- Hunan Academy of Agricultural Sciences
- Changsha 410125
- China
| | - Hua Zhou
- Beijing Key Laboratory of Bioprocessing
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization
- Hunan Agricultural University
- Changsha 410128
- China
- The Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
| |
Collapse
|
29
|
Morais ARC, da Costa Lopes AM, Bogel-Łukasik R. Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chem Rev 2014; 115:3-27. [DOI: 10.1021/cr500330z] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana R. C. Morais
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Andre M. da Costa Lopes
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Rafał Bogel-Łukasik
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
30
|
Avci A, Kiliç NK, Dönmez G, Dönmez S. Evaluation of hydrogen production by clostridium strains on beet molasses. ENVIRONMENTAL TECHNOLOGY 2014; 35:278-285. [PMID: 24600866 DOI: 10.1080/09593330.2013.826251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Clostridium acetobutylicum DSM 792, C. acetobutylicum DSM 1731 and two newly isolated bacteria defined as the members of genus Clostridium - based on the 16S rRNA analysis and biochemical traits - were characterized with regard to their hydrogen production in media containing increasing beet molasses concentrations. The highest hydrogen yield was observed for C. acetobutylicum DSM 792 with a yield of 2.8 mol H2 mol-1 hexose in medium including 60 g L-1 molasses. This bacterium also produced the maximum amount of hydrogen (5908.8 mL L-1) at the same molasses concentration. A slightly lower hydrogen yield was measured for C. acetobutylicum DSM 1731 (2.5 mol H2 mol-1 hexose) when grown on 40 g L-1 molasses. The new isolates Clostridium roseum C and Clostridium saccharoperbutylacetonicum PF produced hydrogen with yields of 2.0 mol H2 mol-1 hexose at 40 and 60 g L-1 molasses and 2.1 mol H2 mol-1 hexose at 40 gL-1 molasses, respectively.
Collapse
Affiliation(s)
- Ayşe Avci
- Department of Food Engineering, Sakarya University, 54187 Sakarya, Turkey.
| | | | - Gönöl Dönmez
- Department of Biology, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Sedat Dönmez
- Department of Food Engineering, Ankara University, 06110 Ditkapi, Ankara, Turkey
| |
Collapse
|