1
|
Wikström J, Forsberg SC, Maciute A, Nascimento FJA, Bonaglia S, Gunnarsson JS. Thin-layer capping with granular activated carbon and calcium-silicate to remediate organic and metal polluted harbor sediment - A mesocosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174263. [PMID: 38936733 DOI: 10.1016/j.scitotenv.2024.174263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Sediments polluted with hydrophobic organic contaminants (HOCs) and metals can pose environmental risks, yet effective remediation remains a challenge. We investigated a new composite sorbent comprising granular activated carbon (GAC) and a calcium-silicate (Polonite®, PO) for thin-layer capping of polluted sediment, with the aim to sequester both HOCs and metals. Box cores were collected in polluted Oskarshamn harbor, Sweden, and the sediments were treated with GAC and/or Polonite in a 10-week mesocosm study to measure endpoints ranging from contaminant immobilization to ecological side effects on native fauna and biogeochemical processes. The GAC particle size was 300-500 μm to reduce negative effects on benthic fauna (by being non-ingestible) and of biogenic origin (coconut) to have a small carbon footprint compared with traditional fossil ACs. The calcium-silicate was a fine-grained industrial by-product used to target metals and as a carrier for GAC to improve the cap integrity. GAC decreased the uptake of dioxins (PCDD/Fs) in the bivalve Macoma balthica by 47 % and the in vitro bioavailability of PCB by 40 %. The composite cap of GAC + Polonite decreased sediment-to-water release of Pb < Cu < Ni < Zn < Cd by 42-98 % (lowest to highest decrease) and bioaccumulation of Cd < Zn < Cu in the worm Hediste diversicolor by 50-65 %. Additionally, in vitro bioavailability of Pb < Cu < Zn, measured using digestive fluid extraction, decreased by 43-83 %. GAC showed no adverse effects on benthic fauna while Polonite caused short-term adverse effects on fauna diversity and abundance, partly due to its cohesiveness, which, in turn, can improve the cap integrity in situ. Fauna later recovered and bioturbated the cap. Both sorbents influenced biogeochemical processes; GAC sorbed ammonium, Polonite decreased respiration, and both sorbents reduced denitrification. In conclusion, the side effects were relatively mild, and the cap decreased the release and bioavailability of both HOCs and metals effectively, thus offering a promising sustainable and cost-effective solution to remediating polluted sediments.
Collapse
Affiliation(s)
- Johan Wikström
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden.
| | - Sara C Forsberg
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Adele Maciute
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Jonas S Gunnarsson
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Cho EJ, Kang JK, Lee CG, Bae S, Park SJ. Use of thermally activated Fenton sludge for Cd removal in zinc smelter wastewater: Mechanism and feasibility of Cd removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122166. [PMID: 37429491 DOI: 10.1016/j.envpol.2023.122166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Fenton sludge is a byproduct of the Fenton process that contains large amounts of Fe and Ca. Because of the secondary contamination generated during the disposal of this byproduct, ecofriendly treatment methods are needed. In this study, we used Fenton sludge to remove the Cd discharged from a zinc smelter factory, using thermal activation to enhance the Cd adsorption capacity. Among the various temperatures considered (300-900 °C), the Fenton sludge that was thermally activated at 900 °C (TA-FS-900) adsorbed the highest amount of Cd because of its high specific surface area and high Fe content. Cd was adsorbed onto TA-FS-900 via complexation with C-OH, C-COOH, FeO-, and FeOH and cation exchange with Ca2+. The maximum adsorption of TA-FS-900 was 260.2 mg/g, indicating that TA-FS-900 is an efficient adsorbent, comparable to those reported in the literature. The initial Cd concentration in the zinc smelter wastewater discharged was 105.7 mg/L, 98.4% of which was removed by applying TA-FS-900, suggesting the applicability of TA-FS-900 for real wastewater containing high concentrations of various cations and anions. The leaching of heavy metals from TA-FS-900 was within the EPA standard limits. We concluded that the environmental impact of Fenton sludge disposal can be reduced, and the use of Fenton sludge can add value to the treatment of industrial wastewater in terms of the circular economy and environment.
Collapse
Affiliation(s)
- Eun-Ji Cho
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
3
|
Guo J, Chen M, Huang Y, Xie S, Hu C, Xu B, Wang G. Understanding the mechanisms of zeolite in inhibiting Pb accumulation in different rice cultivars (Oryza sativa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80312-80322. [PMID: 35716307 DOI: 10.1007/s11356-022-21331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Zeolite is one of the potential passivating amendments for the immobilization of lead (Pb) in contaminated farmland soils. In this study, pot experiments were carried out to investigate the effects and the mechanisms of zeolite on Pb accumulation in two rice cultivars grown in a slightly Pb-contaminated soil. Results showed that Pb content in grains of Zheyou 18 (ZY-18) decreased by the addition of 6 g zeolite kg-1 soil (E6), which can be attributed to the reduction in soil Pb availability, dissolved organic carbon (DOC), water-soluble iron (Fe) and manganese (Mn), and the transfer factor from soil to grain (TFsoil-grain). These reductions were mainly resulting from the significant increase in soil pH, glutathione (GSH), phytochelatins (PCs), and non-protein (NPT) content in rice root, and the decrease in soil redox potential (Eh), due to zeolite addition. Pb content in brown rice of DL-5 was not significantly affected with E6 treatment, whereas it was raised by applying 12 g zeolite kg-1 soil (E12). The increase of Pb content of Donglian 5 (DL-5) grains with E12 treatment can be attributed to more Pb uptake by the root, higher Pb transfer factors (TFs) between various parts of rice, and significant decrease in GSH, PCs, and NPT contents in the root. It is concluded that a suitable rate of zeolite addition can immobilize Pb in slightly Pb-contaminated acidic soil. However, the final immobilization effect also depends on rice cultivars.
Collapse
Affiliation(s)
- Jingxia Guo
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Miaofen Chen
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yongxin Huang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Shengcong Xie
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Cong Hu
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Bo Xu
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Guo Wang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
4
|
Patil MP, Woo HE, Lee IC, Nakashita S, Kim K, Kim JO, Kim K. A microcosm study of microbial community profiles during sediment remediation using pyrolyzed oyster shells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115229. [PMID: 35544980 DOI: 10.1016/j.jenvman.2022.115229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The accumulation of organic and inorganic components in sediments leads to a deterioration in the environment and an imbalance in the coastal ecosystem. Currently, capping is the most effective technology for remediating polluted sediment and restoring ecosystems. A microcosm experiment was designed using pyrolyzed oyster shell (POS). These were mixed in with coastal sediment or added as a capping layer. The results showed that POS effectively decreased pollutants, including PO4-P and NH4-N. Metagenomics analysis was performed using 16S rRNA gene sequencing and the most abundant phyla identified in the POS treated and untreated sediments were Proteobacteria, followed by Firmicutes, Bacteroidetes, Chloroflexi, Fusobacteria, Nitrospirae, and Spirochaetes. The relative abundance of Proteobacteria members of the Class Gammaproteobacteria significantly increased, but Deltaproteobacteria gradually decreased throughout the experiment in POS-covered sediment. This suggests that the POS effectively promoted a shift from anaerobic to facultative anaerobic or aerobic microbial communities in the sediment. Dominant species of facultative anaerobic or microaerophilic bacteria from the order Chromatiales and phylum Nitrospirae were observed in the POS-covered sediment. Based on these study results, it can be concluded that POS is an effective covering material for sediment remediation and restores the microbial communities in sediments.
Collapse
Affiliation(s)
- Maheshkumar Prakash Patil
- Industry-University Cooperation Foundation, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Hee-Eun Woo
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - In-Cheol Lee
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Shinya Nakashita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Kyeongmin Kim
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Hiroshima, Japan; Coastal and Estuarine Sediment Dynamics Group, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka, 239-0826, Kanagawa, Japan
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea; School of Marine and Fisheries Life Science, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea.
| | - Kyunghoi Kim
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
5
|
Labianca C, De Gisi S, Todaro F, Notarnicola M, Bortone I. A review of the in-situ capping amendments and modeling approaches for the remediation of contaminated marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151257. [PMID: 34710404 DOI: 10.1016/j.scitotenv.2021.151257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Contaminated sediments can pose long-term risks to human beings and ecosystems as they accumulate inorganic and organic contaminants becoming a sink and source of pollution. Compared to ex-situ technologies (i.e., dredging activities and off site treatments), in-situ capping (ISC) intends to minimize contaminated sediment mobilization and impact into the water column whilst treating contamination. Literature shows that numerous types of ISC amendments in presence of both organic and inorganic pollutants are investigated, although a few are contributions whose experiments have been designed and conducted with a view to future engineering. Against this background of shortcomings, this review paper intends to investigate ISC reliability, applicability and its long-term effectiveness, by also comparing reactive and physical ISCs. Additionally, an examination of the main numerical simulations applied to ISC technology was carried out. We found that activated carbon and organoclay resulted the most studied amendments for organically contaminated sediment, whereas biochar, clay minerals, and industrial-by products were more employed in presence of sediment contaminated by metal(loids). There is no better ISC system in absolute terms, since technological performance depends on many factors and only a few experimental investigations included a long-term modeling phase to predict ISC long-term efficiency. Most of numerical models included simplified transport equations based on diffusion and adsorption, and the goodness of fitting between experimental and modeled data was not always computed. The review finally discusses new research directions such as the need for long-term applications on field-scale and cap effectiveness in presence of site-specific tidal forces and currents.
Collapse
Affiliation(s)
- Claudia Labianca
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy.
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - Francesco Todaro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - Imma Bortone
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, United Kingdom
| |
Collapse
|
6
|
Cervi EC, Hudson M, Rentschler A, Clark S, Brown SS, Burton GA. Evaluation of Capping Materials to Reduce Zinc Flux from Sediments in a Former Mining Pit Lake. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:193-200. [PMID: 34856002 DOI: 10.1002/etc.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 05/09/2023]
Abstract
Wilson Mine is a former vanadium mine site located in the Ouachita Mountains near Hot Springs, Arkansas. The site, which drains via two streams to Lake Catherine, has undergone extensive reclamation to significantly reduce groundwater and surface water contact with mine spoils. One of the streams passes through a former mine pit forming East Wilson Pond, and flux from pit lake sediments can result in elevated metal, that is, zinc (Zn), concentrations in overlying water. To mitigate potential risks, an investigation was conducted to evaluate the efficacy of capping materials for partitioning Zn-contaminated sediments from overlying water in East Wilson Pond. A 28-day laboratory study compared the effectiveness of capping materials including combinations of limestone, bentonite clay, and gravel for mitigating Zn flux, including under reasonable worst-case conditions (pH 5.5) encountered in the hypolimnion. Dissolved Zn was monitored over time in overlying water and in sediment porewaters within untreated controls and within the capping layer of treated systems. The use of limestone and/or bentonite clay improved buffering capacity compared to the noncapped control, and pH declined gradually but only modestly in the overlying water and porewater of all treated systems. Concentrations of Zn in overlying water of the noncapped control increased from approximately 30 to 100 µg/L during the study period, while concentrations in the overlying water and porewater of systems containing capping materials remained low (10-30 µg/L). The results demonstrated the effectiveness of the capping materials for neutralizing pH and reducing Zn flux, and a three-layer cap consisting of limestone (top) + bentonite clay (middle) + gravel (bottom) was determined to be most effective. These results were used to inform the selection of materials for the application of a cap to reduce Zn flux from the pit lake sediments. Environ Toxicol Chem 2022;41:193-200. © 2021 SETAC.
Collapse
Affiliation(s)
- Eduardo Cimino Cervi
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle Hudson
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison Rentschler
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean Clark
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven S Brown
- Environmental Remediation and Restoration, The Dow Chemical Company, Midland, Michigan, USA
| | - G Allen Burton
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Zhang Y, Labianca C, Chen L, De Gisi S, Notarnicola M, Guo B, Sun J, Ding S, Wang L. Sustainable ex-situ remediation of contaminated sediment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117333. [PMID: 34000670 DOI: 10.1016/j.envpol.2021.117333] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
Routine waterway dredging activities generate huge volumes of dredged sediment. The remediation of dredged contaminated sediment is a worldwide challenge. Novel and sustainable ex-situ remediation technologies for contaminated sediment have been developed and adopted in recent years. In this review paper, the state-of-art ex-situ treatment technologies and resource utilisation methods for contaminated sediment were critically reviewed. By applying different techniques, sediment could been successfully transformed into sustainable construction materials, such as ceramsite, supplementary cementitious materials, fill materials, paving blocks, partition blocks, ready-mixed concrete, and foamed concrete. We highlighted that proper remediation technologies should be cleverly selected and designed according to the physical and chemical characteristics of sediment, without neglecting important aspects, such as cost, safety, environmental impacts, readiness level of the technology and social acceptability. The combination of different assessment methods (e.g., environmental impact assessment, cost-benefit analysis, multi-criteria decision analysis and life cycle assessment) should be employed to comprehensively evaluate the feasibility of different sustainable remediation technologies. We call on the scientific community in a multidisciplinary fashion to evaluate the sustainability of various remediation technologies for contaminated sediment.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Claudia Labianca
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona N. 4, 70125, Bari, Italy
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona N. 4, 70125, Bari, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona N. 4, 70125, Bari, Italy
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
8
|
Removal of Heavy Metals (Cd2+, Cu2+, Ni2+, Pb2+) from Aqueous Solution Using Hizikia fusiformis as an Algae-Based Bioadsorbent. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study investigated the applicability of algae (Hizikia fusiformis, Green gracilaria, and Codium fragile) for removing heavy metals (Cd2+, Cu2+, Ni2+, and Pb2+) from aqueous solutions. Among the algae, H. fusiformis was chosen as a bioadsorbent and modified with NaOH and HCl. The results showed that the biosorption capacity of H. fusiformis improved significantly after treatment with NaOH; however, H. fusiformis modified with HCl did not achieve the expected value. The NaOH treatment enhanced the biosorption of metals on the treated H. fusiformis because of the hydrolysis reaction producing carboxylic (–COOH) and hydroxyl groups (–OH). The kinetics for Cd2+, Cu2+, Ni2+, and Pb2+ biosorption well fitted to pseudo-first-order, pseudo-second-order, and Elovich models, with R2 of >0.994. The Freundlich model provided a good fit for the equilibrium biosorption of Cd2+, Cu2+, and Ni2+ by both algae and the Langmuir model for Pb2+. The maximum biosorption of metals was in the order Pb2+ >> Cu2+ ≈ Ni2+ > Cd2+, with qmax of 167.73, 45.09, 44.38, and 42.08 mg/g, respectively. With an increase in the solution pH, metal biosorption was enhanced, and considerable enhancement was observed in the pH range of 2–4. Thus, H. fusiformis is expected to be considered a superior candidate for metal biosorption.
Collapse
|
9
|
Jaglal K. Contaminated aquatic sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1826-1832. [PMID: 32860296 DOI: 10.1002/wer.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The remediation of contaminated aquatic sediments requires a range of expertise from assessment (investigation, risk evaluations, modeling, and remedy selection) to design and construction. Research in 2019 has added to knowledge on optimizing the use of passive samplers for assessing chemical concentrations in sediment porewater. The porewater and black carbon appear to be better predictors of contaminant bioaccumulation than total organic carbon alone. This has led to better characterization of potential risk at sediment sites. Tools to identify and model sources of chemicals have been developed and used particularly for some metals, polynuclear aromatic hydrocarbons and polychlorinated biphenyls. There is great emphasis on beneficially using dredged sediment, treating it as a resource rather than a waste. Amendments used in sediment caps continue to be refined including the use of activated carbon within the caps and by itself. A technique involving 16S rRNA has been established as a means of identifying microbiological composition that naturally degrade contaminants. © 2020 Water Environment Federation PRACTITIONER POINTS: Sediment capping technology continues to advance Sampling and testing methods continue to be refined Natural processes such as biodegradation are being better understood Beneficial use of dredged sediment continue to be emphasized.
Collapse
|