1
|
Ali MA, Maafa IM. Photodegradation of Amoxicillin in Aqueous Systems: A Review. Int J Mol Sci 2024; 25:9575. [PMID: 39273523 PMCID: PMC11395481 DOI: 10.3390/ijms25179575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other related pollutants using several methods that include adsorption, photolysis, photocatalytic degradation, photoelectrocatalytic degradation, and electrochemical conversion. AMX can be eliminated efficiently from the environment using photodegradation, either by photolysis or a photocatalytic process. Several types of semiconductor NMs have been used to eliminate AMX and other related drugs present in wastewater. This review spans the photodegradation studies conducted during the years 2018-2024 to degrade and eliminate AMX in aquatic systems. Several studies have been reported to eliminate AMX from different water streams. These studies are categorized into TiO2-containing and non-TiO2-based catalysts for better comparison. A section on photolysis is also included, showing the use of UV alone or with H2O2 or PS without using any nanomaterial. A tabulated summary of both types of catalysts showing the catalysts, reaction conditions, and degradation efficiency is presented. Researchers have used a variety of reaction conditions that include radiation types (UV, solar, and visible), pH of the solution, concentration of AMX, number of nanomaterials, presence of other additives and activators such as H2O2 as oxidant, and the influence of different salts like NaCl and CaCl2 on the photodegradation efficiency. TiO2 was the best nanomaterial found that achieved the highest degradation of AMX in ultraviolet irradiation. TiO2 doped with other nanomaterials showed very good performance under visible light. WO3 was also used by several investigators and found quite effective for AMX degradation. Other metal oxides used for AMX elimination were derived from molybdenum, zinc, manganese, copper, cerium, silver, etc. Some researchers have used UV and/or visible irradiation or sunlight, without using solid catalysts, in the presence of oxidants such as H2O2. A summarized description of earlier published reviews is also presented.
Collapse
Affiliation(s)
- Mohammad Ashraf Ali
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Moreira Pinto AR, Martins CR, Carvalho JFD, Ferrari VB, Vasconcellos SPD, Moraes JEFD. Degradation of amoxicillin applying photo-Fenton and acid hydrolysis processes with toxicity evaluation via antimicrobial susceptibility tests. ENVIRONMENTAL TECHNOLOGY 2023; 44:4248-4259. [PMID: 35694867 DOI: 10.1080/09593330.2022.2089056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ABSTARCTThe antibiotic amoxicillin (AMX) is a semisynthetic aminopenicillin, classified as an β-lactam antibiotic. This work aims to evaluate the AMX degradation (190 mg L-1), in aqueous medium, applying photo-Fenton ([TOC]0 = 100 mgC L-1; FH2O2 = 3.27 mmol min-1; [Fe2+] = 0.27 mmol L-1; pH = 3.0; T = 40°C) and acid hydrolysis processes. Along the experiments, samples were withdrawn and analyzed by a total organic carbon (TOC) analyzer and a liquid chromatography system coupled to diode array (HPLC-DAD) and mass spectrometry (HPLC-MS) detectors. The hydrolysis process proved to be less efficient, because AMX removals greater than 80% were observed only after 24 hours of reaction (pH 2). Conversely, the photo-Fenton process removed completely AMX in just 20 minutes, reaching 85% of TOC removal in 2 hours. Finally, the AMX aqueous solutions treated by the studied processes was also evaluated in respect of its toxicity to some microorganisms, applying two antimicrobial susceptibility tests: disk-diffusion and broth microdilution methods. It was observed that the AMX aqueous solutions, pretreated by the photo-Fenton process, for just 7.5 min of reaction time, did not inhibit the microorganisms growth. The obtained results show that the photo-Fenton process was able to degrade AMX, in a relatively short time, and that the generated degradation products did not inhibit the microorganisms growth, when compared to acid hydrolysis process. Thus, it was verified the potential application of the photo-Fenton system as a pretreatment step to conventional biological oxidation processes for the treatment of industrial wastewaters.
Collapse
Affiliation(s)
- Anderson Rodrigo Moreira Pinto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, Departamento de Engenharia Química, Laboratório de Engenharia e Controle Ambiental (LENCA), São Paulo, Brazil
| | - Cristiane Reis Martins
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, Departamento de Engenharia Química, Laboratório de Engenharia e Controle Ambiental (LENCA), São Paulo, Brazil
| | - Joyce Ferreira de Carvalho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, Departamento de Engenharia Química, Laboratório de Engenharia e Controle Ambiental (LENCA), São Paulo, Brazil
| | - Vitor Baptista Ferrari
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, Departamento de Engenharia Química, Laboratório de Engenharia e Controle Ambiental (LENCA), São Paulo, Brazil
| | - Suzan Pantaroto de Vasconcellos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, Departamento de Engenharia Química, Laboratório de Engenharia e Controle Ambiental (LENCA), São Paulo, Brazil
| | - José Ermírio Ferreira de Moraes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, Departamento de Engenharia Química, Laboratório de Engenharia e Controle Ambiental (LENCA), São Paulo, Brazil
| |
Collapse
|
3
|
Mmelesi OK, Patala R, Nkambule TT, Mamba BB, Kefeni KK, Kuvarega AT. Effect of Zn doping on physico-chemical properties of cobalt ferrite for the photodegradation of amoxicillin and deactivation of E. coli. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Liu Y, Ji X, Yang J, Tang W, Zhu Y, Wang Y, Zhang Y, Zhang Y, Duan J, Li W. Degradation of the typical herbicide atrazine by UV/persulfate: kinetics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43928-43941. [PMID: 35122644 DOI: 10.1007/s11356-022-18717-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ), a widely used herbicide, had received a significant amount of attention due to its widespread detection in aquatic environments as well as its potential risks to human health. UV/persulfate (PS) process is an emerging technology for degrading organic pollutants in water. Thus, the degradation of ATZ by a UV/PS process was investigated in this study. The results showed that the removal rate of ATZ was 98.4% with a PS dosage of 2 mg/L and an initial ATZ concentration of 0.1 mg/L. In addition, a relatively high degradation efficiency was obtained under pH = 7. However, the addition of humic acid (HA) reduced the removal rate of ATZ. Hydroxyl radicals (•OH) and sulfate radicals (•SO4-) respectively contributed to 21.7% and 29% of the ATZ degradation. The ATZ degradation pathway was proposed, and the main reactions of ATZ in this UV/PS process included dechlorination, demethylation, and deethylation. Moreover, the toxicity of ATZ and its degradation products was assessed using the Toxicity Estimation Software Tool (TEST), and the results showed that the toxicity of the ATZ solution was reduced after the UV/PS process. These results indicate that UV/PS shows good promise as a remediation technique for the treatment of persistent herbicides such as ATZ in contaminated water.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Jingjie Yang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Wei Tang
- Yantai City Drainage Service Center, Yantai, 264000, China
| | - Yuliang Zhu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China.
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai, 264005, China.
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095, Australia
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an , 710055, China
| |
Collapse
|
5
|
Aissani A, Kameche M, Benabbou K. Synthesis and characterization of TiO 2/LDH layered double hydroxide composites: Utilization as photocatalysts for amoxicillin degradation under UVA irradiation. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Aicha Aissani
- Laboratoire physico-chimie des matériaux catalyse et environnement (LPCMCE), Faculté de chimie, Université des sciences et de la technologie Mohamed Boudiaf (USTO-MB), Oran, Algérie
| | - Mostefa Kameche
- Laboratoire physico-chimie des matériaux catalyse et environnement (LPCMCE), Faculté de chimie, Université des sciences et de la technologie Mohamed Boudiaf (USTO-MB), Oran, Algérie
| | - Khalil Benabbou
- Laboratoire physico-chimie des matériaux catalyse et environnement (LPCMCE), Faculté de chimie, Université des sciences et de la technologie Mohamed Boudiaf (USTO-MB), Oran, Algérie
| |
Collapse
|
6
|
Nunes RF, Tominaga FK, Borrely SI, Teixeira ACSC. UVA/persulfate-driven nonylphenol polyethoxylate degradation: effect of process conditions. ENVIRONMENTAL TECHNOLOGY 2022; 43:286-300. [PMID: 32559130 DOI: 10.1080/09593330.2020.1786166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
UV/persulfate (UV/PS) technologies have gained increased attention as efficient alternatives for removing pollutants from different classes, although processes based on the UVA-driven S2O82- (PS) activation have not yet been discussed in the literature for the removal of the nonionic surfactant nonylphenol polyethoxylate (NPEO). The present study investigated the simultaneous effect of the initial persulfate concentration ([PS]0) and specific photon emission rate (EP,0) on NPEO degradation by UVA/PS following a Doehlert experimental design. The results for [NPEO]0 = (4.65 ± 0.15) mg L-1 indicated more than 97.8% NPEO removal after 2 h, with pseudo first-order specific degradation rate (kobs) of 0.0320 min-1, for [PS]0 = 7.75 mmol L-1 and EP,0 = 0.437 μmol photons L-1 s-1. Under these conditions, NPEO half-life time was about 22 min, and the EC50-48 h (% v/v) values for Daphnia similis before and after treatment did not differ significantly. Higher values of EP,0 would influence NPEO removal for [PS]0 not higher than 8-10 mmol L-1, although lower degradation efficiencies were obtained with higher [NPEO]0 or real wastewater, except for longer reaction times. Additionally, UVA/PS showed to be efficient for tensoactivity removal, despite the negligible total organic carbon (TOC) removal achieved. Finally, UVC and UVA resulted in NPEO degradation higher than 96% and similar tensoactivity removals when UVA/PS was conducted under optimal conditions ([PS]0 = 10 mmol L-1; EP,0 = 0.324 μmol photons L-1 s-1), suggesting that UVA radiation available in solar light could be advantageously employed for NPEO removal at concentrations usually found in wastewater.
Collapse
Affiliation(s)
- R F Nunes
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - F K Tominaga
- Laboratory of Biological and Environmental Assays, Radiation Technology Center, Energy and Nuclear Research Institute, São Paulo, Brazil
| | - S I Borrely
- Laboratory of Biological and Environmental Assays, Radiation Technology Center, Energy and Nuclear Research Institute, São Paulo, Brazil
| | - A C S C Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ali I, Afshinb S, Poureshgh Y, Azari A, Rashtbari Y, Feizizadeh A, Hamzezadeh A, Fazlzadeh M. Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36732-36743. [PMID: 32564327 DOI: 10.1007/s11356-020-09310-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 05/25/2023]
Abstract
In present research, the activated carbon was prepared by a green approach from pomegranate peel coated with zero-valent iron nanoparticles (AC-nZVI) and developed as adsorbent for the removal of amoxicillin from aqueous solution. The physicochemical properties of the AC-nZVI were investigated using XRD, FTIR, and FESEM techniques. The optimal values of the parameters for the best efficiency (97.9%) were amoxicillin concentration of 10 mg/L, adsorbent dose of 1.5 g/L, time of 30 min, and pH of 5, respectively. The adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model (qmax 40.282 mg/g, R2 0. 0.999) and pseudo-first order kinetics (R2 0.961). The reusability of the adsorbent also revealed that the adsorption efficiency decreased from 83.54 to 50.79% after five consecutive repetitions. Overall, taking into account the excellent efficiency, availability, environmental friendliness, and good regeneration, AC-nZVI can be introduced as a promising absorbent for amoxicillin from aquatic environments.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India.
| | - Shirin Afshinb
- Students Research Committee, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yousef Poureshgh
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Azari
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Rashtbari
- Students Research Committee, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abolfazl Feizizadeh
- Mechanical Engineering Department, MSc of Engineering of Micro and Nano Electromechanical Systems, Urmia University, Urmia, Iran
| | - Asghar Hamzezadeh
- Students Research Committee, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|