1
|
Eddine Attar A, Chaker H, Djennas M, Ondarts M, Fourmentin S. Investigation of Doehlert matrix conception in novel intrinsically conducting polymers based on selenium nanoparticles for wastewater treatment: Synthesis, characterization, kinetic and chemometric study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124562. [PMID: 38823245 DOI: 10.1016/j.saa.2024.124562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The synthesis of robust intrinsically conducting polymers (ICPs) based on nanoparticles is becoming increasingly attractive to the research community due to the unique properties of these nanocomposites. Indeed, as organic semiconductors, ICPs combine both polymer and metal properties in a single structure. This study presents an innovative approach in which the Doehlert Matrix (DM) is applied to a novel ICP nanocomposite based on polyaniline (Pani) coupled with selenium (Se) loaded mesoporous titania (TiO2) for wastewater treatment by photocatalysis. It includes both the elaboration routes of ICP nanocomposites, characterization of materials by X-ray diffraction (XRD), BET analysis, thermogravimetric analysis (TGA), RAMAN spectroscopy and Fourier transform infrared spectroscopy (FTIR) and photodegradation of methylene blue (MB) as a representative of dye pollutant. In addition, the photocatalytic process has been optimized by a novel DM conception. The effect of the pH of the solution, the catalyst dosage and the initial pollutant concentration was investigated. The optimum conditions were found to be: initial MB concentration of 15 mg/L, the catalyst dosage of 69 mg and pH of 9.6 with an operating time of 75 min, with a coefficient of determination R2 equal to 0.9985. The removal efficiency of BM was close to 97 %. The study shows that the new ICP nanocomposites improve the photocatalytic efficiency compared to pure titania and/or pure Pani. In addition, as the ternary Pani-Se-TiO2 nanocomposite could be obtained from a low-cost synthesis, it is a very promising material for use in wastewater treatment.
Collapse
Affiliation(s)
- Alaa Eddine Attar
- Laboratoire de Catalyse et Synthèse en Chimie Organique BP 119, Université de Tlemcen, Tlemcen 13000, Algérie; Université Belhadj Bouchaib de Ain Temouchent, BP 284, 46000, Ain Temouchent, Algérie
| | - Hanane Chaker
- Laboratoire de Catalyse et Synthèse en Chimie Organique BP 119, Université de Tlemcen, Tlemcen 13000, Algérie; Université Belhadj Bouchaib de Ain Temouchent, BP 284, 46000, Ain Temouchent, Algérie.
| | - Mustapha Djennas
- Faculté des sciences économiques, BP 226, Université de Tlemcen, Tlemcen 13000, Algérie
| | - Michel Ondarts
- Université Savoie Mont Blanc, CNRS, Laboratoire des Procédés Énergétiques du Bâtiment, 73000 Chambéry, France
| | - Sophie Fourmentin
- Université Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| |
Collapse
|
2
|
Rashid R, Shafiq I, Gilani MRHS, Maaz M, Akhter P, Hussain M, Jeong KE, Kwon EE, Bae S, Park YK. Advancements in TiO 2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. CHEMOSPHERE 2024; 349:140703. [PMID: 37992908 DOI: 10.1016/j.chemosphere.2023.140703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Researchers have focused on efficient techniques for degrading hazardous organic pollutants due to their negative impacts on ecological systems, necessitating immediate remediation. Specifically, TiO2-based photocatalysts, a wide-bandgap semiconductor material, have been extensively studied for their application in environmental remediation. However, the extensive band gap energy and speedy reattachment of electron (e-) and hole (h+) pairs in bare TiO2 are considered major disadvantages for photocatalysis. This review extensively focuses on the combination of semiconducting photocatalysts for commercial outcomes to develop efficient heterojunctions with high photocatalytic activity by minimizing the e-/h+ recombination rate. The improved activity of these heterojunctions is due to their greater surface area, rich active sites, narrow band gap, and high light-harvesting tendency. In this context, strategies for increasing visible light activity, including doping with metals and non-metals, surface modifications, morphology control, composite formation, heterojunction formation, bandgap engineering, surface plasmon resonance, and optimizing reaction conditions are discussed. Furthermore, this review critically assesses the latest developments in TiO2 photocatalysts for the efficient decomposition of various organic contaminants from wastewater, such as pharmaceutical waste, dyes, pesticides, aromatic hydrocarbons, and halo compounds. This review implies that doping is an effective, economical, and simple process for TiO2 nanostructures and that a heterogeneous photocatalytic mechanism is an eco-friendly substitute for the removal of various pollutants. This review provides valuable insights for researchers involved in the development of efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Ruhma Rashid
- Institute of Chemical Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Kwang-Eun Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil & Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504, Republic of Korea.
| |
Collapse
|
3
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
4
|
Photo-Antibacterial Activity of Two-Dimensional (2D)-Based Hybrid Materials: Effective Treatment Strategy for Controlling Bacterial Infection. Antibiotics (Basel) 2023; 12:antibiotics12020398. [PMID: 36830308 PMCID: PMC9952232 DOI: 10.3390/antibiotics12020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Bacterial contamination in water bodies is a severe scourge that affects human health and causes mortality and morbidity. Researchers continue to develop next-generation materials for controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials do not have any side effects and have a minimal chance of developing bacterial resistance due to their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential for the control of bacterial infection due to their exceptional properties, such as high surface area, tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs, and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of 2D-NMs, the toxicity mechanism, and their challenges.
Collapse
|
5
|
Kocsis G, Szabó-Bárdos E, Fónagy O, Farsang E, Juzsakova T, Jakab M, Pekker P, Kovács M, Horváth O. Characterization of Various Titanium-Dioxide-Based Catalysts Regarding Photocatalytic Mineralization of Carbamazepine also Combined with Ozonation. Molecules 2022; 27:molecules27228041. [PMID: 36432141 PMCID: PMC9697621 DOI: 10.3390/molecules27228041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Titanium-dioxide-based semiconductors proved to be appropriate for photocatalytic application to efficiently degrade emerging organic pollutants such as various herbicides, pesticides, and pharmaceuticals in waters of environmental importance. The characterization of various TiO2 catalysts, both bare and modified (Ag- and/or N-doped), by mechanochemical treatment was carried out in this work, regarding their structure, morphology, and photocatalytic activity. For the latter investigations, carbamazepine, an antidepressant, proved to be applicable and versatile. The photocatalytic behavior of the catalysts was studied under both UV and visible light. Besides the decomposition efficiency, monitoring the intermediates provided information on the degradation mechanisms. Mechanochemical treatment significantly increased the particle size (from 30 nm to 10 μm), causing a considerable (0.14 eV) decrease in the band gap. Depending on the irradiation wavelength and the catalyst, the activity orders differed, indicating that, in the mineralization processes of carbamazepine, the importance of the different oxidizing radicals considerably deviated, e.g., Ag-TiO2 < DP25-TiO2 < ground-DP25-TiO2 < N-TiO2 ≈ N-Ag-TiO2 for O2•− and N-TiO2 ≈ Ag-TiO2 < N-Ag-TiO2 < ground-DP25-TiO2 ≈ DP25-TiO2 for HO• generation under UV irradiation. Toxicity studies have shown that the resulting intermediates are more toxic than the starting drug molecule, so full mineralization is required. This could be realized by a synergistic combination of heterogeneous photocatalysis and ozonation.
Collapse
Affiliation(s)
- Gábor Kocsis
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Erzsébet Szabó-Bárdos
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Orsolya Fónagy
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Evelin Farsang
- Analytical Chemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, Research Center for Biochemical, Environmental and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Miklós Jakab
- Department of Materials Engineering, Research Center for Engineering Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Péter Pekker
- Environmental Mineralogy Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Margit Kovács
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Ottó Horváth
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
- Correspondence: ; Tel.: +36-88-624-000 (ext. 6049)
| |
Collapse
|
6
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Weerasekera M, Ajayan PM, Kottegoda N. A Review on Recent Developments in Structural Modification of TiO2 For Food Packaging Applications. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ganjali F, Kashtiaray A, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. NANOSCALE ADVANCES 2022; 4:1263-1307. [PMID: 36133673 PMCID: PMC9418160 DOI: 10.1039/d1na00818h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Herein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated. In addition, MCSs can shorten the reaction time, effectively accelerate reactions, and significantly upgrade both pharmaceutical synthesis and degradation mechanisms by preventing unwanted side reactions. Moreover, the other significant benefits of MCSs include their convenient magnetic separation, high stability and reusability, inexpensive raw materials, facile preparation routes, and surface functionalization. In this review, our aim is to present at the recent improvements in the structure of versatile MCSs and their characteristics, i.e., magnetization, recyclability, structural stability, turnover number (TON), and turnover frequency (TOF). Concisely, different hybrid and multifunctional MCSs are discussed. Additionally, the applications of MCSs for the synthesis of different pharmaceutical ingredients and degradation of organic wastewater contaminants such as toxic dyes and drugs are demonstrated.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
8
|
Milad Tabatabaeinejad S, Amiri O, Ghanbari M, Salavati-Niasari M. Dy2Cu2O5 nanostructures: Sonochemical fabrication, characterization, and investigation of photocatalytic ability for elimination of organic contaminants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Jandam N, Serivalsatit K, Hunsom M, Pruksathorn K. Ultrasound-Assisted Synthesis of Nonmetal-Doped Titanium Dioxide Photocatalysts for Simultaneous H 2 Production and Chemical Oxygen Demand Removal from Industrial Wastewater. ACS OMEGA 2021; 6:24709-24719. [PMID: 34604653 PMCID: PMC8482470 DOI: 10.1021/acsomega.1c03483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 06/02/2023]
Abstract
A series of nonmetal-doped titanium dioxide (Nm x /TiO2, where x is the weight fraction of nonmetal elements) photocatalysts was prepared via ultrasonic-assisted impregnation for simultaneous hydrogen (H2) production and chemical oxygen demand (COD) removal from industrial wastewater. Three types of Nm elements, carbon (C), silicon (Si), and phosphorus (P), were explored. The P1/TiO2 exhibited a higher photocatalytic activity for H2 production and COD removal than the C1/TiO2 and Si1/TiO2 photocatalysts. Approximately 6.43 mmol/g photocatalyst of H2 was produced, and around 26% COD removal was achieved at a P1/TiO2 loading of 4.0 g/L, a light intensity of 5.93 mW/cm2, and a radiation time of 4 h. This is because the P1/TiO2 photocatalyst exhibited lower point of zero charge values and a more appropriate band position compared with other Nm x /TiO2 photocatalysts to produce H+, which can consequently form H2, and reactive oxygen species (HO· and O2 · -), which serve as oxidizing agents to degrade the organic pollutants. Increasing the content of the P element doped into the TiO2-based material up to 7.0% by weight enhanced the H2 production and COD removal up to 8.34 mmol/g photocatalyst and 50.6%, respectively. This is attributed to the combined effect of the point of zero charge value and the S BET of the prepared photocatalysts. The photocatalytic activity of the P7/TiO2 photocatalyst was still higher than the TiO2-based material after the fourth use.
Collapse
Affiliation(s)
- Natjakorn Jandam
- Fuels
Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Karn Serivalsatit
- Department
of Materials Science, Faculty of Science, Chulalongkorn University,Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Mali Hunsom
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
- Associate
Fellow of Royal Society of Thailand (AFRST), Bangkok 10300, Thailand
| | - Kejvalee Pruksathorn
- Fuels
Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Material Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Synthesis of Oxygen Deficient TiO2 for Improved Photocatalytic Efficiency in Solar Radiation. Catalysts 2021. [DOI: 10.3390/catal11080904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The photocatalytic activities of TiO2 have been limited mainly to absorbing in the ultraviolet spectrum which accounts for only 5% of solar radiation. High energy band gap and electron recombination in TiO2 nanoparticles are responsible for its limitations as a photocatalyst. An oxygen deficient surface can be artificially created on the titanium oxide by zero valent nano iron through the donation of its excess electrons. A visible light active TiO2 nanoparticle was synthesized in the current investigation through simple chemical reduction using sodium boro-hydride. The physical and textural properties of the synthesized oxygen deficient TiO2 photocatalyst was measured using scanning/ transmission electron microscopy while FTIR, XRD and nitrogen sorption methods (BET) were employed for its further characterizations. Photochemical decoloration of orange II sodium dye solution in the presence of the synthesized TiO2 was measured using an UV spectrophotometer. The resulting oxygen deficient TiO2 has a lower energy band-gap, smaller pore sizes, and enhanced photo-catalytic properties. The decoloration (88%) of orange (II) sodium salt solution (pH 2) under simulated solar light was possible at 20 min. This study highlights the effect of surface oxygen defects, crystal size and energy band-gap on the photo-catalytical property of TiO2 nanoparticles as impacted by nano zero valent iron. It opens a new window in the exploitation of instability in the dopant ions for creation of a visible light active TiO2 photocatalyst.
Collapse
|
11
|
Brahmi C, Benltifa M, Ghali M, Dumur F, Simonnet‐Jégat C, Monnier V, Morlet‐Savary F, Bousselmi L, Lalevée J. Polyoxometalate
s
/polymer composites for the photodegradation of
bisphenol‐A. J Appl Polym Sci 2021. [DOI: 10.1002/app.50864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chaima Brahmi
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
- National Institute of Applied Sciences and Technology University of Carthage Tunis Tunisia
| | - Mahmoud Benltifa
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
| | - Mariem Ghali
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
- National Institute of Applied Sciences and Technology University of Carthage Tunis Tunisia
| | - Frédéric Dumur
- CNRS, ICR, UMR7273 Aix Marseille University Marseille France
| | - Corine Simonnet‐Jégat
- Lavoisier Institute of Versailles, UMR CNRS 8180 University of Paris Saclay, University of Versailles St‐Quentin en Yvelines Versailles France
| | - Valérie Monnier
- CNRS, Fédération des Sciences Chimiques de Marseille Aix Marseille University Marseille France
| | - Fabrice Morlet‐Savary
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
| | - Jacques Lalevée
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
| |
Collapse
|
12
|
Suresh M, Sivasamy A. Fabrication of graphene nanosheets decorated by nitrogen-doped ZnO nanoparticles with enhanced visible photocatalytic activity for the degradation of Methylene Blue dye. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 18:1569-1580. [PMID: 32837482 PMCID: PMC7293757 DOI: 10.1007/s10311-020-01021-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Pure and drinkable water will be rarer and more expensive as the result of pollution induced by industrialisation, urbanisation and population growth. Among the numerous sources of water pollution, the textile industry has become a major issue because effluents containing dyes are often released in natural water bodies. For instance, about two years are needed to biodegrade dye-derived, carcinogenic aromatic amines, in sediments. Classical remediation methods based upon physicochemical reactions are costly and still generate sludges that contain amine residues. Nonetheless, recent research shows that nanomaterials containing biopolymers are promising to degrade organic pollutants by photocatalysis. Here, we review the synthesis and applications of biopolymeric nanomaterials for photocatalytic degradation of azo dyes. We focus on conducting biopolymers incorporating metal, metal oxide, metal/metal oxide and metal sulphide for improved biodegradation. Biopolymers can be obtained from microorganisms, plants and animals. Unlike fossil-fuel-derived polymers, biopolymers are carbon neutral and thus sustainable in the context of global warming. Biopolymers are often biodegradable and biocompatible.
Collapse
Affiliation(s)
- Shrabana Sarkar
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal 713104 India
| | - Nidia Torres Ponce
- School of Biotechnology Engineering, Faculty of Agricultural and Forestry Sciences, Universidad Católica del Maule, Talca, Chile
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal 713104 India
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapacá, Arica, Chile
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| |
Collapse
|