1
|
Manatunga DC, Sewwandi M, Perera KI, Jayarathna MD, Peramune DL, Dassanayake RS, Ramanayaka S, Vithanage M. Plasticizers: distribution and impact in aquatic and terrestrial environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2114-2131. [PMID: 39404615 DOI: 10.1039/d4em00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Plasticizers, essential additives for enhancing plastic properties, have emerged as significant environmental and health concerns due to their persistence and widespread use. This study provides an in-depth exploration of plasticizers, focusing on their types, structures, properties, production methods, environmental distribution, and associated risks. The findings reveal that petroleum-based phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), are prevalent in aquatic and terrestrial environments, primarily due to the gradual degradation of plastic polymers. In the analysis of 39 studies on water contamination during the period of 2022-2023, only 22 works could be extracted due to insufficient details on the numerical value of plasticizer concentrations. Similarly, soil and sediment contamination studies were fewer, with only 11 studies focusing on sediments. These studies reveal that high plasticizer concentrations, notably in industrial and urban areas, often exceed recommended environmental limits, posing risks to ecological integrity and human health through bioaccumulation. Bioaccumulation of these compounds in soil and water could negatively affect the microbial communities, nutrient cycling, and could destabilize the overall ecological integrity. Concerns about their direct uptake by plants and potential risks to human health and food safety are highlighted in this study due to the high concentrations exceeding the threshold values. The review evaluates current treatment technologies, including metal-organic frameworks, electrochemical systems, multi-walled carbon nanotubes, and microbial degradation, noting their potential and challenges related to cost and energy consumption. It underscores the need for improved detection protocols, cost-effective treatments, stricter regulations, public awareness, and collaborative research to mitigate the adverse impacts of plasticizers on ecosystems and human health.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Madushika Sewwandi
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Kalani Imalka Perera
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | | | - Dinusha L Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- The Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Dhar R, Basu S, Bhattacharyya M, Acharya D, Dutta TK. Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products. Microb Biotechnol 2024; 17:e70055. [PMID: 39548699 PMCID: PMC11568242 DOI: 10.1111/1751-7915.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Phthalic acid esters (PAEs), the pervasive and ubiquitous endocrine-disrupting chemicals of environmental concern, generated annually on a million-ton scale, are primarily employed as plasticisers in the production of a variety of plastic products and as additives in a large number of commercial supplies. The increased awareness of various adverse effects on the ecosystem and human health including reproductive and developmental disorders has led to a striking increase in research interest aimed at managing these man-made oestrogenic chemicals. In these circumstances, microbial metabolism appeared as the major realistic process to neutralise the toxic burdens of PAEs in an ecologically accepted manner. Among a wide variety of microbial species capable of degrading/transforming PAEs reported so far, bacteria-mediated degradation has been studied most extensively. The main purpose of this review is to provide current knowledge of metabolic imprints of microbial degradation/transformation of PAEs, a co-contaminant of plastic pollution. In addition, this communication illustrates the recent advancement of the structure-functional aspects of the key metabolic enzyme phthalate hydrolase, their inducible regulation of gene expression and evolutionary relatedness, besides prioritising future research needs to facilitate the development of new insights into the bioremediation of PAE in the environment.
Collapse
Affiliation(s)
- Rinita Dhar
- Department of MicrobiologyBose InstituteKolkataIndia
| | - Suman Basu
- Department of MicrobiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
3
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
4
|
Dhar R, Basu S, Bhattacharyya M, Dutta TK. Evaluation of distinct molecular architectures and coordinated regulation of the catabolic pathways of oestrogenic dioctyl phthalate isomers in Gordonia sp. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001353. [PMID: 37384374 PMCID: PMC10333787 DOI: 10.1099/mic.0.001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Bacterial strain GONU, belonging to the genus Gordonia, was isolated from a municipal waste-contaminated soil sample and was capable of utilizing an array of endocrine-disrupting phthalate diesters, including di-n-octyl phthalate (DnOP) and its isomer di(2-ethylhexyl) phthalate (DEHP), as the sole carbon and energy sources. The biochemical pathways of the degradation of DnOP and DEHP were evaluated in strain GONU by using a combination of various chromatographic, spectrometric and enzymatic analyses. Further, the upregulation of three different esterases (estG2, estG3 and estG5), a phthalic acid (PA)-metabolizing pht operon and a protocatechuic acid (PCA)-metabolizing pca operon were revealed based on de novo whole genome sequence information and substrate-induced protein profiling by LC-ESI-MS/MS analysis followed by differential gene expression by real-time PCR. Subsequently, functional characterization of the differentially upregulated esterases on the inducible hydrolytic metabolism of DnOP and DEHP revealed that EstG5 is involved in the hydrolysis of DnOP to PA, whereas EstG2 and EstG3 are involved in the metabolism of DEHP to PA. Finally, gene knockout experiments further validated the role of EstG2 and EstG5, and the present study deciphered the inducible regulation of the specific genes and operons in the assimilation of DOP isomers.
Collapse
Affiliation(s)
- Rinita Dhar
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| | - Suman Basu
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| | - Mousumi Bhattacharyya
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| |
Collapse
|
5
|
Biodegradation of diethyl phthalate and phthalic acid by a new indigenous Pseudomonas putida. Folia Microbiol (Praha) 2023; 68:477-488. [PMID: 36635520 DOI: 10.1007/s12223-022-01022-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/30/2022] [Indexed: 01/14/2023]
Abstract
Diethyl phthalate (DEP) is one of the extensively used plasticizers which has been considered a priority hazardous pollutant due to its carcinogenic, endocrine disrupter, and multi-toxic effects on humans. The identification of DEP in different parts of the ecosphere has increased the global community's attention to the elimination of this pollutant in a bio-eco-friendly way. In this research, a novel aerobic bacterial strain nominates as ShA (GenBank accession number: MN298858) capable of consuming DEP as carbon and energy sources, was isolated from the upper phase (0-10 cm) of Anzali international wetland sediments by enrichment culture method. Morphological characteristics and 16S rRNA gene sequence analysis demonstrated that strain ShA belonged to Pseudomonas putida. The substrate utilization test demonstrated that strain ShA was able to grow in mineral salt medium containing dimethyl phthalate (DMP) and phthalic acid (PA) isomers including terephthalic and isophthalic acid. Degradation assay showed strain ShA completely degraded 200 mg/L DEP within 22 h (pH 7.0, 30 °C). Surprisingly, PA as the main intermediate of DEP biodegradation was identified by GC-FID. Moreover, the rapid degradation of 2000 mg/L PA to CO2 and H2O was viewed in 22 h by strain ShA. The possible route of DEP degradation was DEP directly to PA and then PA consumption for growth. This study obtained results that provide a great contribution to applying strain ShA in the biodegradation of low molecular weight of PAEs and PA isomers in natural ecosystems. This is the first report of a P. putida strain able to degrade DEP and PA.
Collapse
|
6
|
Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms 2022; 10:microorganisms10020261. [PMID: 35208716 PMCID: PMC8874626 DOI: 10.3390/microorganisms10020261] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Soil pollution is one of the most serious environmental problems globally due to the weak self-purification ability, long degradation time, and high cost of cleaning soil pollution. The pollutants in the soil can be transported into the human body through water or dust, causing adverse effects on human health. The latest research has shown that the clean-up of soil pollutants through microbial consortium is a very promising method. This review provides an in-depth discussion on the efficient removal, bio-adsorption, or carbonated precipitation of organic and inorganic pollutants by the microbial consortium, including PAHs, BPS, BPF, crude oil, pyrene, DBP, DOP, TPHP, PHs, butane, DON, TC, Mn, and Cd. In view of the good degradation ability of the consortium compared to single strains, six different synergistic mechanisms and corresponding microorganisms are summarized. The microbial consortium obtains such activities through enhancing synergistic degradation, reducing the accumulation of intermediate products, generating the crude enzyme, and self-regulating, etc. Furthermore, the degradation efficiency of pollutants can be greatly improved by adding chemical materials such as the surfactants Tween 20, Tween 80, and SDS. This review provides insightful information regarding the application of microbial consortia for soil pollutant removal.
Collapse
|