1
|
Zheng T, Hou J, Wu T, Jin H, Dai Y, Xu J, Yang K, Lin D. Ferric Oxide Nanomaterials and Plant-Rhizobacteria Symbionts Cogenerate Iron Plaque for Removing Highly Chlorinated Contaminants in Dryland Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11063-11073. [PMID: 38869036 DOI: 10.1021/acs.est.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rhizosphere iron plaques derived from Fe-based nanomaterials (NMs) are a promising tool for sustainable agriculture. However, the requirement for flooded conditions to generate iron plaque limits the scope of the NM application. In this study, we achieved in situ Fenton oxidation of a highly chlorinated persistent organic pollutant (2,2',4,5,5'-pentachlorobiphenyl, PCB101) through iron plaque mediated by the interaction between α-Fe2O3 NMs and plant-rhizobacteria symbionts under dryland conditions. Mechanistically, the coexistence of α-Fe2O3 NMs and Pseudomonas chlororaphis JD37 stimulated alfalfa roots to secrete acidic and reductive agents as well as H2O2, which together mediated the rhizosphere Fenton reaction and converted α-Fe2O3 NMs into iron plaque rich in Fe(II)-silicate. Further verifications reproduced the Fenton reaction in vitro using α-Fe2O3 NMs and rhizosphere compounds, confirming the critical role of •OH in the oxidative degradation of PCB101. Significant reductions in PCB101 content by 18.6%, 42.9%, and 23.2% were respectively found in stem, leaf, and soil after a 120-d treatment, proving the effectiveness of this NMs-plant-rhizobacteria technique for simultaneously safe crop production and soil remediation. These findings can help expand the potential applications of nanobio interaction and its mediated iron plaque generation for both agricultural practice and soil remediation.
Collapse
Affiliation(s)
- Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
2
|
Yuan Y, Chen S, Yao B, Chen A, Peng L, Luo S, Zhou Y. Fe 3+-cysteine enhanced persulfate fenton-like process for quinclorac degradation: A wide pH tolerance and reaction mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115447. [PMID: 36758919 DOI: 10.1016/j.envres.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
A green, high-efficiency, and wide pH tolerance water remediation process has been urgently acquired for the increasingly exacerbating contaminated water. In this study, a Fe3+/persulfate (Fe3+/PS) system was employed and enhanced with a green natural ligand cysteine (Cys) for the degradation of quinclorac (QNC). The introduction of Cys into the Fe3+/PS system widened the effective pH range to 9 with a superior removal rate for QNC. The mechanism revealed that the Fe3+/Cys/PS system can enhance the ability of degrading QNC by accelerating the Fe3+/Fe2+ redox cycle, maintaining Fe2+ concentration and thereby generating more HO• and SO4•-. The impact factors (i.e., pH, concentrations of PS, Fe3+ and Cys) were optimized as well. This work provides a promising strategy with high catalytic activity and wide pH tolerance for organic contaminated water remediation.
Collapse
Affiliation(s)
- Yawen Yuan
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Shutong Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Peng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Indira P, Ho TT, Ahalya N, Sathish T, Saravanan R, Rajasimman M, Sudhakar T. Magnetic porous Ag 2O/Chitin nanostructure adsorbent for eco-friendly effective disposing azo dyes. ENVIRONMENTAL RESEARCH 2023; 218:114824. [PMID: 36455635 DOI: 10.1016/j.envres.2022.114824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Water treatment is as much important as it is to satisfying 11 worldwide sustainable development goals out of 17. The removal of Azo is much important as they are toxic and their existence in water, air and food can easily affect humans by triggering allergies, forming tumours etc. Azo contained Dyes Production was banned in many countries. This research aims to synthesize composite Nanorods and Nanospheres and characterize and test to remove Azo dyes from the wastewater. This research used a previously reported method to rapidly synthesize chitin magnetite nanocomposites (ChM) by co-precipitation while irradiating with ultrasound (US). Detailed structural characterization of ChM revealed a crystalline phase analogous to magnetite and spherical morphologies; extending the reaction time to 8 min yielded a "nanorod" type morphology. Both the morphologies displayed a nanoscale limit with particles averaging between 5 and 30 nm in size, resulting the superparamagnetic performance and saturation magnetization values between 45 and 58 emu/g. The nitrogen adsorption-desorption isotherms showed that the surface modification of ChMs resulted in a rise of specific surface area and pore size. Anionic azo dyes (methyl orange (MO) and reactive black 5 (RB5)) adsorption on the surface of nanocomposites was also demonstrated to be pH-dependent, with the reaction favoured for surface-modified samples at pH 4 and unmodified samples at pH 8. Adsorption capacity studies showed that molecule size effect and electrostatic attraction were two distinct adsorption processes for unmodified and modified ChMs. Chitin Magnetite nanoparticles appear to be a substitute for traditional anionic dye adsorbents. Additionally, the two key materials sources, chitin, and magnetite are inexpensive and easily accessible.
Collapse
Affiliation(s)
- P Indira
- Department of Physics, Sethu Institute of Technology, Virudhunagar, 626115, Tamil Nadu, India
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| | - N Ahalya
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, 560054, India
| | - T Sathish
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India.
| | - R Saravanan
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| | - T Sudhakar
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
4
|
Lima JPP, Tabelini CHB, Aguiar A. A Review of Gallic Acid-Mediated Fenton Processes for Degrading Emerging Pollutants and Dyes. Molecules 2023; 28:molecules28031166. [PMID: 36770833 PMCID: PMC9921589 DOI: 10.3390/molecules28031166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Diverse reducing mediators have often been used to increase the degradation of emerging pollutants (EPs) and dyes through the Fenton reaction (Fe2+ + H2O2 → Fe3+ + HO● + HO-). Adding reductants can minimize the accumulation of Fe3+ in a solution, leading to accelerated Fe2+ regeneration and the enhanced generation of reactive oxygen species, such as the HO● radical. The present study consisted in reviewing the effects of gallic acid (GA), a plant-extracted reductant, on the Fenton-based oxidation of several EPs and dyes. It was verified that the pro-oxidant effect of GA was not only reported for soluble iron salts as a catalyst (homogeneous Fenton), but also iron-containing solid materials (heterogeneous Fenton). The most common molar proportion verified in the studies was catalyst:oxidant:GA equal to 1:10-20:1. This shows that the required amount of both catalyst and GA is quite low in comparison with the oxidant, which is generally H2O2. Interestingly, GA has proven to be an effective mediator at pH values well above the ideal range of 2.5-3.0 for Fenton processes. This allows treatments to be carried out at the natural pH of the wastewater. The use of plant extracts or wood barks containing GA and other reductants is suggested to make GA-mediated Fenton processes easier to apply for treating real wastewater.
Collapse
|
5
|
Activation of Peracetic Acid with CuFe2O4 for Rhodamine B Degradation: Activation by Cu and the Contribution of Acetylperoxyl Radicals. Molecules 2022; 27:molecules27196385. [PMID: 36234920 PMCID: PMC9571141 DOI: 10.3390/molecules27196385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation efficiency. In this study, CuFe2O4 was successfully used to activate peracetic acid (PAA) to remove Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system. The addition of 2,4-hexadiene (2,4-HD) and Methanol (MeOH) significantly inhibited the degradation efficiency of Rhodamine B. The ≡Cu2+/≡Cu+ redox cycle dominated PAA activation, thereby producing organic radicals (R-O˙) including CH3C(O)O˙ and CH3C(O)OO˙, which accounted for the degradation of Rhodamine B. Increasing either the concentration of CuFe2O4 (0–100 mg/L) or PAA (10–100 mg/L) promoted the removal efficiency of this potent system. In addition, weakly acid to weakly alkali pH conditions (6–8) were suitable for pollutant removal. The addition of Humid acid (HA), HCO3−, and a small amount of Cl− (10–100 mmol·L−1) slightly inhibited the degradation of Rhodamine B. However, degradation was accelerated by the inclusion of high concentrations (200 mmol·L−1) of Cl−. After four iterations of catalyst recycling, the degradation efficiency remained stable and no additional functional group characteristic peaks were observed. Taking into consideration the reaction conditions, interfering substances, system stability, and pollutant-removal efficiency, the CuFe2O4/PAA system demonstrated great potential for the degradation of Rhodamine B.
Collapse
|
6
|
Tabelini CHB, Lima JPP, Aguiar A. Gallic acid influence on azo dyes oxidation by Fenton processes. ENVIRONMENTAL TECHNOLOGY 2022; 43:3390-3400. [PMID: 33890835 DOI: 10.1080/09593330.2021.1921855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/19/2021] [Indexed: 05/27/2023]
Abstract
The present work consisted in evaluating the effect of a natural plant reducer, gallic acid (GA), on the discolouration/oxidation of two azo dyes by Fenton processes (Fe3+/H2O2 and Fe2+/H2O2). A kinetic study was performed to better interpret the discolouration data at different temperatures. The 1st-order kinetic model presented the best fit for the experimental data of methyl orange discolouration, while the 2nd-order was better for chromotrope 2R. Due to the addition of GA and the temperature rise, there were increases in discolouration and in the reaction rate constant values. As a highlight, it was possible to verify the reduction of the apparent activation energy (Ea) due to the presence of GA. For example, Ea for discolouring methyl orange corresponded to 81.5 and 53.6 kJ.mol-1 by Fe2+/H2O2 and Fe2+/H2O2/GA, respectively. Thus, it can be inferred that the GA reduces the energy barrier to increase the oxidation of dyes by Fenton processes.
Collapse
Affiliation(s)
| | | | - André Aguiar
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Brazil
| |
Collapse
|
7
|
Experimental and theoretical investigation of a homogeneous Fenton process for the degradation of an azo dye in batch reactor. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01979-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Yang F, Zhou L, Dong X, Zhang W, Gao S, Wang X, Li L, Yu C, Wang Q, Yuan A, Chen J. Visible-Light-Responsive Nanofibrous α-Fe 2O 3 Integrated FeOx Cluster-Templated Siliceous Microsheets for Rapid Catalytic Phenol Removal and Enhanced Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19803-19815. [PMID: 33887908 DOI: 10.1021/acsami.1c04123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visible-light-driven environmental contaminants control using 2D photocatalytic nanomaterials with an unconfined reaction-diffusion path is advantageous for public health. Here, cost-effective siliceous composite microsheets (FeSiO-MS) combined with two distinct refined α-Fe2O3 nanospecies as photofunctional catalysts were constructed via a one-pot synthesis approach. Through precise control of Fe2+ precursor addition, specially configured α-Fe2O3 nanofibers combined with FeOx cluster-functionalized siliceous microsheets of ∼15 nm gradually evolved from the iron oxide-bearing molecular sieve, endowing a superior light-response characteristic of the formed nanocomposite. The catalytic experiment along with the ESR study demonstrated that the produced FeSiO-MS showed reinforced photo-Fenton reactivity, which was effective for rapid phenol degradation under visible light radiation. Moreover, the phenol removal process was found to be regulated by the specially configured types and concentrations of iron oxides. Notably, the obtained composites exhibited a considerable visible-light-induced bactericidal effect against E. coli. The constructed FeSiO-MS nanocomposites as integrated and eco-friendly photocatalysts exhibit enormous potentials for environmental and hygienic application.
Collapse
Affiliation(s)
- Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Liuzhu Zhou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Xuexue Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Wanyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Shuying Gao
- College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, PR China
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Lulu Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Qian Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|