1
|
Olgiati E, Violante IR, Xu S, Sinclair TG, Li LM, Crow JN, Kapsetaki ME, Calvo R, Li K, Nayar M, Grossman N, Patel MC, Wise RJS, Malhotra PA. Targeted non-invasive brain stimulation boosts attention and modulates contralesional brain networks following right hemisphere stroke. Neuroimage Clin 2024; 42:103599. [PMID: 38608376 PMCID: PMC11019269 DOI: 10.1016/j.nicl.2024.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Right hemisphere stroke patients frequently present with a combination of lateralised and non-lateralised attentional deficits characteristic of the neglect syndrome. Attentional deficits are associated with poor functional outcome and are challenging to treat, with non-lateralised deficits often persisting into the chronic stage and representing a common complaint among patients and families. In this study, we investigated the effects of non-invasive brain stimulation on non-lateralised attentional deficits in right-hemispheric stroke. In a randomised double-blind sham-controlled crossover study, twenty-two patients received real and sham transcranial Direct Current Stimulation (tDCS) whilst performing a non-lateralised attentional task. A high definition tDCS montage guided by stimulation modelling was employed to maximise current delivery over the right dorsolateral prefrontal cortex, a key node in the vigilance network. In a parallel study, we examined brain network response to this tDCS montage by carrying out concurrent fMRI during stimulation in healthy participants and patients. At the group level, stimulation improved target detection in patients, reducing overall error rate when compared with sham stimulation. TDCS boosted performance throughout the duration of the task, with its effects briefly outlasting stimulation cessation. Exploratory lesion analysis indicated that response to stimulation was related to lesion location rather than volume. In particular, reduced stimulation response was associated with damage to the thalamus and postcentral gyrus. Concurrent stimulation-fMRI revealed that tDCS did not affect local connectivity but influenced functional connectivity within large-scale networks in the contralesional hemisphere. This combined behavioural and functional imaging approach shows that brain stimulation targeted to surviving tissue in the ipsilesional hemisphere improves non-lateralised attentional deficits following stroke. This effect may be exerted via contralesional network effects.
Collapse
Affiliation(s)
- Elena Olgiati
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK.
| | - Ines R Violante
- Imperial College London, Department of Brain Sciences, UK; University of Surrey, Department of Psychology, UK
| | - Shuler Xu
- Imperial College London, Department of Brain Sciences, UK; University College London, UK
| | | | - Lucia M Li
- Imperial College London, Department of Brain Sciences, UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Jennifer N Crow
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK
| | | | - Roberta Calvo
- UTHealth, Department of Neurobiology and Anatomy, McGovern Medical School, Houston, US
| | - Korina Li
- Imperial College London, Department of Brain Sciences, UK; University College London, UK
| | | | - Nir Grossman
- Imperial College London, Department of Brain Sciences, UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Maneesh C Patel
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK
| | - Richard J S Wise
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK
| | - Paresh A Malhotra
- Imperial College London, Department of Brain Sciences, UK; Imperial College Healthcare NHS Trust, UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| |
Collapse
|
2
|
Tang WK, Lu H, Leung TWH, Kim JS, Fong KNK. Study protocol of a double-blind randomized control trial of transcranial direct current stimulation in post-stroke fatigue. Front Neurol 2024; 14:1297429. [PMID: 38348114 PMCID: PMC10860680 DOI: 10.3389/fneur.2023.1297429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Rationale Post-stroke fatigue (PSF) is a frequent problem in stroke survivors and often hinders their rehabilitation. PSF is difficult to treat, and pharmacological therapy is often ineffective. Transcranial direct current stimulation (tDCS) can modulate motor, sensory, cognitive and behavioral responses, as it alters neuronal activity by delivering a small amount of current via the scalp to the cortex, resulting in prolonged alterations to brain function. tDCS has been studied for the treatment of fatigue associated with other neurological diseases, namely, multiple sclerosis, Parkinson's disease and post-polio syndrome. Aims This proposed project will examine the effect of tDCS on PSF. Sample size estimates We will recruit 156 participants aged 18 to 80 with chronic stroke and allocate them equally to two groups (i.e., n = 78 per group). Methods and design This proposed project will be a double-blind randomized control trial. The participants will be randomly divided into two groups. The control group will receive sham tDCS, and the treatment group will receive active tDCS. The latter treatment will involve application of a constant 2-mA current via one 5 × 5-cm anodal electrode positioned on the scalp over the C3 or C4 positions (motor cortex) of the lesioned hemisphere and one cathodal electrode positioned at the ipsilateral shoulder in two 20-min sessions per day for 5 days. The period of follow-up will be 4 weeks. Study outcomes The primary outcome measure will be a change in fatigue severity, as measured using the modified fatigue impact scale (MFIS). The participants' scores on the MFIS (total score and physical, cognitive and psychosocial subscores) will be collected before treatment (T0), after 10 treatment sessions, i.e., 1 day after the fifth treatment day (T1), and 1 week (T2), 2 weeks (T3) and 4 weeks (T4) thereafter. Both per-protocol analysis and intention-to-treat analysis will be performed. Discussion This proposed project will provide proof-of-concept, i.e., demonstrate the benefits of tDCS for the treatment of PSF. The beneficiaries are the subjects participated in the study. This will stimulate further research to optimize tDCS parameters for the treatment of PSF. Clinical trial registration www.Chictr.org.cn, identifier: ChiCTR2100052515.
Collapse
Affiliation(s)
- Wai Kwong Tang
- Department of Psychiatry, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hanna Lu
- Department of Psychiatry, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thomas Wai Hong Leung
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jong S. Kim
- Department of Neurology, Kangneung Asan Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Kenneth Nai Kuen Fong
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
3
|
Joshi SD, Ruffini G, Nuttall HE, Watson DG, Braithwaite JJ. Optimised Multi-Channel Transcranial Direct Current Stimulation (MtDCS) Reveals Differential Involvement of the Right-Ventrolateral Prefrontal Cortex (rVLPFC) and Insular Complex in those Predisposed to Aberrant Experiences. Conscious Cogn 2024; 117:103610. [PMID: 38056338 DOI: 10.1016/j.concog.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.
Collapse
|
4
|
Huang P, Lin L, Zhang J, Cheng Y, Pan X. Efficacy analysis of three brain stimulation techniques for Alzheimer's disease: a meta-analysis of repeated transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Expert Rev Neurother 2024; 24:117-127. [PMID: 38088070 DOI: 10.1080/14737175.2023.2293225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION This systematic review and meta-analysis study investigates the efficacy of repeated transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) using neuropsychological assessments as a potential treatment option for Alzheimer's disease (AD). METHODS PubMed, Embase, and the Cochrane Library were searched for studies on rTMS, tDCS, and DBS for the treatment of patients with AD between April 1970 and October 2022. The mini-Mental State Examination (MMSE) and AD Assessment Scale - Cognitive Subscale (ADAS-Cog) were adopted as the efficacy index. RESULTS The analysis yielded 17 eligible studies. rTMS greatly improved the cognition of patients with AD (immediate post-treatment WMD of MMSE score: 2.06, p < 0.00001; short-term follow-up WMD of MMSE score: 2.12, p = 0.006; WMD of ADAS-Cog score in single-arm studies: -4.97, p = 0.001). DBS did not reverse the progression of cognitive decline (WMD of ADAS-Cog score in single-arm studies: 7.40, p < 0.00001). Furthermore, tDCS demonstrated no significant efficacy in improving cognition in random clinical trials or single-arm studies. CONCLUSION rTMS is a promising non-medicinal alternative for cognitive improvement inpatients with AD.
Collapse
Affiliation(s)
- Peilin Huang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Lin Lin
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Center for Geriatrics, Hainan General Hospital, Hainan, China
| | - Yingzhe Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Borgomaneri S, Zanon M, Di Luzio P, Cataneo A, Arcara G, Romei V, Tamietto M, Avenanti A. Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions. Nat Commun 2023; 14:5720. [PMID: 37737239 PMCID: PMC10517146 DOI: 10.1038/s41467-023-41058-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
The posterior superior temporal sulcus (pSTS) is a critical node in a network specialized for perceiving emotional facial expressions that is reciprocally connected with early visual cortices (V1/V2). Current models of perceptual decision-making increasingly assign relevance to recursive processing for visual recognition. However, it is unknown whether inducing plasticity into reentrant connections from pSTS to V1/V2 impacts emotion perception. Using a combination of electrophysiological and neurostimulation methods, we demonstrate that strengthening the connectivity from pSTS to V1/V2 selectively increases the ability to perceive facial expressions associated with emotions. This behavior is associated with increased electrophysiological activity in both these brain regions, particularly in V1/V2, and depends on specific temporal parameters of stimulation that follow Hebbian principles. Therefore, we provide evidence that pSTS-to-V1/V2 back-projections are instrumental to perception of emotion from facial stimuli and functionally malleable via manipulation of associative plasticity.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
| | - Marco Zanon
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Paolo Di Luzio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | - Antonio Cataneo
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | | | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, 28015, Spain
| | - Marco Tamietto
- Dipartimento di Psicologia, Università degli Studi di Torino, Torino, Italy.
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
6
|
Tan B, Liao Q, Xu P, Zhang J, Jin Z, Li L. Selective Enhancement of Frontal-Posterior Functional Connectivity by Anodal tDCS Over the Right Posterior Parietal Cortex During Temporal Attention. IEEE J Biomed Health Inform 2023; 27:3666-3676. [PMID: 37071522 DOI: 10.1109/jbhi.2023.3267063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Temporal attention is the concentration of perceptual resources at a specific point in time, which can help individuals get prepared to improve their behavioral performance, whereas the neural mechanism of temporal attention is yet to be well understood. In this study, behavioral measurement, transcranial direct current stimulation (tDCS), and electroencephalography (EEG) were combined to explore the effects of task performance and whole-brain functional connectivities (FCs) during temporal attention with different time intervals after applying anodal and sham tDCS over the right posterior parietal cortex (PPC). Although anodal tDCS, compared with sham tDCS, did not induce a significant effect on the task performance of temporal attention, it could effectively increase long-range FCs of gamma rhythms between the right frontal and parieto-occipital regions during temporal attention, and most of the increased FCs were in the right hemisphere with certain hemispheric laterality. Meanwhile, there were intensively more increased long-range FCs at short-time intervals than those at long-time intervals, and the increased FCs at neutral long-time intervals were the least and mainly inter-hemispheric FCs. The current study not only further enriched the evidence on the key role of the right PPC during temporal attention but also proved that anodal tDCS could indeed enhance whole-brain functional connectivity architecture involving intra- and inter-hemispheric long-range FCs, which would provide ideas and references for subsequent studies of temporal attention as well as attention deficit disorder.
Collapse
|
7
|
Nandi T, Johnstone A, Martin E, Zich C, Cooper R, Bestmann S, Bergmann TO, Treeby B, Stagg CJ. Ramped V1 transcranial ultrasonic stimulation modulates but does not evoke visual evoked potentials. Brain Stimul 2023; 16:553-555. [PMID: 36754118 DOI: 10.1016/j.brs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Affiliation(s)
- Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK; Neuroimaging Center (NIC), Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Ainslie Johnstone
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK; Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Robert Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Sven Bestmann
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany
| | - Bradley Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Meidian AC, Wahyuddin, Amimoto K. Rehabilitation interventions of unilateral spatial neglect based on the functional outcome measure: A systematic review and meta-analysis. Neuropsychol Rehabil 2022; 32:764-793. [PMID: 33106080 DOI: 10.1080/09602011.2020.1831554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
ABSTRACTThis review aimed to examine the bottom-up and top-down rehabilitation intervention effectiveness based on the functional outcome measure as immediate effect and long-term effect for unilateral spatial neglect conditions. The RCT studies were collected by searching in three databases J-Stage, PubMed, and PEDro from 2008 through 2018. The studies which used the following instruments: BI, CBS, FMA, and FIM, as the functional outcome with the PEDro score of six and above, were eligible for inclusion. A total of 492 participants in 13 studies included from 291 studies initially identified. The meta-analysis for overall ES revealed that BI and CBS had a significant mean of SMD = 0.65 (95% CI, 0.23-1.07; p = 0.003; I2 = 65%), and SMD = -0.23 (95% CI, -0.45 to -0.01; p = 0.04; I2 = 35%) respectively, while FMA and FIM had an insignificant mean of SMD = 0.14 (95% CI, -0.08-0.37; p = 0.22; I2 = 0%), and SMD = -0.22 (95% CI, -0.69-0.25; p = 0.37; I2 = 0%) respectively. Based on the results, although indicated the heterogeneity representation across studies, it showed that the top-down intervention approach of high-frequency rTMS was more effective in enhancing the functional abilities and ADL of unilateral spatial neglect patients on the immediate effects but not necessarily in the long-term effects.
Collapse
Affiliation(s)
- Abdul Chalik Meidian
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Faculty of Physiotherapy, Esa Unggul University, Jakarta, Indonesia
| | - Wahyuddin
- Faculty of Physiotherapy, Esa Unggul University, Jakarta, Indonesia
| | - Kazu Amimoto
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
10
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
11
|
Kranou-Economidou D, Kambanaros M. Transcranial Magnetic Stimulation and Working Memory Training to Address Language Impairments in Aphasia: A Case Study. Behav Neurol 2021; 2021:9164543. [PMID: 34868389 PMCID: PMC8639281 DOI: 10.1155/2021/9164543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traditionally, people with aphasia (PWA) are treated with impairment-based language therapy to improve receptive and expressive language skills. In addition to language deficits, PWA are often affected by some level of working memory (WM) impairments. Both language and working memory impairments combined have a negative impact on PWA's quality of life. The aim of this study was to investigate whether the application of intermittent theta-burst stimulation (iTBS) combined with computerized WM training will result in near-ransfer effects (i.e., trained WM) and far-transfer effects (i.e., untrained language tasks) and have a positive effect on the quality of life of PWA. METHODS The participant was a 63-year-old Greek-Cypriot male who presented with mild receptive aphasia and short-term memory difficulties. Treatment was carried out using a multiple baseline (MB) design composed of a pretherapy or baseline testing phase, a therapy phase, and a posttherapy/follow-up phase. The treatment program involved iTBS application to the left dorsolateral prefrontal cortex (DLPFC), an area responsible for WM, for 10 consecutive sessions. The participant received a 3-minute iTBS application followed by 30-minute computer-assisted WM training. Outcome measures included a WM screening test, a standardized aphasia test, a nonverbal intelligence test, story-telling speech samples, a procedural discourse task, and a questionnaire addressing quality of life. These measures were performed three times before the treatment, immediately upon completion of the treatment, and once during follow-up testing at 3 months posttreatment. RESULTS We found a beneficial effect of iTBS and WM training on naming, reading, WM, reasoning, narrative, communication efficiency, and quality of life (QoL). Implications for Rehabilitation. Noninvasive brain stimulation combined with computerized WM training may be used in aphasia rehabilitation to improve WM and generalize to language improvement.
Collapse
Affiliation(s)
| | - Maria Kambanaros
- Department of Rehabilitation Sciences, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
12
|
Miraglia F, Vecchio F, Pellicciari MC, Cespon J, Rossini PM. Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex. Int J Neural Syst 2021; 32:2150056. [PMID: 34651550 DOI: 10.1142/s0129065721500568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy.,eCampus University, Novedrate (Como), Italy
| | | | - Jesus Cespon
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| |
Collapse
|
13
|
Jung J, Lambon Ralph MA. Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: Frequency- and task-specific effects. Neuroimage 2021; 234:117959. [PMID: 33744456 PMCID: PMC8204263 DOI: 10.1016/j.neuroimage.2021.117959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulating, converging evidence indicates that the anterior temporal lobe (ATL) appears to be the transmodal hub for semantic representation. A series of repetitive transcranial magnetic stimulation (rTMS) investigations utilizing the ‘virtual lesion’ approach have established the brain-behavioural relationship between the ATL and semantic processing by demonstrating that inhibitory rTMS over the ATL induced impairments in semantic performance in healthy individuals. However, a growing body of rTMS studies suggest that rTMS might also be a tool for cognitive enhancement and rehabilitation, though there has been no previous exploration in semantic cognition. Here, we explored a potential role of rTMS in enhancing and inhibiting semantic performance with contrastive rTMS protocols (1 Hz vs. 20 Hz) by controlling practice effects. Twenty-one healthy participants were recruited and performed an object category judgement task and a pattern matching task serving as a control task before and after the stimulation over the ATL (1 Hz, 20 Hz, and sham). A task familiarization procedure was performed prior to the experiment in order to establish a ‘stable baseline’ prior to stimulation and thus minimize practice effect. Our results demonstrated that it is possible to modulate semantic performance positively or negatively depending on the ATL stimulation frequency: 20 Hz rTMS was optimal for facilitating cortical processing (faster RT in a semantic task) contrasting with diminished semantic performance after 1 Hz rTMS. In addition to cementing the importance of the ATL to semantic representation, our findings suggest that 20 Hz rTMS leads to semantic enhancement in healthy individuals and potentially could be used for patients with semantic impairments as a therapeutic tool.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Science Unit (CBU), University of Cambridge, Cambridge CB2 7EF, UK.
| |
Collapse
|
14
|
Yang CC, Mauer L, Völlm B, Khalifa N. The Effects of Non-invasive Brain Stimulation on Impulsivity in People with Mental Disorders: a Systematic Review and Explanatory Meta-Analysis. Neuropsychol Rev 2020; 30:499-520. [PMID: 33009976 DOI: 10.1007/s11065-020-09456-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/20/2020] [Indexed: 01/03/2023]
Abstract
Impulsivity is a multi-faceted construct that underpins various mental health disorders. Impulsive behavior exacts a substantial health and economic burden, hence the importance of developing specific interventions to target impulsivity. Two forms of non-invasive brain stimulation, namely transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), have been used to modulate impulsivity. To date, no reviews have systematically examined their effects on modulating impulsivity in people with mental health disorders. We conducted a systematic review and meta-analysis of the literature from AMED, Embase, Medline and PsycINFO databases on the use of rTMS and tDCS to modulate impulsivity in people with mental health disorders. Results from 11 tDCS and 18 rTMS studies indicate that tDCS has a significant, albeit small, effect on modulating impulsivity (g = 0.29; 95% CI, 0.09 to 0.48; p = .004) whereas rTMS has no significant effect on impulsivity (g = -0.08; 95% Cl, -0.35 to 0.19; p = .550). Subgroup analyses identified the key parameters required to enhance the effects of tDCS and rTMS on impulsivity. Gender and stimulation intensity acted as significant moderators for effects of rTMS on impulsivity. There is insufficient evidence to support the use of tDCS or rTMS in clinical practice to reduce impulsivity in people with mental health disorders. The use of standardized non-invasive brain stimulation protocols and outcome measures in patients with the same diagnosis is advised to minimize methodological heterogeneity.
Collapse
Affiliation(s)
- Cheng-Chang Yang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, No 291 ZhongZheng Road, Zhonghe District, New Taipei City, Taiwan. .,Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Laura Mauer
- Institute of Clinical Psychology and Psychotherapy, Dresden University of Technology, Dresden, Germany
| | - Birgit Völlm
- Klinik und Poliklinik für Forensische Psychiatrie, Universitat Rostock, Rostock, Germany
| | - Najat Khalifa
- Division of Forensic Psychiatry, Department of Psychiatry, School of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
15
|
Enhancing theory of mind in behavioural variant frontotemporal dementia with transcranial direct current stimulation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:1065-1075. [PMID: 29995274 DOI: 10.3758/s13415-018-0622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Behavioural variant frontotemporal dementia (bvFTD) is a form of frontotemporal degeneration characterized by early changes in personality, emotional blunting, and/or loss of empathy. Recent research has highlighted that these features may be at least partially explained by impairments in the theory of mind (ToM; i.e., the ability to understand and predict other people's behaviour by attributing independent mental states to them). The aim of this randomized, double-blind, placebo-controlled study was to test the hypothesis that transcranial direct current stimulation (tDCS) over the medial frontal cortex (MFC) selectively enhances communicative intention processing, a specific ToM ability. Using a single-session online design, we administered a ToM task that measures the ability to represent other people's private and communicative intentions during active or sham tDCS to 16 bvFTD patients. To assess the impact of dementia on performance on the ToM task, we included 16 age-matched healthy volunteers who were asked to perform the entire experimental ToM task. BvFTD is characterized by an impairment in the comprehension of both communicative and private intentions relative to a healthy control group and by a disproportional impairment in communicative intention compared with private intention processing. Significant and selective accuracy improvement in the comprehension of communicative intentions after active stimulation was observed in patients with bvFTD. This is the first study that analyses ToM ability in patients with bvFTD using tDCS stimulation. Our findings could potentially contribute to the development of an effective, noninvasive brain stimulation treatment of ToM impairments in patients with bvFTD.
Collapse
|
16
|
Evidence of top-down modulation of the Brentano illusion but not of the glare effect by transcranial direct current stimulation. Exp Brain Res 2019; 237:2111-2121. [PMID: 31190083 DOI: 10.1007/s00221-019-05577-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been widely used for modulating sensory, motor and cognitive functions, but there are only few attempts to induce and change illusory perception. Visual illusions have been the most traditional and effective way to investigate visual processing through the comparison between physical reality and subjective reports. Here we used tDCS to modulate two different visual illusions, namely the Brentano illusion and the glare effect, with the aim of uncovering the influence of top-down mechanisms on bottom-up visual perception in two experiments. In Experiment 1, to a first group of subjects, real and sham cathodal tDCS (2 mA, 10 min) were applied over the left and right posterior parietal cortices (PPC). In Experiment 2, real and sham cathodal tDCS were applied to the left and right occipital cortices (OC) to a second group of participants. Results showed that tDCS was effective in modulating only the Brentano illusion, but not the glare effect. tDCS increased the Brentano illusion but specifically for the stimulated cortical area (right PPC), illusion direction (leftward), visual hemispace (left), and illusion length (160 mm). These findings suggest the existence of an inhibitory modulation of top-down mechanisms on bottom-up visual processing specifically for the Brentano illusion, but not for the glare effect. The lack of effect of occipital tDCS should consider the possible role of ocular compensation or of the unstimulated hemisphere, which deserves further investigations.
Collapse
|
17
|
Adenzato M, Manenti R, Enrici I, Gobbi E, Brambilla M, Alberici A, Cotelli MS, Padovani A, Borroni B, Cotelli M. Transcranial direct current stimulation enhances theory of mind in Parkinson's disease patients with mild cognitive impairment: a randomized, double-blind, sham-controlled study. Transl Neurodegener 2019; 8:1. [PMID: 30627430 PMCID: PMC6322239 DOI: 10.1186/s40035-018-0141-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background Parkinson’s Disease (PD) with mild cognitive impairment (MCI) (PD-MCI) represents one of the most dreaded complications for patients with PD and is associated with a higher risk of developing dementia. Although transcranial direct current stimulation (tDCS) has been demonstrated to improve motor and non-motor symptoms in PD, to date, no study has investigated the effects of tDCS on Theory of Mind (ToM), i.e., the ability to understand and predict other people’s behaviours, in PD-MCI. Methods In this randomized, double-blind, sham-controlled study, we applied active tDCS over the medial frontal cortex (MFC) to modulate ToM performance in twenty patients with PD-MCI. Twenty matched healthy controls (HC) were also enrolled and were asked to perform the ToM task without receiving tDCS. Results In the patients with PD-MCI, i) ToM performance was worse than that in the HC, ii) ToM abilities were poorer in those with fronto-executive difficulties, and iii) tDCS over the MFC led to significant shortening of latency for ToM tasks. Conclusions We show for the first time that active tDCS over the MFC enhances ToM in patients with PD-MCI, and suggest that non-invasive brain stimulation could be used to ameliorate ToM deficits observed in these patients.
Collapse
Affiliation(s)
- Mauro Adenzato
- 1Department of Psychology, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy
| | - Rosa Manenti
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Ivan Enrici
- 4Department of Philosophy and Educational Sciences, University of Turin, via Gaudenzio Ferrari 9, 10124 Turin, Italy
| | - Elena Gobbi
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Michela Brambilla
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Antonella Alberici
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Sofia Cotelli
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Cotelli
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| |
Collapse
|
18
|
Payne JS, Tainturier MJ. tDCS Facilitation of Picture Naming: Item-Specific, Task General, or Neither? Front Neurosci 2018; 12:549. [PMID: 30147643 PMCID: PMC6095956 DOI: 10.3389/fnins.2018.00549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to clarify the conditions under which anodal tDCS applied to left hemisphere language sites may facilitate picture naming latencies in healthy young adults. We built upon previous studies by directly testing for item-specific and generalized effects of tDCS through manipulation of item-familiarization and through testing for both online and offline effects of stimulation, in the same paradigm. In addition, we tested for the robustness of these effects by comparing two left hemisphere sites critical for lexical retrieval. Twenty-eight healthy young adults completed two testing sessions receiving either anodal (1.5 mA, 20 min) or sham stimulation (1.5 mA, 30 s) in each session. Half of the participants received tDCS over the left inferior frontal region and the other half over the left posterior superior temporal region. All participants were asked to a name a set of pictures and their response latencies were compared at three time points (before, during, and after the end of stimulation). The stimulus set was constructed so that some items were presented at all time points, some before and after stimulation, and some during stimulation only. A parsimonious linear mixed effects model (LMM) revealed robust repetition priming effects as latencies were reliably faster for previously named items in all conditions. However, active tDCS did not produce any additional facilitation in relation to sham, and even led to slower performance in the IFG group when the stimulated items differed from those tested at baseline and post-test. Our findings add to the present debate about the efficacy of single-session tDCS for modulation of lexical retrieval in healthy young adults. We conclude that future research should take a more systematic, step-wise approach to the application of tDCS to the study of language and that more sensitive experimental paradigms, which include a training element, are more adapted to the study of cognitive processes in populations with optimal levels of cortical excitability.
Collapse
Affiliation(s)
- Joshua S Payne
- Bilingual Aphasia Lab, School of Psychology, Bangor University, Bangor, United Kingdom.,Centre for Research on Bilingualism, Bangor University, Bangor, United Kingdom
| | - Marie-Josèphe Tainturier
- Bilingual Aphasia Lab, School of Psychology, Bangor University, Bangor, United Kingdom.,Centre for Research on Bilingualism, Bangor University, Bangor, United Kingdom
| |
Collapse
|
19
|
Convento S, Romano D, Maravita A, Bolognini N. Roles of the right temporo‐parietal and premotor cortices in self‐location and body ownership. Eur J Neurosci 2018; 47:1289-1302. [DOI: 10.1111/ejn.13937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Silvia Convento
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
- Neuroscience DepartmentBaylor College of Medicine Houston Texas
| | - Daniele Romano
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
| | - Angelo Maravita
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
| | - Nadia Bolognini
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
- Laboratory of NeuropsychologyIRCSS Italian Auxological Institute Milan Italy
| |
Collapse
|
20
|
Giustolisi B, Vergallito A, Cecchetto C, Varoli E, Romero Lauro LJ. Anodal transcranial direct current stimulation over left inferior frontal gyrus enhances sentence comprehension. BRAIN AND LANGUAGE 2018; 176:36-41. [PMID: 29175380 DOI: 10.1016/j.bandl.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
We tested the possibility of enhancing natural language comprehension through the application of anodal tDCS (a-tDCS) over the left inferior frontal gyrus, a key region for verbal short-term memory and language comprehension. We designed a between subjects sham- and task-controlled study. During tDCS stimulation, participants performed a sentence to picture matching task in which targets were sentences with different load on short-term memory. Regardless of load on short-term memory, the Anodal group performed significantly better than the Sham group, thus providing evidence that a-tDCS over LIFG enhances natural language comprehension. To our knowledge, we apply for the first time tDCS to boost sentence comprehension. This result is of special interest also from a clinical perspective: applying a-tDCS in patients manifesting problems at the sentence level due to brain damage could enhance the effects of behavioral rehabilitation procedures aimed to improve language comprehension.
Collapse
Affiliation(s)
| | | | - Carlo Cecchetto
- Université de Paris 8 & CNRS - UMR 7023 Structures Formelles du Langage, France; Dipartimento di Psicologia, Università di Milano-Bicocca, Italy
| | - Erica Varoli
- Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Italy
| | | |
Collapse
|
21
|
English MCW, Kitching ES, Maybery MT, Visser TAW. Modulating attentional biases of adults with autistic traits using transcranial direct current stimulation: A pilot study. Autism Res 2017; 11:385-390. [PMID: 29155494 DOI: 10.1002/aur.1895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022]
Abstract
While neurotypical individuals over-attend to the left-side of centrally-presented visual stimuli, this bias is reduced in individuals with autism/high levels of autistic traits. Because this difference is hypothesized to reflect relative reductions in right-hemisphere activation, it follows that increasing right-hemisphere activation should increase leftward bias. We administered transcranial direct current stimulation (tDCS) over the right posterior parietal cortex to individuals with low levels (n = 19) and high levels (n = 19) of autistic traits whilst they completed a greyscales task. Anodal tDCS increased leftward bias for high-trait, but not low-trait, individuals, while cathodal tDCS had no effect. This outcome suggests that typical attentional patterns driven by hemispheric lateralization could potentially be restored following right-hemisphere stimulation in high-trait individuals. Autism Res 2018, 11: 385-390. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Attentional differences between individuals with and without autism may reflect differences in underlying activation of the left and right hemispheres. In this study, we combine an attentional task that reflects relative hemispheric activation with non-invasive cortical stimulation, and show that attentional differences between healthy individuals with low and high levels of autistic-like traits can be reduced. This outcome is encouraging, and suggests that other aspects of attention in autism (e.g., face processing) may stand to benefit from similar stimulation techniques.
Collapse
Affiliation(s)
- Michael C W English
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Emma S Kitching
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Troy A W Visser
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
22
|
Bruno V, Fossataro C, Bolognini N, Zigiotto L, Vallar G, Berti A, Garbarini F. The role of premotor and parietal cortex during monitoring of involuntary movement: A combined TMS and tDCS study. Cortex 2017; 96:83-94. [DOI: 10.1016/j.cortex.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
23
|
Cathodal transcranial direct current stimulation of the extrastriate visual cortex modulates implicit anti-fat bias in male, but not female, participants. Neuroscience 2017; 359:92-104. [DOI: 10.1016/j.neuroscience.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/23/2022]
|
24
|
McConathey EM, White NC, Gervits F, Ash S, Coslett HB, Grossman M, Hamilton RH. Baseline Performance Predicts tDCS-Mediated Improvements in Language Symptoms in Primary Progressive Aphasia. Front Hum Neurosci 2017; 11:347. [PMID: 28713256 PMCID: PMC5492829 DOI: 10.3389/fnhum.2017.00347] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/16/2017] [Indexed: 01/12/2023] Open
Abstract
Primary Progressive Aphasia (PPA) is a neurodegenerative condition characterized by insidious irreversible loss of language abilities. Prior studies suggest that transcranial direct current stimulation (tDCS) directed toward language areas of the brain may help to ameliorate symptoms of PPA. In the present sham-controlled study, we examined whether tDCS could be used to enhance language abilities (e.g., picture naming) in individuals with PPA variants primarily characterized by difficulties with speech production (non-fluent and logopenic). Participants were recruited from the Penn Frontotemporal Dementia Center to receive 10 days of both real and sham tDCS (counter-balanced, full-crossover design; participants were naïve to stimulation condition). A battery of language tests was administered at baseline, immediately post-tDCS (real and sham), and 6 weeks and 12 weeks following stimulation. When we accounted for individuals' baseline performance, our analyses demonstrated a stratification of tDCS effects. Individuals who performed worse at baseline showed tDCS-related improvements in global language performance, grammatical comprehension and semantic processing. Individuals who performed better at baseline showed a slight tDCS-related benefit on our speech repetition metric. Real tDCS may improve language performance in some individuals with PPA. Severity of deficits at baseline may be an important factor in predicting which patients will respond positively to language-targeted tDCS therapies. Clinicaltrials.gov ID: NCT02928848.
Collapse
Affiliation(s)
- Eric M McConathey
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Nicole C White
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Felix Gervits
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Sherry Ash
- Penn Frontotemporal Degeneration CenterPhiladelphia, PA, United States
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States.,Neurology, Perelman School of MedicinePhiladelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration CenterPhiladelphia, PA, United States.,Neurology, Perelman School of MedicinePhiladelphia, PA, United States
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States.,Neurology, Perelman School of MedicinePhiladelphia, PA, United States
| |
Collapse
|
25
|
Teo WP, Hendy AM, Goodwill AM, Loftus AM. Transcranial Alternating Current Stimulation: A Potential Modulator for Pathological Oscillations in Parkinson's Disease? Front Neurol 2017; 8:185. [PMID: 28533762 PMCID: PMC5421145 DOI: 10.3389/fneur.2017.00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, VIC, Australia
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, VIC, Australia
| | - Alicia M Goodwill
- Institute of Health and Ageing, Australian Catholic University, Melbourne, VIC, Australia
| | - Andrea M Loftus
- ParkC, Curtin Neuroscience Laboratory, School of Psychology and Speech Pathology, Curtin University, Perth, WA, Australia
| |
Collapse
|
26
|
Hsu TY, Juan CH, Tseng P. Individual Differences and State-Dependent Responses in Transcranial Direct Current Stimulation. Front Hum Neurosci 2016; 10:643. [PMID: 28066214 PMCID: PMC5174116 DOI: 10.3389/fnhum.2016.00643] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been extensively used to examine whether neural activities can be selectively increased or decreased with manipulations of current polarity. Recently, the field has reevaluated the traditional anodal-increase and cathodal-decrease assumption due to the growing number of mixed findings that report the effects of the opposite directions. Therefore, the directionality of tDCS polarities and how it affects each individual still remain unclear. In this study, we used a visual working memory (VWM) paradigm and systematically manipulated tDCS polarities, types of different independent baseline measures, and task difficulty to investigate how these factors interact to determine the outcome effect of tDCS. We observed that only low-performers, as defined by their no-tDCS corsi block tapping (CBT) performance, persistently showed a decrement in VWM performance after anodal stimulation, whereas no tDCS effect was found when participants were divided by their performance in digit span. In addition, only the optimal level of task difficulty revealed any significant tDCS effect. All these findings were consistent across different blocks, suggesting that the tDCS effect was stable across a short period of time. Lastly, there was a high degree of intra-individual consistency in one’s responsiveness to tDCS, namely that participants who showed positive or negative effect to anodal stimulation are also more likely to show the same direction of effects for cathodal stimulation. Together, these findings imply that tDCS effect is interactive and state dependent: task difficulty and consistent individual differences modulate one’s responsiveness to tDCS, while researchers’ choices of independent behavioral baseline measures can also critically affect how the effect of tDCS is evaluated. These factors together are likely the key contributors to the wide range of “noises” in tDCS effects between individuals, between stimulation protocols, and between different studies in the literature. Future studies using tDCS, and possibly tACS, should take such state-dependent condition in tDCS responsiveness into account.
Collapse
Affiliation(s)
- Tzu-Yu Hsu
- Research Center of Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical UniversityTaipei, Taiwan; Shuang-Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan; Graduate Institute of Health and Biotechnology Law, Taipei Medical UniversityTaipei, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University Taoyuan, Taiwan
| | - Philip Tseng
- Research Center of Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical UniversityTaipei, Taiwan; Shuang-Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
27
|
Fertonani A, Miniussi C. Transcranial Electrical Stimulation: What We Know and Do Not Know About Mechanisms. Neuroscientist 2016; 23:109-123. [PMID: 26873962 PMCID: PMC5405830 DOI: 10.1177/1073858416631966] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, there has been remarkable progress in the understanding and practical use of transcranial electrical stimulation (tES) techniques. Nevertheless, to date, this experimental effort has not been accompanied by substantial reflections on the models and mechanisms that could explain the stimulation effects. Given these premises, the aim of this article is to provide an updated picture of what we know about the theoretical models of tES that have been proposed to date, contextualized in a more specific and unitary framework. We demonstrate that these models can explain the tES behavioral effects as distributed along a continuum from stimulation dependent to network activity dependent. In this framework, we also propose that stochastic resonance is a useful mechanism to explain the general online neuromodulation effects of tES. Moreover, we highlight the aspects that should be considered in future research. We emphasize that tES is not an "easy-to-use" technique; however, it may represent a very fruitful approach if applied within rigorous protocols, with deep knowledge of both the behavioral and cognitive aspects and the more recent advances in the application of stimulation.
Collapse
Affiliation(s)
- Anna Fertonani
- 1 Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Miniussi
- 1 Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,2 Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Marquez J, Conley A, Karayanidis F, Lagopoulos J, Parsons M. Anodal direct current stimulation in the healthy aged: Effects determined by the hemisphere stimulated. Restor Neurol Neurosci 2016; 33:509-19. [PMID: 26409409 PMCID: PMC4923724 DOI: 10.3233/rnn-140490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Research popularity and scope for the application of transcranial direct current stimulation have been steadily increasing yet many fundamental questions remain unanswered. We sought to determine if anodal stimulation of either hemisphere leads to improved performance of the contralateral hand and/or altered function of the ipsilateral hand, or affects movement preparation, in older subjects. Method: In this cross-over, double blind, sham controlled study, 34 healthy aged participants (age range 40– 86) were randomised to receive 20 minutes of stimulation to either the dominant or non-dominant motor cortex. The primary outcome was functional performance of both upper limbs measured by the Jebsen Taylor Test and hand grip strength. Additionally, we measured motor preparation using electrophysiological (EEG) recordings. Results: Anodal stimulation resulted in statistically significantly improved performance of the non-dominant hand (p < 0.01) but did not produce significant changes in the dominant hand on any measure (p > 0.05). This effect occurred irrespective of the hemisphere stimulated. Stimulation did not produce significant effects on measures of gross function, grip strength, reaction times, or electrophysiological measures on the EEG data. Conclusion: This study demonstrated that the hemispheres respond differently to anodal stimulation and the response appears to be task specific but not mediated by age.
Collapse
Affiliation(s)
- Jodie Marquez
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Institute, New Lambton, NSW, Australia
| | - Alexander Conley
- Hunter Medical Institute, New Lambton, NSW, Australia.,Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia
| | - Frini Karayanidis
- Hunter Medical Institute, New Lambton, NSW, Australia.,Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia
| | - Jim Lagopoulos
- Brain and Mind Institute, Sydney University, Sydney, NSW, Australia
| | - Mark Parsons
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Institute, New Lambton, NSW, Australia.,Department of Neurology, John Hunter Hospital, New Lambton, NSW, Australia
| |
Collapse
|
29
|
Bolognini N, Zigiotto L, Carneiro MIS, Vallar G. "How Did I Make It?": Uncertainty about Own Motor Performance after Inhibition of the Premotor Cortex. J Cogn Neurosci 2016; 28:1052-61. [PMID: 26967945 DOI: 10.1162/jocn_a_00950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Optimal motor performance requires the monitoring of sensorimotor input to ensure that the motor output matches current intentions. The brain is thought to be equipped with a "comparator" system, which monitors and detects the congruence between intended and actual movement; results of such a comparison can reach awareness. This study explored in healthy participants whether the cathodal transcranial direct current stimulation (tDCS) of the right premotor cortex (PM) and right posterior parietal cortex (PPC) can disrupt performance monitoring in a skilled motor task. Before and after tDCS, participants underwent a two-digit sequence motor task; in post-tDCS session, single-pulse TMS (sTMS) was applied to the right motor cortex, contralateral to the performing hand, with the aim of interfering with motor execution. Then, participants rated on a five-item questionnaire their performance at the motor task. Cathodal tDCS of PM (but not sham or PPC tDCS) impaired the participants' ability to evaluate their motor performance reliably, making them unconfident about their judgments. Congruently with the worsened motor performance induced by sTMS, participants reported to have committed more errors after sham and PPC tDCS; such a correlation was not significant after PM tDCS. In line with current computational and neuropsychological models of motor control and awareness, the present results show that a mechanism in the PM monitors and compares intended versus actual movements, evaluating their congruence. Cathodal tDCS of the PM impairs the activity of such a "comparator," disrupting self-confidence about own motor performance.
Collapse
Affiliation(s)
- Nadia Bolognini
- University of Milano-Bicocca and NeuroMi-Milan Centre for Neuroscience.,IRCSS Istituto Auxologico Italiano, Milano, Italy
| | - Luca Zigiotto
- University of Milano-Bicocca and NeuroMi-Milan Centre for Neuroscience.,IRCSS Istituto Auxologico Italiano, Milano, Italy
| | | | - Giuseppe Vallar
- University of Milano-Bicocca and NeuroMi-Milan Centre for Neuroscience.,IRCSS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
30
|
Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, Ladwig A, Luelling J, Neumaier B, Endepols H, Graf R, Hoehn M, Fink GR, Schroeter M, Rueger MA. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol 2016; 279:127-136. [PMID: 26923911 DOI: 10.1016/j.expneurol.2016.02.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Clinical data suggest that transcranial direct current stimulation (tDCS) may be used to facilitate rehabilitation after stroke. However, data are inconsistent and the neurobiological mechanisms underlying tDCS remain poorly explored, impeding its implementation into clinical routine. In the healthy rat brain, tDCS affects neural stem cells (NSC) and microglia. We here investigated whether tDCS applied after stroke also beneficially affects these cells, which are known to be involved in regeneration and repair. METHODS Focal cerebral ischemia was induced in rats by transient occlusion of the middle cerebral artery. Twenty-eight animals with comparable infarcts, as judged by magnetic resonance imaging, were randomized to receive a multi-session paradigm of either cathodal, anodal, or sham tDCS. Behaviorally, recovery of motor function was assessed by Catwalk. Proliferation in the NSC niches was monitored by Positron-Emission-Tomography (PET) employing the radiotracer 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT). Microglia activation was depicted with [(11)C]PK11195-PET. In addition, immunohistochemical analyses were used to quantify neuroblasts, oligodendrocyte precursors, and activation and polarization of microglia. RESULTS Anodal and cathodal tDCS both accelerated functional recovery, though affecting different aspects of motor function. Likewise, tDCS induced neurogenesis independently of polarity, while only cathodal tDCS recruited oligodendrocyte precursors towards the lesion. Moreover, cathodal stimulation preferably supported M1-polarization of microglia. CONCLUSIONS TDCS acts through multifaceted mechanisms that far exceed its primary neurophysiological effects, encompassing proliferation and migration of stem cells, their neuronal differentiation, and modulation of microglia responses.
Collapse
Affiliation(s)
- Ramona Braun
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Rebecca Klein
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Helene Luise Walter
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Maurice Ohren
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Lars Freudenmacher
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Kaleab Getachew
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Anne Ladwig
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Joachim Luelling
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Bernd Neumaier
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Rudolf Graf
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany.
| |
Collapse
|
31
|
Convento S, Russo C, Zigiotto L, Bolognini N. Transcranial Electrical Stimulation in Post-Stroke Cognitive Rehabilitation. EUROPEAN PSYCHOLOGIST 2016. [DOI: 10.1027/1016-9040/a000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract. Cognitive rehabilitation is an important area of neurological rehabilitation, which aims at the treatment of cognitive disorders due to acquired brain damage of different etiology, including stroke. Although the importance of cognitive rehabilitation for stroke survivors is well recognized, available cognitive treatments for neuropsychological disorders, such as spatial neglect, hemianopia, apraxia, and working memory, are overall still unsatisfactory. The growing body of evidence supporting the potential of the transcranial Electrical Stimulation (tES) as tool for interacting with neuroplasticity in the human brain, in turn for enhancing perceptual and cognitive functions, has obvious implications for the translation of this noninvasive brain stimulation technique into clinical settings, in particular for the development of tES as adjuvant tool for cognitive rehabilitation. The present review aims at presenting the current state of art concerning the use of tES for the improvement of post-stroke visual and cognitive deficits (except for aphasia and memory disorders), showing the therapeutic promises of this technique and offering some suggestions for the design of future clinical trials. Although this line of research is still in infancy, as compared to the progresses made in the last years in other neurorehabilitation domains, current findings appear very encouraging, supporting the development of tES for the treatment of post-stroke cognitive impairments.
Collapse
Affiliation(s)
- Silvia Convento
- Department of Psychology, University of Milano Bicocca, Milan, Italy
| | - Cristina Russo
- Department of Psychology, University of Milano Bicocca, Milan, Italy
| | - Luca Zigiotto
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- NeuroMi – Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
32
|
Ranieri F, Ferraccioli M, Stampanoni Bassi M, Musumeci G, Di Lazzaro V, Gainotti G, Marra C. Familiarity for famous faces and names is not equally subtended by the right and left temporal poles. Evidence from an rTMS study. Neurobiol Learn Mem 2015. [DOI: 10.1016/j.nlm.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Jacquin-Courtois S. Hemi-spatial neglect rehabilitation using non-invasive brain stimulation: Or how to modulate the disconnection syndrome? Ann Phys Rehabil Med 2015; 58:251-258. [DOI: 10.1016/j.rehab.2015.07.388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 11/25/2022]
|
34
|
Bonnì S, Koch G, Miniussi C, Bassi MS, Caltagirone C, Gainotti G. Role of the anterior temporal lobes in semantic representations: Paradoxical results of a cTBS study. Neuropsychologia 2015; 76:163-9. [DOI: 10.1016/j.neuropsychologia.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
|
35
|
Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia 2015; 74:96-107. [DOI: 10.1016/j.neuropsychologia.2015.02.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/19/2022]
|
36
|
Mauri P, Miniussi C, Balconi M, Brignani D. Bursts of transcranial electrical stimulation increase arousal in a continuous performance test. Neuropsychologia 2015; 74:127-36. [DOI: 10.1016/j.neuropsychologia.2015.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
37
|
Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study. Behav Neurol 2015; 2015:287843. [PMID: 26160997 PMCID: PMC4487699 DOI: 10.1155/2015/287843] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/05/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique with potential to improve memory. Mild cognitive impairment (MCI), which still lacks a specific therapy, is a clinical syndrome associated with increased risk of dementia. This study aims to assess the effects of high-frequency repetitive TMS (HF rTMS) on everyday memory of the elderly with MCI. We conducted a double-blinded randomized sham-controlled trial using rTMS over the left dorsolateral prefrontal cortex (DLPFC). Thirty-four elderly outpatients meeting Petersen's MCI criteria were randomly assigned to receive 10 sessions of either active TMS or sham, 10 Hz rTMS at 110% of motor threshold, 2,000 pulses per session. Neuropsychological assessment at baseline, after the last session (10th) and at one-month follow-up, was applied. ANOVA on the primary efficacy measure, the Rivermead Behavioural Memory Test, revealed a significant group-by-time interaction (p = 0.05), favoring the active group. The improvement was kept after one month. Other neuropsychological tests were heterogeneous. rTMS at 10 Hz enhanced everyday memory in elderly with MCI after 10 sessions. These findings suggest that rTMS might be effective as a therapy for MCI and probably a tool to delay deterioration.
Collapse
|
38
|
Benwell CSY, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex 2015; 69:152-65. [PMID: 26073146 DOI: 10.1016/j.cortex.2015.05.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 03/12/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a well-established technique for non-invasive brain stimulation (NIBS). However, the technique suffers from a high variability in outcome, some of which is likely explained by the state of the brain at tDCS-delivery but for which explanatory, mechanistic models are lacking. Here, we tested the effects of bi-parietal tDCS on perceptual line bisection as a function of tDCS current strength (1 mA vs 2 mA) and individual baseline discrimination sensitivity (a measure associated with intrinsic uncertainty/signal-to-noise balance). Our main findings were threefold. We replicated a previous finding (Giglia et al., 2011) of a rightward shift in subjective midpoint after Left anode/Right cathode tDCS over parietal cortex (sham-controlled). We found this effect to be weak over our entire sample (n = 38), but to be substantial in a subset of participants when they were split according to tDCS-intensity and baseline performance. This was due to a complex, nonlinear interaction between these two factors. Our data lend further support to the notion of state-dependency in NIBS which suggests outcome to depend on the endogenous balance between task-informative 'signal' and task-uninformative 'noise' at baseline. The results highlight the strong influence of individual differences and variations in experimental parameters on tDCS outcome, and the importance of fostering knowledge on the factors influencing tDCS outcome across cognitive domains.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; School of Psychology, University of Glasgow, Glasgow, UK.
| | - Gemma Learmonth
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; School of Psychology, University of Glasgow, Glasgow, UK
| | - Carlo Miniussi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
39
|
Wade S, Hammond G. Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence. Eur J Neurosci 2015; 41:1597-602. [DOI: 10.1111/ejn.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie Wade
- School of Psychology; The University of Western Australia; Mailbag M304 35 Stirling Hwy Crawley 6009 WA USA
| | - Geoff Hammond
- School of Psychology; The University of Western Australia; Mailbag M304 35 Stirling Hwy Crawley 6009 WA USA
| |
Collapse
|
40
|
Calzolari E, Bolognini N, Casati C, Marzoli SB, Vallar G. Restoring abnormal aftereffects of prismatic adaptation through neuromodulation. Neuropsychologia 2015; 74:162-9. [PMID: 25912762 DOI: 10.1016/j.neuropsychologia.2015.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Adaptation to optical prisms displacing the visual scene laterally is a widely investigated instance of visuo-motor plasticity, also because prism adaptation (PA) has been extensively used as a treatment for right-brain-damaged patients suffering from left spatial neglect. The lateral visual displacement brought about by prisms, as indexed by a pointing error in the direction of the displacement, is progressively corrected through repeated pointings: after prism removal, a shift in the direction opposite to the prism-induced deviation occurs in visual, proprioceptive, and visuo-proprioceptive straight-ahead tasks (aftereffects, AEs). The cerebellum and the posterior parietal cortex (PPC) are key components of the bilateral cerebral network subserving the AEs, and the reduction of the pointing error during prism exposure in PA. We report the experimental study of a patient with bilateral occipital and left cerebellar damage, who showed a preserved reduction of the pointing errors to rightward displacing prisms, but not the leftward AEs in the proprioceptive straight-ahead task; instead, visual-proprioceptive and visual AEs were preserved. Anodal transcranial Direct Current Stimulation (tDCS) over the left PPC restored the leftward proprioceptive AEs, and anodal tDCS over the left cerebellum abolished the rightward deviation. Conversely, stimulation over the right PPC or the right cerebellum was ineffective. These results provide novel evidence for neuromodulatory effects of tDCS on defective AEs, through the stimulation over dedicated cortical regions.
Collapse
Affiliation(s)
- Elena Calzolari
- Department of Psychology, University of Milano Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy; NeuroMi - Milan Center for Neuroscience, Milan, Italy
| | - Carlotta Casati
- Department of Psychology, University of Milano Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefania Bianchi Marzoli
- Laboratory of Neurophthalmology and Ocular Electrophysiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Vallar
- Department of Psychology, University of Milano Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy; NeuroMi - Milan Center for Neuroscience, Milan, Italy.
| |
Collapse
|
41
|
Stimulating the aberrant brain: Evidence for increased cortical hyperexcitability from a transcranial direct current stimulation (tDCS) study of individuals predisposed to anomalous perceptions. Cortex 2015; 69:1-13. [PMID: 25967083 DOI: 10.1016/j.cortex.2015.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
Findings from neurological and clinical groups have shown that increased predisposition to anomalous experience/aura reflects an elevation in aberrant neural processes in the brain. However, studies of anomalous experiences in non-clinical/non-neurological groups are less clear on this matter and are more typically confined to subjective questionnaire measures alone. The current investigation, the first to our knowledge, carried out a transcranial Direct Current Stimulation (tDCS) study of cortical hyperexcitability, and its association with anomalous experience in non-clinical/non-neurological groups. Sixty participants completed; (i) both excitatory (anodal) and inhibitory (cathodal) brain stimulation conditions of the visual cortex; (ii) a computerised pattern-glare task, where observers reported phantom visual distortions from viewing highly irritable visual patterns (a metric of cortical hyperexcitability), and; (iii) questionnaire measures of predisposition to anomalous perceptions. There were no reliable signs of cortical hyperexcitability (via pattern-glare tasks) when collapsed across the whole sample. However, a significant positive correlation between predisposition to anomalous experience and elevated signs of cortical hyperexcitability was observed. Crucially, there was a significant negative correlation between tDCS stimulatory conditions. A visual cortex that reacted more strongly to excitatory stimulation, responded less well to inhibitory suppression, and this pattern was related to predisposition to anomalous perceptions. Both findings are consistent with the presence of a hyperexcitable cortex. Collectively the present findings provide objective evidence that the brains of individuals predisposed to anomalous experiences/hallucinations can be hyperexcitable - even in the non-clinical/non-neurological population. These data are consistent with continuum models of anomalous experience and have important implications for contemporary theories of aberrations in self-consciousness.
Collapse
|
42
|
Learmonth G, Thut G, Benwell CSY, Harvey M. The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance. Neuropsychologia 2015; 74:108-19. [PMID: 25637226 DOI: 10.1016/j.neuropsychologia.2015.01.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 01/17/2023]
Abstract
Young adults typically display a processing advantage towards the left side of space ("pseudoneglect"), possibly as a result of right parietal dominance for spatial attention. This bias is ameliorated with age, with older adults displaying either no strongly lateralised bias, or a slight bias towards the right. This may represent an age-related reduction of right hemispheric dominance and/or increased left hemispheric involvement. Here, we applied anodal transcranial direct current stimulation (atDCS) to the right posterior parietal cortex (PPC; R-atDCS), the left PPC (L-atDCS) and a Sham protocol in young and older adults during a titrated lateralised visual detection task. We aimed to facilitate visual detection sensitivity in the contralateral visual field with both R-atDCS and L-atDCS relative to Sham. We found no differences in the effects of stimulation between young and older adults. Instead the effects of atDCS were state-dependent (i.e. related to task performance at baseline). Relative to Sham, poor task performers were impaired in both visual fields by anodal stimulation of the left posterior parietal cortex (PPC). Conversely, good performers maintained sensitivity in both visual fields in response to R-atDCS, although this effect was small. We highlight the importance of considering baseline task ability when designing tDCS experiments, particularly in older adults.
Collapse
Affiliation(s)
- Gemma Learmonth
- Centre for Cognitive Neuroimaging, School of Psychology, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology, University of Glasgow, Glasgow G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Christopher S Y Benwell
- Centre for Cognitive Neuroimaging, School of Psychology, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
43
|
Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial. J Head Trauma Rehabil 2015; 29:E20-9. [PMID: 23756431 DOI: 10.1097/htr.0b013e318292a4c2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine whether cumulative anodal transcranial direct current stimulation (A-tDCS) of the left dorsolateral prefrontal cortex (DLPFC) could enhance rehabilitation of memory and attention in patients with traumatic brain injury (TBI). SETTING Inpatient and outpatient neurorehabilitation unit. PARTICIPANTS Twenty-three adult patients, 4- to 92- months post severe TBI. DESIGN Participants were randomly allocated to 2 groups. The experimental group received A-tDCS (10 minutes; 1 mA; in the DLPFC), followed by rehabilitative cognitive training, daily for 15 days. Controls received A-tDCS for 25 seconds (sham condition) with the same rehabilitation. MAIN MEASURES Battery of memory and attention tests, which included visual and auditory modalities. Participants were tested twice before beginning rehabilitation (to control for spontaneous recovery), after rehabilitation completion, and 4 months later. RESULTS Tests scores in both groups were similar at 3 weeks before and immediately before treatment. After treatment, the experimental group exhibited larger effect sizes in 6 of 8 cognitive outcome measures, but they were not significantly different from controls. At follow-up, differences remained insignificant. CONCLUSION In contrast to previous studies, our study did not provide sufficient evidence to support the efficacy of repeated A-tDCS for enhancing rehabilitation of memory and attention in patients after severe TBI.
Collapse
|
44
|
Minamoto T, Azuma M, Yaoi K, Ashizuka A, Mima T, Osaka M, Fukuyama H, Osaka N. The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence. Front Hum Neurosci 2014; 8:992. [PMID: 25538609 PMCID: PMC4260498 DOI: 10.3389/fnhum.2014.00992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/22/2014] [Indexed: 12/02/2022] Open
Abstract
The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing.
Collapse
Affiliation(s)
- Takehiro Minamoto
- Department of Advanced Human Sciences, Graduate School of Human Sciences, Osaka University Osaka, Japan
| | - Miyuki Azuma
- Department of Advanced Human Sciences, Graduate School of Human Sciences, Osaka University Osaka, Japan
| | - Ken Yaoi
- Department of Psychology, Graduate School of Letters, Kyoto University Kyoto, Japan
| | - Aoi Ashizuka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Tastuya Mima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Mariko Osaka
- Department of Advanced Human Sciences, Graduate School of Human Sciences, Osaka University Osaka, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Naoyuki Osaka
- Department of Psychology, Graduate School of Letters, Kyoto University Kyoto, Japan
| |
Collapse
|
45
|
Morales-Quezada L, Cosmo C, Carvalho S, Leite J, Castillo-Saavedra L, Rozisky JR, Fregni F. Cognitive effects and autonomic responses to transcranial pulsed current stimulation. Exp Brain Res 2014; 233:701-9. [PMID: 25479736 DOI: 10.1007/s00221-014-4147-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/11/2014] [Indexed: 01/13/2023]
Abstract
Transcranial pulsed current stimulation (tPCS) is emerging as an option in the field of neuromodulation; however, little is known about its effects on cognition and behavior and its neurophysiological correlates as indexed by autonomic responses. Our aim was to identify the effects of tPCS on arithmetic processing and risk-taking behavior, and to further categorize physiological autonomic responses by heart rate variability (HRV) and electrodermal activity measurements before, during, and after exposure to task performance and stimulation. Thirty healthy volunteers were randomized to receive a single session of sham or active stimulation with a current intensity of 2 mA and a random frequency between 1 and 5 Hz. Our results showed that tPCS has a modest and specific effect on cognitive performance as indexed by the cognitive tasks chosen in this study. There was a modest effect of active tPCS only on performance facilitation on a complex-level mathematical task as compared to sham stimulation. On autonomic responses, we observed that HRV total power increased while LF/HF ratio decreased in the tPCS active group compared to sham. There were no group differences for adverse effects. Based on our results, we conclude that tPCS, in healthy subjects, has a modest and specific cognitive effect as shown by the facilitation of arithmetical processing on complex mathematical task. These effects are accompanied by modulation of the central autonomic network providing sympathetic-vagal balance during stressful conditions. Although behavioral results were modest, they contribute to the understanding of tPCS effects and cognitive enhancement.
Collapse
Affiliation(s)
- Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th Street, Charlestown, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Penolazzi B, Bergamaschi S, Pastore M, Villani D, Sartori G, Mondini S. Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: A case study. Neuropsychol Rehabil 2014; 25:799-817. [DOI: 10.1080/09602011.2014.977301] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Romero Lauro LJ, Rosanova M, Mattavelli G, Convento S, Pisoni A, Opitz A, Bolognini N, Vallar G. TDCS increases cortical excitability: Direct evidence from TMS–EEG. Cortex 2014; 58:99-111. [DOI: 10.1016/j.cortex.2014.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/13/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
48
|
Marques LM, Lapenta OM, Merabet LB, Bolognini N, Boggio PS. Tuning and disrupting the brain-modulating the McGurk illusion with electrical stimulation. Front Hum Neurosci 2014; 8:533. [PMID: 25140136 PMCID: PMC4121538 DOI: 10.3389/fnhum.2014.00533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/30/2014] [Indexed: 11/13/2022] Open
Abstract
In the so-called McGurk illusion, when the synchronized presentation of the visual stimulus /ga/ is paired with the auditory stimulus /ba/, people in general hear it as /da/. Multisensory integration processing underlying this illusion seems to occur within the Superior Temporal Sulcus (STS). Herein, we present evidence demonstrating that bilateral cathodal transcranial direct current stimulation (tDCS) of this area can decrease the McGurk illusion-type responses. Additionally, we show that the manipulation of this audio-visual integrated output occurs irrespective of the number of eye-fixations on the mouth of the speaker. Bilateral anodal tDCS of the Parietal Cortex also modulates the illusion, but in the opposite manner, inducing more illusion-type responses. This is the first demonstration of using non-invasive brain stimulation to modulate multisensory speech perception in an illusory context (i.e., both increasing and decreasing illusion-type responses to a verbal audio-visual integration task). These findings provide clear evidence that both the superior temporal and parietal areas contribute to multisensory integration processing related to speech perception. Specifically, STS seems fundamental for the temporal synchronization and integration of auditory and visual inputs. For its part, posterior parietal cortex (PPC) may adjust the arrival of incoming audio and visual information to STS thereby enhancing their interaction in this latter area.
Collapse
Affiliation(s)
- Lucas Murrins Marques
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| | - Olivia Morgan Lapenta
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| | - Lotfi B Merabet
- Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, and IRCCS Istituto Auxologico Italiano Milano, Italy
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| |
Collapse
|
49
|
Convento S, Bolognini N, Fusaro M, Lollo F, Vallar G. Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex 2014; 57:51-9. [DOI: 10.1016/j.cortex.2014.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/26/2014] [Accepted: 03/09/2014] [Indexed: 12/18/2022]
|
50
|
Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci 2014; 8:226. [PMID: 25018709 PMCID: PMC4073198 DOI: 10.3389/fnbeh.2014.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Cathodal transcranial direct current stimulation (c-tDCS) is usually considered an inhibitory stimulation. From a physiological perspective, c-tDCS induces hyperpolarization at the neural level. However, from a behavioral perspective, c-tDCS application does not always result in performance deterioration. In this work, we investigated the role of several important stimulation parameters (i.e., timing, presence of pauses, duration, and intensity) in shaping the behavioral effects of c-tDCS over the primary visual cortex. In Experiment 1, we applied c-tDCS at two different times (before or during an orientation discrimination task). We also studied the effects of pauses during the stimulation. In Experiments 2 and 3, we compared different durations (9 vs. 22 min) and intensities (0.75 vs. 1.5 mA) of stimulation. c-tDCS applied before task execution induced an improvement of performance, highlighting the importance of the activation state of the cortex. However, this result depended on the duration and intensity of stimulation. We suggest that the application of c-tDCS induces depression of cortical activity over a specific stimulated area; but to keep reactivity within given limits, the brain react in order to restore the equilibrium and this might result in increased sensitivity in visual performance. This is a further example of how the nervous system dynamically maintains a condition that permits adequate performance in different environments.
Collapse
Affiliation(s)
- Cornelia Pirulli
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Anna Fertonani
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy ; Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia Brescia, Italy
| |
Collapse
|