1
|
Magwaza SN, Olofinsan KA, Mohamed AI, Meriga B, Islam MS. Bioactivities of Sargassum elegans, Bryopsis myosuroides, Callophyllis variegata seaweeds on diabetes and obesity-related biochemical parameters: A comparative in vitro study. Fitoterapia 2024; 179:106252. [PMID: 39396650 DOI: 10.1016/j.fitote.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Diabesity' is the occurrence of diabetes in the presence of obesity. Numerous reports have shown that seaweeds possess beneficial biological activities. This study assessed the effects of three seaweeds Bryopsis myosuroides (green), Callophyllis variegata (red), and Sargassum elegans (brown), on diabetes and obesity-related parameters in vitro. The antioxidant potential, carbohydrate and lipid digestive enzyme inhibitory activity, and glucose uptake activities of ethanolic and sulphated polysaccharides (SPs) rich extracts were evaluated. The SP-rich or ethanolic extracts of S. elegans showed the greater inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 46.6 ± 1.00 g/mL), hydroxyl radical (OH) (IC50 353.70 ± 2.01 μg/mL), and nitric oxide (NO) (IC50 407.5 ± 0.95 μg/mL) compared to other seaweeds. Moreover, the SP-rich extract of S. elegans exhibited higher inhibition of α- glucosidase (IC50 123.8 ± 1.69 μg/mL), whereas B. myosuroides SP-rich extract had better α-amylase (IC50 55.7 ± 0.98 μg/mL) and pancreatic lipase inhibitory activities (IC50 481.1 ± 0.9 μg/mL) compared to other seaweeds. Liquid Chromatography Mass Spectroscopy (LC-MS) was used to identify the compounds present in the seaweed extracts. These include Taxifolin, Amentoflavone-7,4',4″'-Trimethyl Ether, Chrysophenol, and Glucotropaeolin, which have been previously reported to possess biological activities beneficial to human health. Although all three seaweeds evaluated in this study demonstrated antioxidant, digesting enzyme inhibitory and glucose uptake activity to different extents, S. elegans (brown) depicted the highest activity in most assays compared to the other seaweeds. However, further research is required to assess the effects of these seaweed extracts on diabetes and obesity via ex vivo and in vivo experimental animal models.
Collapse
Affiliation(s)
- S'thandiwe N Magwaza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Almahi I Mohamed
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andra Pradesh, India
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
2
|
Dinesh A, Kumar A. A Review on Bioactive Compounds, Ethnomedicinal Importance and Pharmacological Activities of Talinum triangulare (Jacq.) Willd. Chem Biodivers 2023; 20:e202301079. [PMID: 37867157 DOI: 10.1002/cbdv.202301079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
Talinum triangulare (Jacq.) Willd. is a traditional leafy vegetable used by tribal communities for ethnomedicinal and ethnoculinary preparations. This article reviews the current knowledge of its multiple uses, including pharmacological activities and nutritional composition. The literature survey shows that it has been traditionally useful in the treatment of several diseases, such as anaemia, diabetes, measles, and ulcers and the preparation of various traditional foods. Analysis of the literature on its phytochemicals shows its richness in bioactive compounds. Further, research also shows that this plant has antidiabetic, antiobesity, antitumor, antiulcer, hepatoprotective, and neuroprotective activities besides anti-inflammatory and antioxidant properties. Nutrient analysis of the plant reveals the presence of Ca, Zn, Fe, vitamins C and E, dietary fibre and protein in considerable quantities. The results of the pharmacological studies on the antidiabetic, antiulcer and anti-anaemic activities provide support in favour of its ethnomedicinal uses. The presence of bioactive compounds and pharmacological activities show the usefulness of this plant as a functional food.
Collapse
Affiliation(s)
- Anagha Dinesh
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| |
Collapse
|
3
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Devault DA, Massat F, Lambourdière J, Maridakis C, Dupuy L, Péné-Annette A, Dolique F. Micropollutant content of Sargassum drifted ashore: arsenic and chlordecone threat assessment and management recommendations for the Caribbean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66315-66334. [PMID: 35501441 DOI: 10.1007/s11356-022-20300-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Massive Sargassum beachings occurred since 2011 on Caribbean shores. Sargassum inundation events currently involve two species, namely S. fluitans and S. natans circulating and blooming along the North Atlantic subtropical gyre and in the entire Caribbean region up to the Gulf of Mexico. Like other brown seaweeds, Sargassum have been shown to bioaccumulate a large number of heavy metals, alongside with some organic compounds including the contamination by historical chlordecone pollution in French West Indies (FWI), an insecticide used against the banana's weevil Cosmopolites sordidus. The present study reports, during two successive years, the concentration levels of heavy metals including arsenic in Martinique and Guadeloupe (FWI). We found that Sargassum can also accumulate a high concentration of chlordecone. Sargassum contamination by chlordecone is observed in areas close to contaminated river mouth but can be partly due to chlordecone desorption when secondary drifted on chlordecone-free shore. Our results further demonstrate that algae bleaching raises a number of questions about inorganic and organic pollutant (i) bioaccumulation, at sea for arsenic and close to river plumes for chlordecone, (ii) transport, and (iii) dissemination, depending the shoreline and the speciation for arsenic and/or metabolization for both.
Collapse
Affiliation(s)
- Damien A Devault
- Département des Sciences et Technologies, Centre Universitaire de Formation et de Recherche de Mayotte, RN3, BP53, 97660, Mayotte, Dembeni, France.
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France.
| | - Félix Massat
- La Drôme Laboratoire, 37 avenue de Lautagne, 118, Valence, BP, France
| | - Josie Lambourdière
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| | - Clio Maridakis
- ADEME, Zone de Manhity Four à chaux Sud Immeuble Exodom LE, 97232, Le Lamentin, Martinique, France
| | - Laëtitia Dupuy
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| | - Anne Péné-Annette
- EA 929 AIHP-Geode Campus Universitaire de Schœlcher, 97275, Schœlcher, Martinique, France
| | - Franck Dolique
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
5
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
6
|
Murúa P, Edrada-Ebel R, Muñoz L, Soldatou S, Legrave N, Müller DG, Patiño DJ, van West P, Küpper FC, Westermeier R, Ebel R, Peters AF. Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae). Sci Rep 2020; 10:8279. [PMID: 32427928 PMCID: PMC7237481 DOI: 10.1038/s41598-020-65137-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Macrocystis pyrifera and Lessonia spicata are economically and ecologically relevant brown seaweeds that recently have been classified as members of two separated families within Laminariales (kelps). Here we describe for the first time the Macrocystis pyrifera x Lessonia spicata hybridization in the wild (Chiloe Island, Southeastern Pacific), where populations of the two parents exist sympatrically. Externally, this hybrid exhibited typical features of its parents M. pyrifera (cylindrical and flexible distal stipes, serrate frond margins and presence of sporophylls) and L. spicata (rigid and flat main stipe and first bifurcation), as well as intermediate features between them (thick unfused haptera in the holdfast). Histological sections revealed the prevalence of mucilage ducts within stipes and fronds (absent in Lessonia) and fully developed unilocular sporangia in the sporophylls. Molecular analyses confirmed the presence of the two parental genotypes for ITS1 nrDNA and the M. pyrifera genotype for two predominantly maternally inherited cytoplasmic markers (COI and rbcLS spacer) in the tissue of the hybrid. A metabolome-wide approach revealed that this hybrid is more chemically reminiscent to M. pyrifera. Nevertheless, several hits were identified as Lessonia exclusive or more remarkably, not present in any of the parent. Meiospores developed into apparently fertile gametophytes, which gave rise to F1 sporophytes that reached several millimeters before suddenly dying. In-vitro reciprocal crossing of Mar Brava gametophytes from both species revealed that although it is rare, interfamilial hybridization between the two species is possible but mostly overcome by pseudogamy of female gametophytes.
Collapse
Affiliation(s)
- Pedro Murúa
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, PO box 1327, Puerto Montt, Chile.
- The Scottish Association for Marine Science, Scottish Marine Institute, Culture Collection for Algae and Protozoa, Oban, Argyll, PA37 1QA, Scotland, United Kingdom.
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom.
| | - RuAngelie Edrada-Ebel
- The Natural Products Metabolomics Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Liliana Muñoz
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom
| | - Sylvia Soldatou
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen, AB24 3UE, United Kingdom
| | - Nathalie Legrave
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen, AB24 3UE, United Kingdom
| | - Dieter G Müller
- Fachbereich Biologie der Universität Konstanz, D-78457, Konstanz, Germany
| | - David J Patiño
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, PO box 1327, Puerto Montt, Chile
| | - Pieter van West
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom
| | - Frithjof C Küpper
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen, AB24 3UE, United Kingdom
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - Renato Westermeier
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, PO box 1327, Puerto Montt, Chile
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen, AB24 3UE, United Kingdom
| | - Akira F Peters
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
- Bezhin Rosko, 40 rue des pêcheurs, 29250, Santec, Brittany, France
| |
Collapse
|