1
|
Qazi MA, Phulpoto IA, Wang Q, Dai Z. Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives. Crit Rev Biotechnol 2024; 44:1403-1421. [PMID: 38232958 DOI: 10.1080/07388551.2023.2290981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 01/19/2024]
Abstract
The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Irfan Ali Phulpoto
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Dhadwal S, Handa S, Chatterjee M, Banat IM. Sophorolipid: An Effective Biomolecule for Targeting Microbial Biofilms. Curr Microbiol 2024; 81:388. [PMID: 39367190 DOI: 10.1007/s00284-024-03892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Biofilms are microbial aggregates encased in a matrix that is attached to biological or nonbiological surfaces and constitute serious problems in food, medical, and marine industries and can have major negative effects on both health and the economy. Biofilm's complex microbial community provides a resistant environment that is difficult to eradicate and is extremely resilient to antibiotics and sanitizers. There are various conventional techniques for combating biofilms, including, chemical removal, physical or mechanical removal, use of antibiotics and disinfectants to destroy biofilm producing organisms. In contrast to free living planktonic cells, biofilms are very resistant to these methods. Hence, new strategies that differ from traditional approaches are urgently required. Microbial world offers a wide range of effective "green" compounds such as biosurfactants. They outperform synthetic surfactants in terms of biodegradability, superior stabilization, and reduced toxicity concerns. They also have better antiadhesive and anti-biofilm capabilities which can be used to treat biofilm-related problems. Sophorolipids (SLs) are a major type of biosurfactants that have gained immense interest in the healthcare industries because of their antiadhesive and anti-biofilm properties. Sophorolipids may therefore prove to be attractive substances that can be used in biomedical applications as adjuvant to other antibiotics against some infections through growth inhibition and/or biofilm disruption.
Collapse
Affiliation(s)
- Sunidhi Dhadwal
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
| | - Shristi Handa
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Ibrahim M Banat
- Faculty of Life & Health Sciences, University of Ulster, Coleraine, BT52 1SA, UK.
| |
Collapse
|
3
|
Dias GR, Freitas-Silva J, de Carvalho MM, Ramos VFDS, Muricy G, Rodrigues JCF, Costa BRFV, de Oliveira BFR, Laport MS. Bioemulsifier from sponge-associated bacteria reduces staphylococcal biofilm. Microb Pathog 2024; 195:106856. [PMID: 39153576 DOI: 10.1016/j.micpath.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biofilm formation is a major health concern and studies have been pursued to find compounds able to prevent biofilm establishment and remove pre-existing biofilms. While biosurfactants (BS) have been well-known for possessing antibiofilm activities, bioemulsifiers (BE) are still scarcely explored for this purpose. The present study aimed to evaluate the bioemulsifying properties of cell-free supernatants produced by Bacillaceae and Vibrio strains isolated from marine sponges and investigate their antiadhesive and antibiofilm activities against different pathogenic Gram-positive and Gram-negative bacteria. The BE production by the marine strains was confirmed by the emulsion test, drop-collapsing, oil-displacement, cell hydrophobicity and hemolysis assays. Notably, Bacillus cereus 64BHI1101 displayed remarkable emulsifying activity and the ultrastructure analysis of its BE extract (BE64-1) revealed the presence of structures typically observed in macromolecules composed of polysaccharides and proteins. BE64-1 showed notable antiadhesive and antibiofilm activities against Staphylococcus aureus, with a reduction of adherence of up to 100 % and a dispersion of biofilm of 80 %, without affecting its growth. BE64-1 also showed inhibition of Staphylococcus epidermidis and Escherichia coli biofilm formation and adhesion. Thus, this study provides a starting point for exploring the antiadhesive and antibiofilm activities of BE from sponge-associated bacteria, which could serve as a valuable tool for future research to combat S. aureus biofilms.
Collapse
Affiliation(s)
- Gabriel Rodrigues Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil
| | - Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil
| | - Marianna Machado de Carvalho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil
| | - Victor Feliciano Dos Santos Ramos
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5. 25240-005, Duque de Caxias, RJ, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro. Quinta da Boa Vista, s/nº, São Cristóvão. 20940-040 Rio de Janeiro, RJ, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, RJ, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5. 25240-005, Duque de Caxias, RJ, Brazil
| | - Brunno Renato Farias Verçoza Costa
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5. 25240-005, Duque de Caxias, RJ, Brazil
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Guan C, Li F, Yu P, Chen X, Yin Y, Chen D, Gu R, Zhang C, Pang B. Isolation, Identification and Antibacterial Characteristics of Lacticaseibacillus rhamnosus YT. Foods 2024; 13:2706. [PMID: 39272473 PMCID: PMC11394637 DOI: 10.3390/foods13172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Pathogenic microorganisms have been detected in fermented food. Combining the enormous class of the pathogens and their continuously appearing mutants or novel species, it is important to select suitable and safe antibacterial agents for fermented food safety. Lactic acid bacteria (LAB) which produce diverse imperative antimicrobial metabolites have an immense number of applications in the food industry. Here, the human-derived strain YT was isolated due to its cell-free supernatant (CFS-YT) and cells (Cs-YT), respectively performed obvious inhibitory ring to Gram-positive and -negative spoilage bacteria. Strain YT was identified as Lacticaseibacillus rhamnosus by the 16s rDNA sequence and morphology. The antibacterial activity of CFS-YT was demonstrated to be growth-dependent, pHs-sensitive, broadly thermostable and enzyme-insensitive. Cs-YT displayed a broad antibacterial spectrum with the action mode of bacteriostasis. The antibacterial activity of Cs-YT was due to substances located at the cell surface which were sensitive to heat, stable at broad pH gradients and sensitive to specific enzymes. These data suggested that L. rhamnosus YT could be used as an alternative antimicrobial agent in fermented food biopreservation.
Collapse
Affiliation(s)
- Chengran Guan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Feng Li
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Peng Yu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xuan Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bo Pang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
5
|
D’Aquila P, De Rose E, Sena G, Scorza A, Cretella B, Passarino G, Bellizzi D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics (Basel) 2024; 13:619. [PMID: 39061301 PMCID: PMC11273524 DOI: 10.3390/antibiotics13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
With the widespread phenomenon of antibiotic resistance and the diffusion of multiple drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative agents against pathogenic microorganisms. Since an association between biofilm formation and antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing (QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted the attention of researchers and has become a new strategy for controlling harmful microorganisms. Among these, a number of both natural and synthetic compounds have been progressively identified as able to interrupt the intercellular communication within a microbial community and the adhesion to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Angelo Scorza
- Villa Ermelinda, Progetto Terza Età, 88842 Cutro, Italy; (A.S.); (B.C.)
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| |
Collapse
|
6
|
Wang X, An J, Cao T, Guo M, Han F. Application of Biosurfactants in Medical Sciences. Molecules 2024; 29:2606. [PMID: 38893481 PMCID: PMC11173561 DOI: 10.3390/molecules29112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Biosurfactants derived from microorganisms have attracted widespread attention in scientific research due to their unique surface activity, low toxicity, biodegradability, antibacterial properties, and stability under extreme conditions. Biosurfactants are widely used in many fields, such as medicine, agriculture, and environmental protection. Therefore, this review aims to comprehensively review and analyze the various applications of biosurfactants in the medical field. The central roles of biosurfactants in crucial medical areas are explored, like drug delivery, induction of tumor cell differentiation or death, treating bacterial and viral effects, healing wounds, and immune regulation. Moreover, a new outlook is introduced on optimizing the capabilities of biosurfactants through modification and gene recombination for better use in medicine. The current research challenges and future research directions are described, aiming to provide valuable insights for continuous study of biosurfactants in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Fu Han
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (J.A.); (T.C.); (M.G.)
| |
Collapse
|
7
|
Albasri HM, Almohammadi AA, Alhhazmi A, Bukhari DA, Waznah MS, Mawad AMM. Production and characterization of rhamnolipid biosurfactant from thermophilic Geobacillus stearothermophilus bacterium isolated from Uhud mountain. Front Microbiol 2024; 15:1358175. [PMID: 38873141 PMCID: PMC11173098 DOI: 10.3389/fmicb.2024.1358175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biosurfactants have been given considerable attention as they are potential candidates for several biotechnological applications. Materials and methods In this study, a promising thermophilic biosurfactant-producing HA-2 was isolated from the volcanic and arid region of Uhud mountain, Madinah, Saudi Arabia. It was identified using 16S rRNA gene sequence analysis. The biosurfactant production ability was screened using different methods such as the drop collapse test, oil spreading test, hemolytic activity test, CTAB test, and emulsification index. The ability of rhamnolipid production by the tested strain was confirmed by the polymerase chain reaction (PCR) of rhlAB. The affinity of thermophilic HA-2 to hydrophobic substrates was also investigated. Optimization of biosurfactant production was conducted. The biological activities of produced surfactant were investigated. Results and discussion The isolated HA-1 was identified as Geobacillus stearothermophilus strain OR911984. It could utilize waste sunflower frying oil (WSFF) oil as a low-cost carbon source. It showed high emulsification activity (52 ± 0.0%) and positive results toward other biosurfactant screening tests. The strain showed high cell adhesion to hexane with 41.2% cell surface hydrophobicity. Fourier-transform infrared (FTIR) spectra indicated the presence of hydrophobic chains that comprise lipids, sugars, and hydrophilic glycolipid components. The optimization results showed the optimal factors included potato peel as a carbon source with 68.8% emulsification activity, yeast extract as a nitrogen source with 60% emulsification activity, a pH of 9 (56.6%), and a temperature of 50° (72%). The kinetics showed that optimum biosurfactant production (572.4 mg/L) was recorded at 5 days of incubation. The produced rhamnolipid biosurfactant showed high antimicrobial activity against some human and plant pathogenic bacterial and fungal isolates and high antioxidant activity (90.4%). In addition, it enhanced wheat (Triticum aestivum) growth, with the greatest enhancement obtained with the 5% concentration. Therefore, thermophilic G. stearothermophilus is a promising rhamnolipid biosurfactant producer that utilizes many organic wastes. The produced biosurfactant could be applied as a promising emulsifier, antimicrobial, antioxidant, and plant growth promoter.
Collapse
Affiliation(s)
- Hibah M. Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa A. Almohammadi
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Areej Alhhazmi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Duaa A. Bukhari
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Moayad S. Waznah
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: types and mechanism of action. Res Microbiol 2024; 175:104111. [PMID: 37844786 DOI: 10.1016/j.resmic.2023.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/18/2023]
Abstract
Biofilms have been recognized as a serious threat to public health as it protects microbes from antimicrobials, immune defence mechanisms, chemical treatments and nutritional stress. Biofilms are also a source of concern in industries and water treatment because their presence compromises the integrity of equipment. To overcome these problems, it is necessary to identify novel anti-biofilm compounds. Products of microorganisms have been identified as promising broad-spectrum anti-biofilm agents. These natural products include biosurfactants, antimicrobial peptides, enzymes and bioactive compounds. Anti-biofilm products of microbial origin are chemically diverse and possess a broad spectrum of activities against biofilms. The objective of this review is to give an overview of the different types of microbial anti-biofilm products and their mechanisms of action.
Collapse
Affiliation(s)
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Minna, Nigeria; African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria.
| | | | | | - Asmau Nna Sulaiman
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reham Tarek
- Department of Biotechnology, Cairo University, Egypt
| |
Collapse
|
9
|
Sukmarini L, Atikana A, Hertiani T. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J Nat Med 2024; 78:1-20. [PMID: 37930514 DOI: 10.1007/s11418-023-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Controlling and treating biofilm-related infections is challenging because of the widespread presence of multidrug-resistant microbes. Biofilm, a naturally occurring matrix of microbial aggregates, has developed intricate and diverse resistance mechanisms against many currently used antibiotics. This poses a significant problem, especially for human health, including clinically chronic infectious diseases. Thus, there is an urgent need to search for and develop new and more effective antibiotics. As the marine environment is recognized as a promising reservoir of new biologically active molecules with potential pharmacological properties, marine natural products, particularly those of microbial origin, have emerged as a promising source of antibiofilm agents. Marine microbes represent an untapped source of secondary metabolites with antimicrobial activity. Furthermore, marine natural products, owing to their self-defense mechanisms and adaptation to harsh conditions, encompass a wide range of chemical compounds, including peptides and polyketides, which are primarily found in microbes. These molecules can be exploited to provide novel and unique structures for developing alternative antibiotics as effective antibiofilm agents. This review focuses on the possible antibiofilm mechanism of these marine microbial molecules against biofilm-forming pathogens. It provides an overview of biofilm development, its recalcitrant mode of action, strategies for the development of antibiofilm agents, and their assessments. The review also revisits some selected peptides and polyketides from marine microbes reported between 2016 and 2023, highlighting their moderate and considerable antibiofilm activities. Moreover, their antibiofilm mechanisms, such as adhesion modulation/inhibition targeting biofilm-forming pathogens, quorum sensing intervention and inhibition, and extracellular polymeric substance disruption, are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia.
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Akhirta Atikana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Triana Hertiani
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
- Pharmaceutical Biology Department, Faculty of Pharmacy, Gadjah Mada University, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
10
|
Gharaie S, Ohadi M, Hassanshahian M, Shakibaie M, Shahriary P, Forootanfar H. Glycolipopeptide biosurfactant from Bacillus pumilus SG: physicochemical characterization, optimization, antibiofilm and antimicrobial activity evaluation. 3 Biotech 2023; 13:321. [PMID: 37649591 PMCID: PMC10462595 DOI: 10.1007/s13205-023-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
The Bacillus pumilus SG isolated from soil samples at the Persian Gulf was analyzed for its ability to produce biosurfactant. Various screening techniques were used for evaluating biosurfactant production and confirming biosurfactant presence in the culture supernatant. Most n-alkanes in the bacterial culture media were effectively degraded in the presence of biosurfactant acquired from the bacteria. The highest interfacial tension (IT) reduction (42 mN/m) was obtained at 24-h fermentation time (exponential phase) and did not change significantly afterwards. The glycolipid structure of the biosurfactant was revealed through NMR and FTIR spectroscopy analysis. Two-level factorial design was then applied for optimization of biosurfactant production, where a maximal reduction of culture broth IT (30 mN/m) acquired in the presence of crude oil (0.5%, v/v), NaNO3 (1 g/L), yeast extract (1 g/L), peptone (2 g/L) and temperature of 25 °C. The produced biosurfactant that exhibited a critical micelle concentration of 0.1 mg/ml was thermally stable. The glycolipid biosurfactant also displayed significant antibacterial activities against both Gram-positive and Gram-negative bacteria. The maximum inhibition of glycolipids biosurfactant was found against Acinetobacter strains (zone of inhibition, 45 mm). In addition, antibiofilm activities with a 50-90% biofilm reduction percent were indicated by the glycolipid biosurfactant. In conclusion, the glycolipid biosurfactant produced by B. pumilus SG revealed a wide range of functional properties and was verified as a good candidate for biomedical application. In conclusion, the glycolipid biosurfactant produced by B. pumilus SG showed a wide range of functional properties in this study, and in the case of further in vivo studies, it can be investigated a good candidate for biomedical applications such as use against biofilm or in pharmaceutical formulations.
Collapse
Affiliation(s)
- Sanaz Gharaie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Poorandokht Shahriary
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
12
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
13
|
Jayaraman S, Adhilaxmi Kannan M, Rajendhran N, John GJ, Ramasamy T. Indole-3-acetic acid impacts biofilm formation and virulence production of Pseudomonas aeruginosa. BIOFOULING 2023; 39:800-815. [PMID: 37853689 DOI: 10.1080/08927014.2023.2269537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Bacterial pathogenesis involves complex mechanisms contributing to virulence and persistence of infections. Understanding the multifactorial nature of bacterial infections is crucial for developing effective interventions. The present study investigated the efficacy of indole-3-acetic acid (IAA) against Pseudomonas aeruginosa with various end points including antibacterial activity, minimum inhibitory concentration (MIC), virulence factor production, biofilm inhibition, bacterial cell detachment, and viability assays. Results showed significant biofilm inhibition, bacterial cell detachment, and modest effects on bacterial viability. Microscopic analysis confirmed the disintegrated biofilm matrix, supporting the inhibitory effect of IAA. Additionally, molecular docking studies revealed potential mechanisms of action through active bond interactions between IAA and virulence proteins. These findings highlight IAA as an effective antibiofilm agent against P. aeruginosa.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Georrge J John
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
14
|
Amer MA, Wasfi R, Hamed SM. Biosurfactant from Nile Papyrus endophyte with potential antibiofilm activity against global clones of Acinetobacter baumannii. Front Cell Infect Microbiol 2023; 13:1210195. [PMID: 37520441 PMCID: PMC10373939 DOI: 10.3389/fcimb.2023.1210195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Acinetobacter baumannii is a leading cause of biofilm-associated infections, particularly catheter-related bloodstream infections (CRBSIs) that are mostly recalcitrant to antimicrobial therapy. One approach to reducing the burden of CRBSIs is inhibiting biofilm formation on catheters. Owing to their prodigious microbial diversity, bacterial endophytes might be a valuable source of biosurfactants, which are known for their great capacity to disperse microbial biofilms. With this in mind, our study aimed to screen bacterial endophytes from plants growing on the banks of the River Nile for the production of powerful biosurfactants capable of reducing the ability of A. baumannii to form biofilms on central venous catheters (CVCs). This was tested on multidrug- and extensive drug-resistant (M/XDR) clinical isolates of A. baumannii that belong to high-risk global clones and on a standard strain of A. baumannii ATCC 19606. The drop collapse and oil dispersion assays were employed in screening the cell-free supernatants (CFS) of all endophytes for biosurfactant activity. Of the 44 bacterial endophytes recovered from 10 plants, the CFS of Bacillus amyloliquefaciens Cp24, isolated from Cyperus papyrus, showed the highest biosurfactant activity. The crude biosurfactant extract of Cp24 showed potent antibacterial activity with minimum inhibitory concentrations (MICs) ranging from 0.78 to 1.56 mg/ml. It also showed significant antibiofilm activity (p-value<0.01). Sub-MICs of the extract could reduce biofilm formation by up to 89.59%, while up to 87.3% of the preformed biofilms were eradicated by the MIC. A significant reduction in biofilm formation on CVCs impregnated with sub-MIC of the extract was demonstrated by CV assay and further confirmed by scanning electron microscopy. This was associated with three log10 reductions in adhered bacteria in the viable count assay. GC-MS analysis of the crude biosurfactant extract revealed the presence of several compounds, such as saturated, unsaturated, and epoxy fatty acids, cyclopeptides, and 3-Benzyl-hexahydro-pyrrolo [1, 2-a] pyrazine-1,4-dione, potentially implicated in the potent biosurfactant and antibiofilm activities. In the present study, we report the isolation of a B. amyloliquefaciens endophyte from the plant C. papyrus that produces a biosurfactant with potent antibiofilm activity against MDR/XDR global clones of A. baumannii. The impregnation of CVCs with the biosurfactant was demonstrated to reduce biofilms and, hence, proposed as a potential strategy for reducing CRBSIs.
Collapse
|
15
|
Gill SP, Snelling WJ, Dooley JSG, Ternan NG, Banat IM, Arnscheidt J, Hunter WR. Biological and synthetic surfactant exposure increases antimicrobial gene occurrence in a freshwater mixed microbial biofilm environment. Microbiologyopen 2023; 12:e1351. [PMID: 37186226 PMCID: PMC10022493 DOI: 10.1002/mbo3.1351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Aquatic habitats are particularly susceptible to chemical pollution, such as antimicrobials, from domestic, agricultural, and industrial sources. This has led to the rapid increase of antimicrobial resistance (AMR) gene prevalence. Alternate approaches to counteract pathogenic bacteria are in development including synthetic and biological surfactants such as sodium dodecyl sulfate (SDS) and rhamnolipids. In the aquatic environment, these surfactants may be present as pollutants with the potential to affect biofilm formation and AMR gene occurrence. We tested the effects of rhamnolipid and SDS on aquatic biofilms in a freshwater stream in Northern Ireland. We grew biofilms on contaminant exposure substrates deployed within the stream over 4 weeks. We then extracted DNA and carried out shotgun sequencing using a MinION portable sequencer to determine microbial community composition, with 16S rRNA analyses (64,678 classifiable reads identified), and AMR gene occurrence (81 instances of AMR genes over 9 AMR gene classes) through a metagenomic analysis. There were no significant changes in community composition within all systems; however, biofilm exposed to rhamnolipid had a greater number of unique taxa as compared to SDS treatments and controls. AMR gene prevalence was higher in surfactant-treated biofilms, although not significant, with biofilm exposed to rhamnolipids having the highest presence of AMR genes and classes compared to the control or SDS treatments. Our results suggest that the presence of rhamnolipid encourages an increase in the prevalence of AMR genes in biofilms produced in mixed-use water bodies.
Collapse
Affiliation(s)
- Stephanie P. Gill
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Joerg Arnscheidt
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William R. Hunter
- Fisheries and Aquatic Ecosystems BranchAgri‐Food and Biosciences InstituteBelfastNorthern Ireland
| |
Collapse
|
16
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
17
|
Guan C, Zhang W, Su J, Li F, Chen D, Chen X, Huang Y, Gu R, Zhang C. Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract. BMC Microbiol 2023; 23:12. [PMID: 36635630 PMCID: PMC9835366 DOI: 10.1186/s12866-022-02751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Foodborne pathogens and spoilage bacteria survived in the biofilm pose a serious threat to food safety and human health. It is urgent to find safe and effective methods to control the planktonic bacteria as well as the biofilm formation. Substances with antibacterial and antibiofilm activity found in lactic acid bacteria were mainly metabolites secreted in the cell-free supernatant. Previously, Lacticaseibacillus rhamnosus YT was isolated because its cell pellets displayed distinguished antibacterial activity under neutral conditions. This study aimed to investigate the antibacterial and antibiofilm properties of the L. rhamnosus YT cells and its crude cell-surface extract. RESULTS The antibacterial activity of the L. rhamnosus YT cells constantly increased with cells growth and reached the peak value after the cells grew into stationary phase. After cocultivation with the L. rhamnosus YT cells, the biofilm formation of B. subtilis and S. enterica was reduced. The antibacterial activity of the L. rhamnosus YT cells was varied along with various culture conditions (carbon sources, nitrogen sources, medium pH and cultural temperatures) and the antibacterial intensity (antibacterial activity per cell) was disproportional to the biomass. Furthermore, the cell-surface extract was isolated and displayed broad antimicrobial spectrum with a bacteriostatic mode of action. The antibiofilm activity of the extract was concentration-dependent. In addition, the extract was stable to physicochemical treatments (heat, pH and protease). The extract performed favorable emulsifying property which could reduce the water surface tension from 72.708 mN/m to 51.011 mN/m and the critical micelle concentration (CMC) value was 6.88 mg/mL. Besides, the extract was also able to emulsify hydrocarbon substrates with the emulsification, index (E24) ranged from 38.55% (for n-hexane) to 53.78% (for xylene). The E24 for xylene/extract emulsion was merely decreased by 5.77% after standing for 120 h. The main components of the extract were polysaccharide (684.63 μg/mL) and protein (120.79 μg/mL). CONCLUSION The properties of the extract indicated that it might be a kind of biosurfactant. These data suggested that L. rhamnosus YT and the cell-surface extract could be used as an alternative antimicrobial and antibiofilm agent against foodborne pathogens and spoilage bacteria in food industry.
Collapse
Affiliation(s)
- Chengran Guan
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Wenjuan Zhang
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Jianbo Su
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Feng Li
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Dawei Chen
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Xia Chen
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Yujun Huang
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Ruixia Gu
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Chenchen Zhang
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| |
Collapse
|
18
|
Jothi R, Sangavi R, Raja V, Kumar P, Pandian SK, Gowrishankar S. Alteration of Cell Membrane Permeability by Cetyltrimethylammonium Chloride Induces Cell Death in Clinically Important Candida Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010027. [PMID: 36612353 PMCID: PMC9819714 DOI: 10.3390/ijerph20010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 05/25/2023]
Abstract
The increased incidence of healthcare-related Candida infection has necessitated the use of effective disinfectants/antiseptics in healthcare settings as a preventive measure to decontaminate the hospital environment and stop the persistent colonization of the offending pathogens. Quanternary ammonium surfactants (QASs), with their promising antimicrobial efficacy, are considered as intriguing and appealing candidates for disinfectants. From this perspective, the present study investigated the antifungal efficacy and action mechanism of the QAS cetyltrimethylammonium chloride (CTAC) against three clinically important Candida species: C. albicans, C. tropicalis, and C. glabrata. CTAC exhibited phenomenal antifungal activity against all tested Candida spp., with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) between 2 and 8 µg/mL. The time−kill kinetics of CTAC (at 2XMIC) demonstrated that an exposure time of 2 h was required to kill 99.9% of the inoculums in all tested strains. An important observation was that CTAC treatment did not influence intracellular reactive oxygen species (ROS), signifying that its phenomenal anticandidal efficacy was not mediated via oxidative stress. In addition, sorbitol supplementation increased CTAC’s MIC values against all tested Candida strains by three times (8−32 μg/mL), indicating that CTAC’s possible antifungal activity involves fungus cell membrane destruction. Interestingly, the increased fluorescence intensity of CTAC-treated cells in both propidium iodide (PI) and DAPI staining assays indicated the impairment of cell plasma membrane and nuclear membrane integrity by CTAC, respectively. Additionally, CTAC at MIC and 2XMIC was sufficient (>80%) to disrupt the mature biofilms of all tested spp., and it inhibited the yeast-to-hyphae transition at sub-MIC in C. albicans. Finally, the non-hemolytic activity of CTAC (upto 32 µg/mL) in human blood cells and HBECs signified its non-toxic nature at the investigated concentrations. Furthermore, thymol and citral, two phytocompounds, together with CTAC, showed synergistic fungicidal effectiveness against C. albicans planktonic cells. Altogether, the data of the present study appreciably broaden our understanding of the antifungal action mechanism of CTAC and support its future translation as a potential disinfectant against Candida-associated healthcare infections.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Veerapandian Raja
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
19
|
DALLAGI H, FAILLE C, GRUESCU C, ALOUI F, BENEZECH T. Foam flow cleaning, an effective and environmentally friendly method for controlling the hygiene of closed surfaces contaminated with biofilms. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Najda A, Bains A, Klepacka J, Chawla P. Woodfordia fruticosa extract nanoemulsion: Influence of processing treatment on droplet size and its assessment for in vitro antimicrobial and anti-inflammatory activity. Front Nutr 2022; 9:944856. [PMID: 36225883 PMCID: PMC9549264 DOI: 10.3389/fnut.2022.944856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, plant-derived bioactive compounds have been utilized in the preparation of several functional food products; however, stability and water solubility are major constraints to these compounds. Therefore, to overcome this problem, the synthesis of nanoemulsion (oil in water) with varying concentrations of Woodfordia fruticosa flower extract (1%−10% w/v) was carried out and characterization of nanoemulsion was done. The average droplet size of nanoemulsion samples ranges from 149.25 to 244.33 nm. The control and WFNE3 nanoemulsion showed significantly (p < 0.05) higher thermal stability when correlated with average droplet size. An insignificant difference (p > 0.05) was observed in the average droplet size and zeta potential WFNE3 (−30.3mV) with the increased temperature rate. At varied pH ranges, WFNE3 showed significantly higher (p < 0.05) stability in comparison with the control nanoemulsion sample. In terms of ionic strength, WFNE3 nanoemulsion sample showed significantly (p < 0.05) higher stability, and with an increasing concentration of salt, the colloidal system of the WFNE3 sample showed significantly (p < 0.05) higher droplet size (318.91 nm). Therefore, the antimicrobial potential of WFNE3 nanoemulsion in comparison with extract of W. fruticosa flower extract was studied against Gram-positive Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, and fungal strain Candida albicans, respectively. WFNE3 nanoemulsion sample in comparison to flower extract showed a significantly higher (p < 0.05) zone of inhibition against gram-negative bacteria as compared to the control nanoemulsion sample upon storage for 7 days. WFNE3 nanoemulsion sample showed significant (p < 0.05) higher inhibition of protein denaturation (57.89%−87.65%) and (55.36%−83.58%) in comparison to control nanoemulsion sample (54.67%−80.28%) and flower extract (51.56%−79.36%), respectively. Due to these biological activities, the WFNE3 nanoemulsion sample could be scaled up to the industrial level for the formulation of varied types of functional foods.
Collapse
Affiliation(s)
- Agnieszka Najda
- Department of Vegetable and Herbal Crops, The University of Life Science in Lublin, Lublin, Poland
- *Correspondence: Agnieszka Najda
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, India
- Aarti Bains
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
- Prince Chawla
| |
Collapse
|
21
|
Hsiao YC, Hung YH, Horng YJ, Chang CW. Antimicrobial effects of automobile screenwashes against Legionella pneumophila. J Appl Microbiol 2022; 133:3596-3604. [PMID: 36000381 DOI: 10.1111/jam.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
AIMS Legionella pneumophila (Lp), a human pathogen, has been detected in windscreen wiper fluid reservoirs (WWFRs) where commercial screenwashes (CSWs) are commonly added. Limited information is available on CSWs against planktonic Lp; however, responses of sessile Lp and planktonic Lp pre-acclimated in nutrient-limited water to CSWs remain unknown. This study thus investigates the antibacterial effects of CSWs on sessile and starved planktonic Lp, in comparison with unstarved Lp. METHODS AND RESULTS Lp biofilms were produced on glass and WWFR materials of high-density polyethylene (HDPE) and polypropylene (PP). Planktonic Lp with and without acclimation in tap water were prepared. Log reductions in cell counts averaged 0.4-5.0 for ten brands of CSWs against sessile Lp and 1.0-3.9 and 0.9-4.9, respectively, against starved and unstarved planktonic Lp for five CSWs. Both biofilm formation and acclimation in tap water enhanced Lp resistance to CSWs. Significantly different log-reduction values among CSW brands were observed for sessile Lp on HDPE and planktonic Lp regardless of acclimation (p<0.05). CONCLUSIONS Biofilm formation, starvation acclimation, and CSW brand are crucial factors influencing Lp response to CSWs. SIGNIFICANCE AND IMPACT OF STUDY This study advances the knowledge of Lp reaction in anthropogenic water systems with CSWs.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Public Health, National Taiwan University, Taiwan
| | - Yu-Hsin Hung
- Department of Public Health, National Taiwan University, Taiwan
| | - Yu-Ju Horng
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| | - Ching-Wen Chang
- Department of Public Health, National Taiwan University, Taiwan.,Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| |
Collapse
|
22
|
Gil CV, Rebocho AT, Esmail A, Sevrin C, Grandfils C, Torres CAV, Reis MAM, Freitas F. Characterization of the Thermostable Biosurfactant Produced by Burkholderia thailandensis DSM 13276. Polymers (Basel) 2022; 14:polym14102088. [PMID: 35631971 PMCID: PMC9143496 DOI: 10.3390/polym14102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biosurfactants synthesized by microorganisms represent safe and sustainable alternatives to the use of synthetic surfactants, due to their lower toxicity, better biodegradability and biocompatibility, and their production from low-cost feedstocks. In line with this, the present study describes the physical, chemical, and functional characterization of the biopolymer secreted by the bacterium Burkholderia thailandensis DSM 13276, envisaging its validation as a biosurfactant. The biopolymer was found to be a glycolipopeptide with carbohydrate and protein contents of 33.1 ± 6.4% and 23.0 ± 3.2%, respectively. Galactose, glucose, rhamnose, mannose, and glucuronic acid were detected in the carbohydrate moiety at a relative molar ratio of 4:3:2:2:1. It is a high-molecular-weight biopolymer (1.0 × 107 Da) with low polydispersity (1.66), and forms aqueous solutions with shear-thinning behavior, which remained after autoclaving. The biopolymer has demonstrated a good emulsion-stabilizing capacity towards different hydrophobic compounds, namely, benzene, almond oil, and sunflower oil. The emulsions prepared with the biosurfactant, as well as with its autoclaved solution, displayed high emulsification activity (>90% and ~50%, respectively). Moreover, the almond and sunflower oil emulsions stabilized with the biosurfactant were stable for up to 4 weeks, which further supports the potential of this novel biopolymer for utilization as a natural bioemulsifier.
Collapse
Affiliation(s)
- Cátia V. Gil
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Ana Teresa Rebocho
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Asiyah Esmail
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Chantal Sevrin
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Christian Grandfils
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Cristiana A. V. Torres
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948300
| | - Maria A. M. Reis
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Filomena Freitas
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| |
Collapse
|
23
|
Ali SAM, Sayyed RZ, Mir MI, Khan MY, Hameeda B, Alkhanani MF, Haque S, Mohammad Al Tawaha AR, Poczai P. Induction of Systemic Resistance in Maize and Antibiofilm Activity of Surfactin From Bacillus velezensis MS20. Front Microbiol 2022; 13:879739. [PMID: 35615505 PMCID: PMC9126211 DOI: 10.3389/fmicb.2022.879739] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Surfactin lipopeptide is an eco-friendly microbially synthesized bioproduct that holds considerable potential in therapeutics (antibiofilm) as well as in agriculture (antifungal). In the present study, production of surfactin by a marine strain Bacillus velezensis MS20 was carried out, followed by physico-chemical characterization, anti-biofilm activity, plant growth promotion, and quantitative Reverse Transcriptase-Polymerase Chain Reaction (q RT-PCR) studies. From the results, it was inferred that MS20 was found to produce biosurfactant (3,300 mg L-1) under optimized conditions. From the physicochemical characterization [Thin layer chromatography (TLC), Fourier Transform Infrared (FTIR) Spectroscopy, Liquid Chromatography/Mass Spectroscopy (LC/MS), and Polymerase Chain Reaction (PCR) amplification] it was revealed to be surfactin. From bio-assay and scanning electron microscope (SEM) images, it was observed that surfactin (MIC 50 μg Ml-1) has appreciable bacterial aggregation against clinical pathogens Pseudomonas aeruginosa MTCC424, Escherichia coli MTCC43, Klebsiella pneumoniae MTCC9751, and Methicillin resistant Staphylococcus aureus (MRSA) and mycelial condensation property against a fungal phytopathogen Rhizoctonia solani. In addition, the q-RTPCR studies revealed 8-fold upregulation (9.34 ± 0.11-fold) of srfA-A gene compared to controls. Further, treatment of maize crop (infected with R. solani) with surfactin and MS20 led to the production of defense enzymes. In conclusion, concentration and synergy of a carbon source with inorganic/mineral salts can ameliorate surfactin yield and, application wise, it has antibiofilm and antifungal activities. In addition, it induced systemic resistance in maize crop, which makes it a good candidate to be employed in sustainable agricultural practices.
Collapse
Affiliation(s)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, India
| | - Mohammad I. Mir
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - M. Y. Khan
- Kalam Biotech Pvt Ltd., Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, Al-Maarefa University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Péter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
25
|
Najda A, Bains A, Chawla P, Kumar A, Balant S, Walasek-Janusz M, Wach D, Kaushik R. Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis. Molecules 2021; 26:molecules26237193. [PMID: 34885782 PMCID: PMC8659256 DOI: 10.3390/molecules26237193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Currently, the potential utilization of natural plant-derived extracts for medicinal and therapeutic purposes has increased remarkably. The current study, therefore, aimed to assess the antimicrobial and anti-inflammatory activity of modified solvent evaporation-assisted ethanolic extract of Woodfordia fruticosa flowers. For viable use of the extract, qualitative analysis of phytochemicals and their identification was carried out by gas chromatography-mass spectroscopy. Analysis revealed that phenolic (65.62 ± 0.05 mg/g), flavonoid (62.82 ± 0.07 mg/g), and ascorbic acid (52.46 ± 0.1 mg/g) components were present in high amounts, while β-carotene (62.92 ± 0.02 µg/mg) and lycopene (60.42 ± 0.8 µg/mg) were present in lower amounts. The antimicrobial proficiency of modified solvent-assisted extract was evaluated against four pathogenic bacterial and one fungal strain, namely Staphylococcusaureus (MTCC 3160), Klebsiellapneumoniae (MTCC 3384), Pseudomonasaeruginosa (MTCC 2295), and Salmonellatyphimurium (MTCC 1254), and Candidaalbicans (MTCC 183), respectively. The zone of inhibition was comparable to antibiotics streptomycin and amphotericin were used as a positive control for pathogenic bacterial and fungal strains. The extract showed significantly higher (p < 0.05) anti-inflammatory activity during the albumin denaturation assay (43.56-86.59%) and HRBC membrane stabilization assay (43.62-87.69%). The extract showed significantly (p < 0.05) higher DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay and the obtained results are comparable with BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene) with percentage inhibitions of 82.46%, 83.34%, and 84.23%, respectively. Therefore, the obtained results concluded that ethanolic extract of Woodfordia fruticosa flowers could be utilized as a magnificent source of phenols used for the manufacturing of value-added food products.
Collapse
Affiliation(s)
- Agnieszka Najda
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (S.B.); (M.W.-J.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India
- Correspondence: (A.B.); (P.C.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
- Correspondence: (A.B.); (P.C.)
| | - Anil Kumar
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, Himachal Pradesh, India;
| | - Sebastian Balant
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (S.B.); (M.W.-J.)
| | - Magdalena Walasek-Janusz
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (S.B.); (M.W.-J.)
| | - Dariusz Wach
- Subdepartment of Plant Nutrition, University of Life Science in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| |
Collapse
|
26
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
27
|
Zhang S, Liang X, Gadd GM, Zhao Q. Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Mar Drugs 2021; 19:255. [PMID: 33946845 PMCID: PMC8145997 DOI: 10.3390/md19050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK;
| | - Xinjin Liang
- The Bryden Center, School of Chemical and Chemistry Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | | | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
28
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|
29
|
Ceresa C, Rinaldi M, Tessarolo F, Maniglio D, Fedeli E, Tambone E, Caciagli P, Banat IM, Diaz De Rienzo MA, Fracchia L. Inhibitory Effects of Lipopeptides and Glycolipids on C. albicans-Staphylococcus spp. Dual-Species Biofilms. Front Microbiol 2021; 11:545654. [PMID: 33519721 PMCID: PMC7838448 DOI: 10.3389/fmicb.2020.545654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms strongly resist host immune responses and antimicrobial treatments and are frequently responsible for chronic infections in peri-implant tissues. Biosurfactants (BSs) have recently gained prominence as a new generation of anti-adhesive and antimicrobial agents with great biocompatibility and were recently suggested for coating implantable materials in order to improve their anti-biofilm properties. In this study, the anti-biofilm activity of lipopeptide AC7BS, rhamnolipid R89BS, and sophorolipid SL18 was evaluated against clinically relevant fungal/bacterial dual-species biofilms (Candida albicans, Staphylococcus aureus, Staphylococcus epidermidis) through quantitative and qualitative in vitro tests. C. albicans-S. aureus and C. albicans-S. epidermidis cultures were able to produce a dense biofilm on the surface of the polystyrene plates and on medical-grade silicone discs. All tested BSs demonstrated an effective inhibitory activity against dual-species biofilms formation in terms of total biomass, cell metabolic activity, microstructural architecture, and cell viability, up to 72 h on both these surfaces. In co-incubation conditions, in which BSs were tested in soluble form, rhamnolipid R89BS (0.05 mg/ml) was the most effective among the tested BSs against the formation of both dual-species biofilms, reducing on average 94 and 95% of biofilm biomass and metabolic activity at 72 h of incubation, respectively. Similarly, rhamnolipid R89BS silicone surface coating proved to be the most effective in inhibiting the formation of both dual-species biofilms, with average reductions of 93 and 90%, respectively. Scanning electron microscopy observations showed areas of treated surfaces that were free of microbial cells or in which thinner and less structured biofilms were present, compared to controls. The obtained results endorse the idea that coating of implant surfaces with BSs may be a promising strategy for the prevention of C. albicans-Staphylococcus spp. colonization on medical devices, and can potentially contribute to the reduction of the high economic efforts undertaken by healthcare systems for the treatment of these complex fungal-bacterial infections.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Maurizio Rinaldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Francesco Tessarolo
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Devid Maniglio
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Erica Tambone
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy
| | - Patrizio Caciagli
- Section of Electron Microscopy, Department of Medicine Laboratory, Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, United Kingdom
| | - Mayri Alessandra Diaz De Rienzo
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
30
|
Lactobacillus crispatus BC1 Biosurfactant Delivered by Hyalurosomes: An Advanced Strategy to Counteract Candida Biofilm. Antibiotics (Basel) 2021; 10:antibiotics10010033. [PMID: 33401413 PMCID: PMC7823809 DOI: 10.3390/antibiotics10010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of resistance to antifungal drugs has made the treatment of vulvovaginal candidiasis (VVC) very challenging. Among natural substances, biosurfactants (BS) produced by Lactobacillus have gained increasing interest in counteracting Candida infections for their proven anti-adhesive properties and safety profile. In the present study, liposomes (LP-BS) or liposomes coated with hyaluronic acid (HY-LP-BS) were prepared in the presence of the BS isolated from the vaginal strain Lactobacillus crispatus BC1 and characterized in terms of size, ζ potential, stability and mucoadhesion. The anti-biofilm activity of free BS, LP-BS and HY-LP-BS was investigated against different Candida albicans and non-albicans strains (C. glabrata, C. lusitaniae, C. tropicalis, C. krusei and C. parapsilosis), clinically isolated from patients affected by VVC. The inhibition of biofilm formation and the dispersal of pre-formed biofilm were evaluated. The obtained phospholipid vesicles showed suitable size for vaginal application and good stability over the storage period. HY-LP-BS exhibited good mucoadhesive properties and the best anti-biofilm profile, both in preventing or limiting the surface colonization by a broad spectrum of Candida species. In conclusion, the formulation of a novel antifungal agent derived from the vaginal microbiota into mucoadhesive nanocarriers appears to be a promising biotherapeutic strategy to counteract vulvovaginal candidiasis.
Collapse
|
31
|
Nalini S, Inbakandan D, Stalin Dhas T, Sathiyamurthi S. Optimization of biosurfactant production by marine Streptomyces youssoufiensis SNSAA03: A comparative study of RSM and ANN approach. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front Microbiol 2020; 11:566325. [PMID: 33193155 PMCID: PMC7658412 DOI: 10.3389/fmicb.2020.566325] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.
Collapse
Affiliation(s)
- Rojita Mishra
- Department of Botany, Polasara Science College, Polasara, India
| | | | - Surajit De Mandal
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Junaid Khan
- Department of Pharmacy, Sant Gahira Guru University, Ambikapur, India
| |
Collapse
|