1
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Petrovic D, Bodinier B, Dagnino S, Whitaker M, Karimi M, Campanella G, Haugdahl Nøst T, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Lund E, Dugué PA, Giles GG, Severi G, Southey M, Vineis P, Stringhini S, Bochud M, Sandanger TM, Vermeulen RCH, Guida F, Chadeau-Hyam M. Epigenetic mechanisms of lung carcinogenesis involve differentially methylated CpG sites beyond those associated with smoking. Eur J Epidemiol 2022; 37:629-640. [PMID: 35595947 PMCID: PMC9288379 DOI: 10.1007/s10654-022-00877-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Smoking-related epigenetic changes have been linked to lung cancer, but the contribution of epigenetic alterations unrelated to smoking remains unclear. We sought for a sparse set of CpG sites predicting lung cancer and explored the role of smoking in these associations. We analysed CpGs in relation to lung cancer in participants from two nested case-control studies, using (LASSO)-penalised regression. We accounted for the effects of smoking using known smoking-related CpGs, and through conditional-independence network. We identified 29 CpGs (8 smoking-related, 21 smoking-unrelated) associated with lung cancer. Models additionally adjusted for Comprehensive Smoking Index-(CSI) selected 1 smoking-related and 49 smoking-unrelated CpGs. Selected CpGs yielded excellent discriminatory performances, outperforming information provided by CSI only. Of the 8 selected smoking-related CpGs, two captured lung cancer-relevant effects of smoking that were missed by CSI. Further, the 50 CpGs identified in the CSI-adjusted model complementarily explained lung cancer risk. These markers may provide further insight into lung cancer carcinogenesis and help improving early identification of high-risk patients.
Collapse
Affiliation(s)
- Dusan Petrovic
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Sonia Dagnino
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Matthew Whitaker
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Maryam Karimi
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Bureau de Biostatistique et d'Épidémiologie, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Oncostat U1018, Inserm, Équipe Labellisée Ligue Contre Le Cancer, Université Paris-Saclay, Villejuif, France
| | - Gianluca Campanella
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE- ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology Città Della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The Norwegian Cancer Registry, Oslo, Norway
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Gianluca Severi
- Centre for Research in Epidemiology and Population Health, Inserm (Institut National de La Sante Et de a Recherche Medicale), Villejuif, France
| | - Melissa Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Silvia Stringhini
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roel C H Vermeulen
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, Utrecht, The Netherlands
| | - Florence Guida
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Group of Genetic Epidemiology, International Agency for Research on Cancer (IARC) - World Health Organization (WHO), Lyon, France
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
La Marca A, Spaggiari G, Domenici D, Grassi R, Casonati A, Baraldi E, Trenti T, Simoni M, Santi D. Elevated levels of nitrous dioxide are associated with lower AMH levels: a real-world analysis. Hum Reprod 2021; 35:2589-2597. [PMID: 32951044 DOI: 10.1093/humrep/deaa214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Are there any associations between environmental pollutants and ovarian reserve, expressed by anti-Mullerian hormone (AMH) serum levels? SUMMARY ANSWER In this first real-world approach to demonstrate the relationship between air pollutants and serum AMH levels, adverse associations were observed for nitrogen dioxide (NO2) but not with particulate matter. WHAT IS KNOWN ALREADY In recent years, air pollution has emerged as a potential disrupter to the homeostasis of physiological hormones, possibly affecting human reproduction. Although the influence of age and smoking on AMH levels is largely accepted, the relationship between AMH and the environment has not currently been established. STUDY DESIGN, SIZE, DURATION A longitudinal, observational, retrospective, real-world study was carried out, including all AMH measurements performed in a single laboratory from January 2007 to October 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS Serum AMH data were connected to patients' age and residential address, to include air pollution data after geo-localisation. The air pollution considered daily particulate matter (PM) and NO2 values. MAIN RESULTS AND THE ROLE OF CHANCE A total of 1463 AMH measurements were collected (mean 1.94 ng/ml, median 0.90 ng/ml). AMH was inversely related to patients' age in women older than 25 years (adjusted R-squared 0.120, P < 0.001), but not in those younger than 25 years (adjusted R-squared 0.068, P = 0.055). AMH levels were inversely related to environmental pollutants, such as PM10 (Rho = -0.088, P = 0.001), PM2.5 (Rho = -0.062, P = 0.021) and NO2 (Rho = -0.111, P < 0.001). After subdividing the dataset into quartiles for PM10 and PM2.5, the influence of age on AMH serum levels was found to be a stronger influence than that exerted by PM (P = 0.833 and P = 0.370, respectively). On the contrary, considering NO2 quartiles, higher AMH levels were observed in third quartile compared to fourth quartile, even after adjustment for age (P = 0.028), indicating a stronger influence of NO2 exposure on AMH serum levels. Considering an AMH cut-off of 0.3 ng/ml, a significant higher frequency of women with severe ovarian reserve reduction in the fourth quartile was shown only for NO2 (P = 0.010). LIMITATIONS, REASONS FOR CAUTION Several limitations should be underlined, such as the lack of information about work and life habits of each patient and the retrospective nature of the analysis performed on real-world data. WIDER IMPLICATIONS OF THE FINDINGS Although the genetic component is highly predictive for defining the ovarian reserve at birth, potentially modifiable environmental factors could influence the rate of decline in AMH and ovarian reserve during adulthood. STUDY FUNDINGCOMPETING INTEREST(S) Authors have neither funding nor competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgia Spaggiari
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Daniela Domenici
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Enrica Baraldi
- Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy
| | - Manuela Simoni
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|