1
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
2
|
García-Vicente EJ, Martín M, Rey-Casero I, Pérez A, Martínez R, Bravo M, Alonso JM, Risco D. Effect of feed supplementation with probiotics and postbiotics on strength and health status of honey bee (Apis mellifera) hives during late spring. Res Vet Sci 2023; 159:237-243. [PMID: 37178627 DOI: 10.1016/j.rvsc.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Currently, beekeeping faces many risks, such as deteriorating health of honeybees in hives, which results in high mortality rates, mainly during winter. An important consequence is the emergence/re-emergence of communicable diseases such as varroosis or nosemosis. These diseases jeopardize the continuity of the sector because of the absence of effective treatments and harmful residues that they can be retained on wax or honey. This study aimed to evaluate how feed supplementation with probiotic and postbiotic products derived from lactic acid bacteria affected the strength, dynamic population, and sanitary parameters of honey bees. Three groups of 30 hives were established and fed with feed supplemented with control, probiotic, or postbiotic products, with a total of nine applications over two months in late spring. Two monitoring tests were conducted to evaluate the strength and health status of hives. Hives that consumed postbiotic products enhanced their strength, increased bee population and egg laying of the queen, and maintained their reserves of pollen, whereas these parameters decreased in hives belonging to other groups. Furthermore, although the results suggested a favorable effect of postbiotic products on the trend of N. ceranae infection levels, probiotics showed intermediate results. While awaiting long-term results regarding V. destructor infestation, which showed similar trends in all groups, feed supplementation with postbiotics could be an important tool for beekeepers to enhance the strength and health status of their hives.
Collapse
Affiliation(s)
| | - María Martín
- Neobéitar S.L. Av. Alemania 6 1°B, 10001 Cáceres, Spain
| | | | - Ana Pérez
- Neobéitar S.L. Av. Alemania 6 1°B, 10001 Cáceres, Spain
| | - Remigio Martínez
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - María Bravo
- Ingulados, Miguel Servet 11-13, 10004 Cáceres, Spain.
| | - Juan Manuel Alonso
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| | - David Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| |
Collapse
|
3
|
Velloso CCV, Lopes MM, Badino AC, Farinas CS. Exploring the roles of starch for microbial encapsulation through a systematic mapping review. Carbohydr Polym 2023; 306:120574. [PMID: 36746565 DOI: 10.1016/j.carbpol.2023.120574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Microorganism encapsulation protects them from stressful conditions and assists in maintaining their viability, being especially beneficial when the carrier material is a renewable and biodegradable biopolymer, such as starch. Here, a systematic mapping was performed to provide a current overview on the use of starch-based systems for microbial encapsulation. Following well-established guidelines, a systematic mapping was conducted and the following could be drawn: 1) there was a significant increase in publications on microbial encapsulation using starch over the past decade, showing interest from the scientific community, 2) ionotropic gelation, emulsification and spray drying are the most commonly used techniques for starch-based microbial encapsulation, and 3) starch play important functions in the encapsulation matrix such as assisting in the survival of the microorganisms. The information gathered in this systematic mapping can be useful to guide researchers and industrial sectors on the development of innovative starch-based systems for microbial encapsulation.
Collapse
Affiliation(s)
- Camila C V Velloso
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Marina M Lopes
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP 13560-000, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP 13560-000, Brazil.
| |
Collapse
|
4
|
Cerutti Martellet M, Majolo F, Cima L, Goettert MI, Volken de Souza CF. Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Lactobacillus fermentum (MTCC-5898) based fermented whey renders prophylactic action against colitis by strengthening the gut barrier function and maintaining immune homeostasis. Microb Pathog 2022; 173:105887. [DOI: 10.1016/j.micpath.2022.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
6
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
7
|
Wauters L, Slaets H, De Paepe K, Ceulemans M, Wetzels S, Geboers K, Toth J, Thys W, Dybajlo R, Walgraeve D, Biessen E, Verbeke K, Tack J, Van de Wiele T, Hellings N, Vanuytsel T. Efficacy and safety of spore-forming probiotics in the treatment of functional dyspepsia: a pilot randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol 2021; 6:784-792. [PMID: 34358486 DOI: 10.1016/s2468-1253(21)00226-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Current treatments for functional dyspepsia have limited efficacy or present safety issues. We aimed to assess spore-forming probiotics in functional dyspepsia as monotherapy or add-on therapy to long-term treatment with proton-pump inhibitors. METHODS In this single-centre, randomised, double-blind, placebo-controlled pilot trial that took place at University Hospitals Leuven (Leuven, Belgium), adult patients (≥18 years) with functional dyspepsia (as defined by Rome IV criteria, on proton-pump inhibitors or off proton-pump inhibitors) were randomly assigned (1:1) via computer-generated blocked lists, stratified by proton-pump inhibitor status, to receive 8 weeks of treatment with probiotics (Bacillus coagulans MY01 and Bacillus subtilis MY02, 2·5 × 109 colony-forming units per capsule) or placebo consumed twice per day, followed by an open-label extension phase of 8 weeks. Individuals with a history of abdominal surgery, diabetes, coeliac or inflammatory bowel disease, active psychiatric conditions, and use of immunosuppressant drugs, antibiotics, or probiotics in the past 3 months were excluded. All patients and on-site study personnel were masked to treatment allocation in the first 8 weeks. Symptoms, immune activation, and faecal microbiota were assessed and recorded. The primary endpoint was a decrease of at least 0·7 in the postprandial distress syndrome (PDS) score of the Leuven Postprandial Distress Scale in patients with a baseline PDS score of 1 or greater (at least mild symptoms), assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04030780. FINDINGS Between June 3, 2019, and March 11, 2020, of 93 individuals assessed for eligibility, we included 68 patients with functional dyspepsia (51 [75%] women, mean age 40·1 years [SD 14·4], 34 [50%] on proton-pump inhibitors). We randomly assigned 32 participants to probiotics and 36 to placebo. The proportion of clinical responders was higher with probiotics (12 [48%] of 25) than placebo (six [20%] of 30; relative risk 1·95 [95% CI 1·07-4·11]; p=0·028). The number of patients with adverse events was similar with probiotics (five [16%] of 32) and placebo (12 [33%] of 36). Two serious adverse events occurring during the open-label phase (appendicitis and syncope in two separate patients) were assessed as unlikely to be related to the study product. INTERPRETATION In this exploratory study, B coagulans MY01 and B subtilis MY02 were efficacious and safe in the treatment of functional dyspepsia. Participants had potentially beneficial immune and microbial changes, which could provide insights into possible underlying mechanisms as future predictors or treatment targets. FUNDING MY HEALTH.
Collapse
Affiliation(s)
- Lucas Wauters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Helena Slaets
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kim De Paepe
- Centre for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Matthias Ceulemans
- Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Suzan Wetzels
- Experimental Vascular Pathology Group, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Karlien Geboers
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Joran Toth
- Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | | | - Daan Walgraeve
- Department of Gastroenterology, Jessa Ziekenhuis, Hasselt, Belgium
| | - Erik Biessen
- Experimental Vascular Pathology Group, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Kristin Verbeke
- Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Tom Van de Wiele
- Centre for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Reque PM, Brandelli A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Atraki R, Azizkhani M. Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
11
|
Çanga EM, Dudak FC. Improved digestive stability of probiotics encapsulated within poly(vinyl alcohol)/cellulose acetate hybrid fibers. Carbohydr Polym 2021; 264:117990. [PMID: 33910728 DOI: 10.1016/j.carbpol.2021.117990] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Novel cellulose acetate (CA) and poly(vinyl alcohol) (PVA) hybrid fibers, fabricated via angled dual-nozzle electrospinning, were used for the encapsulation of probiotics to enhance their gastrointestinal stability. In this study, Escherichia coli strain Nissle 1917 (EcN) cells were encapsulated within PVA/CA composite mats, where CA enhanced the bacterial stability under gastric conditions and PVA provided protection against the toxic solvent during the electrospinning process. Scanning electron microscopy images revealed that EcN was successfully encapsulated within the hybrid fibers. In the simulated digestive system, free cells lost their viability within 100 min, whereas PVA/CA-encapsulated cells survived with a final count of 3.9 log CFU/mL (from an initial count of 7.8 log CFU/mL), an increase of 1 log CFU/mL compared with those in PVA/PVA fibers. Considering the enhanced viability of the encapsulated cells in the gastrointestinal system, multi-nozzle electrospinning is a promising technique for the fabrication of novel matrices for probiotic encapsulation.
Collapse
Affiliation(s)
- Emine Merve Çanga
- Hacettepe University, Department of Food Engineering, Beytepe, 06800, Ankara, Turkey.
| | - Fahriye Ceyda Dudak
- Hacettepe University, Department of Food Engineering, Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
12
|
Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2224. [PMID: 33182343 PMCID: PMC7695278 DOI: 10.3390/nano10112224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
13
|
Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products. Eur J Pharm Sci 2020; 156:105563. [PMID: 32976956 DOI: 10.1016/j.ejps.2020.105563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Probiotic products require high number of viable and active microorganisms during storage. In this work, the survival of human vaginal Lactobacillus gasseri CRL1320 and Lactobacillus rhamnosus CRL1332 after nanofiber-immobilization by electrospinning with polyvinyl-alcohol, and during storage was evaluated. The optimization of bacterial immobilization and storage conditions using bioprotectors (skim milk-lactose and glycerol) and oxygen-excluding packaging was carried out, compared with lyophilization. After electrospinning, a higher survival rate of L. rhamnosus (93%) compared to L. gasseri (84%) was obtained in nanofibers, with high viable cells (>107 colony-forming unit/g) of the two probiotics in nanofibers stored at -20°C up to 14 days. The storage in oxygen-excluding packaging was an excellent strategy to extend the shelf-life of L. rhamnosus (up to 1.7 × 108 CFU/g) in nanofibers stored at 4°C during 360 days, with no addition of bioprotectives, resulting similar to freeze-dried-cells. L. rhamnosus was successfully incorporated into polymeric hydrophilic nanofibers with a mean diameter of 95 nm. The composite materials were characterized in terms of morphology, and their physicochemical and thermal properties assessed. Nanofiber-immobilized L. rhamnosus cells maintained the inhibition to urogenital pathogens. Thus, polymeric nanofiber-immobilized L. rhamnosus CRL1332 can be included in vaginal probiotic products to prevent or treat urogenital infections.
Collapse
|
14
|
Rupasinghe HPV, Davis A, Kumar SK, Murray B, Zheljazkov VD. Industrial Hemp ( Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020; 25:E4078. [PMID: 32906622 PMCID: PMC7571072 DOI: 10.3390/molecules25184078] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Industrial hemp (Cannabis sativa L., Cannabaceae) is an ancient cultivated plant originating from Central Asia and historically has been a multi-use crop valued for its fiber, food, and medicinal uses. Various oriental and Asian cultures kept records of its production and numerous uses. Due to the similarities between industrial hemp (fiber and grain) and the narcotic/medical type of Cannabis, the production of industrial hemp was prohibited in most countries, wiping out centuries of learning and genetic resources. In the past two decades, most countries have legalized industrial hemp production, prompting a significant amount of research on the health benefits of hemp and hemp products. Current research is yet to verify the various health claims of the numerous commercially available hemp products. Hence, this review aims to compile recent advances in the science of industrial hemp, with respect to its use as value-added functional food ingredients/nutraceuticals and health benefits, while also highlighting gaps in our current knowledge and avenues of future research on this high-value multi-use plant for the global food chain.
Collapse
Affiliation(s)
- H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (A.D.); (B.M.)
| | - Amy Davis
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (A.D.); (B.M.)
| | - Shanthanu K. Kumar
- Section of Horticulture, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA;
| | - Beth Murray
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (A.D.); (B.M.)
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, 431A Crop Science Building, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
15
|
Archacka M, Celińska E, Białas W. Techno-economic analysis for probiotics preparation production using optimized corn flour medium and spray-drying protective blends. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
New Spanish Broom dressings based on Vitamin E and Lactobacillus plantarum for superficial skin wounds. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Sun H, Hua X, Zhang M, Wang Y, Chen Y, Zhang J, Wang C, Wang Y. Whey Protein Concentrate, Pullulan, and Trehalose as Thermal Protective Agents for Increasing Viability of Lactobacillus plantarum Starter by Spray Drying. Food Sci Anim Resour 2020; 40:118-131. [PMID: 31970336 PMCID: PMC6957444 DOI: 10.5851/kosfa.2019.e94] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023] Open
Abstract
It is necessary to add protective agents for protecting the probiotic viability in the preparation process of probiotics starter. In this study, we used whey protein concentrate (WPC), pullulan, trehalose, and sodium glutamate as the protective agent and optimized the proportion of protective agent and spray-drying parameters to achieve the best protective effect on Lactobacillus plantarum. Moreover, the viable counts of L. plantarum in starter stored at different temperatures (-20°C, 4°C, and 25°C) for 360 days were determined. According to response surface method (RSM), the optimal proportion of protective agent was 24.6 g/L WPC, 18.8 g/L pullulan, 16.7 g/L trehalose and 39.3 g/L sodium glutamate. The optimum spray-drying parameters were the ratio of bacteria to protective agents 3:1 (v: v), the feed flow rate 240 mL/h, and the inlet air temperature 115°C through orthogonal test. Based on the above results, the viable counts of L. plantarum was 12.22±0.27 Log CFU/g and the survival rate arrived at 85.12%. The viable counts of L. plantarum stored at -20°C was more than 1010 CFU/g after 200 days.
Collapse
Affiliation(s)
- Haiyue Sun
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Xiaoman Hua
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Minghao Zhang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yu Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yiying Chen
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Chao Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
- National Processing Laboratory for Soybean
Industry and Technology, Changchun,
China
- National Engineering Laboratory for Wheat
and Corn Deep Processing, Changchun,
China
| |
Collapse
|
18
|
Machado D, Almeida D, Seabra CL, Andrade JC, Gomes AM, Freitas AC. Nanoprobiotics: When Technology Meets Gut Health. FUNCTIONAL BIONANOMATERIALS 2020. [DOI: 10.1007/978-3-030-41464-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Douillard FP, de Vos WM. Biotechnology of health-promoting bacteria. Biotechnol Adv 2019; 37:107369. [PMID: 30876799 DOI: 10.1016/j.biotechadv.2019.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
Over the last decade, there has been an increasing scientific and public interest in bacteria that may positively contribute to human gut health and well-being. This interest is reflected by the ever-increasing number of developed functional food products containing health-promoting bacteria and reaching the market place as well as by the growing revenue and profits of notably bacterial supplements worldwide. Traditionally, the origin of probiotic-marketed bacteria was limited to a rather small number of bacterial species that mostly belong to lactic acid bacteria and bifidobacteria. Intensifying research efforts on the human gut microbiome offered novel insights into the role of human gut microbiota in health and disease, while also providing a deep and increasingly comprehensive understanding of the bacterial communities present in this complex ecosystem and their interactions with the gut-liver-brain axis. This resulted in rational and systematic approaches to select novel health-promoting bacteria or to engineer existing bacteria with enhanced probiotic properties. In parallel, the field of gut microbiomics developed into a fertile framework for the identification, isolation and characterization of a phylogenetically diverse array of health-promoting bacterial species, also called next-generation therapeutic bacteria. The present review will address these developments with specific attention for the selection and improvement of a selected number of health-promoting bacterial species and strains that are extensively studied or hold promise for future food or pharma product development.
Collapse
Affiliation(s)
- François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. Eur J Pharm Biopharm 2019; 136:108-119. [DOI: 10.1016/j.ejpb.2019.01.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
|
21
|
Moens F, Van den Abbeele P, Basit AW, Dodoo C, Chatterjee R, Smith B, Gaisford S. A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. Int J Pharm 2018; 555:1-10. [PMID: 30445175 DOI: 10.1016/j.ijpharm.2018.11.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022]
Abstract
Poorly formulated probiotic supplements intended for oral administration often fail to protect bacteria from the challenges of human digestion, meaning bacteria do not reach the small intestine in a viable state. As a result, the ability of probiotics to influence the human gut microbiota has not been proven. Here we show how (i) considered formulation of an aqueous probiotic suspension can facilitate delivery of viable probiotic bacteria to the gut and (ii) quantitate the effect of colonisation and proliferation of specific probiotic species on the human gut microbiota, using an in-vitro gut model. Our data revealed immediate colonisation and growth of three probiotic species in the luminal and mucosal compartments of the proximal and distal colon, and growth of a fourth species in the luminal proximal colon, leading to higher proximal and distal colonic lactate concentrations. The lactate stimulated growth of lactate-consuming bacteria, altering the bacterial diversity of the microbiota and resulting in increased short-chain fatty acid production, especially butyrate. Additionally, an immunomodulatory effect of the probiotics was seen; production of anti-inflammatory cytokines (IL-6 and IL-10) was increased and production of inflammatory chemokines (MCP-1, CXCL 10 and IL-8.) was reduced. The results indicate that the probiotic species alone do not result in a clinical effect; rather, they facilitate modulation of the gut microbiota composition and metabolic activity thereby influencing the immune response.
Collapse
Affiliation(s)
| | | | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Cornelius Dodoo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Barry Smith
- Symprove Ltd, Sandy Farm, The Sands, Farnham, Surrey GU10 1PX, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
22
|
Feng K, Zhai MY, Zhang Y, Linhardt RJ, Zong MH, Li L, Wu H. Improved Viability and Thermal Stability of the Probiotics Encapsulated in a Novel Electrospun Fiber Mat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10890-10897. [PMID: 30260640 DOI: 10.1021/acs.jafc.8b02644] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For the enhancement of the probiotics' survivability, a nanostructured fiber mat was developed by electrospinning. The probiotic Lactobacillus plantarum was encapsulated in the nanofibers with fructooligosaccharides (FOS) as the cell material. Fluorescence microscope image and scanning electron microscopy (SEM) showed that viable cells were successfully encapsulated in nanofibers (mean diameter = 410 ± 150 nm), and the applied voltage had no significant influence on their viability ( P > 0.05). A significantly improved viability (1.1 log) was achieved by incorporating 2.5% (w/w) of FOS as the electrospinning material ( P < 0.001). Additionally, compared with free cells, the survivability of cells encapsulated in electrospun FOS/PVA/ L. plantarum nanofibers was significantly enhanced under moist heat treatment (60 and 70 °C). This study shows that the obtained nanofiber is a feasible entrapment structure to improve the viability and thermal stability of encapsulated probiotic cells and provides an alternative approach for the development of functional food.
Collapse
Affiliation(s)
- Kun Feng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Meng-Yu Zhai
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Ying Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Min-Hua Zong
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Lin Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Hong Wu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| |
Collapse
|
23
|
Giordani B, Melgoza LM, Parolin C, Foschi C, Marangoni A, Abruzzo A, Dalena F, Cerchiara T, Bigucci F, Luppi B, Vitali B. Vaginal Bifidobacterium breve for preventing urogenital infections: Development of delayed release mucoadhesive oral tablets. Int J Pharm 2018; 550:455-462. [DOI: 10.1016/j.ijpharm.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023]
|
24
|
Cordeiro BF, Oliveira ER, da Silva SH, Savassi BM, Acurcio LB, Lemos L, Alves JDL, Carvalho Assis H, Vieira AT, Faria AMC, Ferreira E, Le Loir Y, Jan G, Goulart LR, Azevedo V, Carvalho RDDO, do Carmo FLR. Whey Protein Isolate-Supplemented Beverage, Fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the Prevention of Mucositis in Mice. Front Microbiol 2018; 9:2035. [PMID: 30258413 PMCID: PMC6143704 DOI: 10.3389/fmicb.2018.02035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a clinically important gastrointestinal inflammatory infirmity, generated by antineoplastic drugs cytotoxic effects. The inflammatory process caused by this disease frequently leads to derangements in the alimentary tract and great malaise for the patient. Novel strategies are necessary for its prevention or treatment, as currently available treatments of mucositis have several limitations in relieving its symptoms. In this context, several research groups have investigated the use of probiotic bacteria, and in particular dairy bacterial strains. Compelling evidences reveal that milk fermented by certain probiotic bacteria has the capacity to ameliorate intestinal inflammatory disorders. In addition, innovative probiotic delivery strategies, based on probiotics incorporation into protective matrices, such as whey proteins, were able to increase the therapeutic effect of probiotic strains by providing extra protection for bacteria against environmental stresses. Therefore, in this study, we evaluated the role of the whey protein isolate (WPI), when added to skim milk fermented by Lactobacillus casei BL23 (L. casei BL23) or by Propionibacterium freudenreichii CIRM-BIA138 (P. freudenreichii 138), as a protective matrix against in vitro stress challenges. In addition, we investigated the therapeutic effect of these fermented beverages in a murine model of mucositis induced by 5-Fluorouracil (5-FU). Our results demonstrated that milk supplementation with 30% (w/v) of WPI increases the survival rate of both strains when challenged with acid, bile salts, high temperature and cold storage stresses, compared to fermented skim milk without the addition of WPI. Moreover, treatment with the probiotic beverages prevented weight loss and intestinal damages in mice receiving 5-FU. We conclude that the presence of WPI maximizes the anti-inflammatory effects of L. casei BL23, but not for P. freudenreichii 138, suggesting that whey protein enhancement of probiotic activity might be strain-dependent.
Collapse
Affiliation(s)
- Bárbara F. Cordeiro
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Sara H. da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Bruna M. Savassi
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Leonardo B. Acurcio
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Juliana de L. Alves
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Helder Carvalho Assis
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Angélica T. Vieira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Ana M. C. Faria
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | | | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | - Luiz R. Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Rodrigo D. de O. Carvalho
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Fillipe L. R. do Carmo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
- STLO, INRA, Agrocampus Ouest, Rennes, France
| |
Collapse
|
25
|
Eckert C, Agnol WD, Dallé D, Serpa VG, Maciel MJ, Lehn DN, Volken de Souza CF. Development of alginate-pectin microparticles with dairy whey using vibration technology: Effects of matrix composition on the protection of Lactobacillus spp. from adverse conditions. Food Res Int 2018; 113:65-73. [PMID: 30195547 DOI: 10.1016/j.foodres.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022]
Abstract
In this study, lactic acid bacteria with probiotic potential, including Lactobacillus plantarum ATCC8014, L. paracasei ML33 and L. pentosus ML82, were encapsulated with whey-alginate-pectin (WAP) or whey permeate-alginate-pectin (PAP) by an extrusion process using vibrational technology, with the resulting microparticles assessed for their resistance to adverse conditions. The aim was to assess the effect of the encapsulation wall materials on the viability of microorganisms, the encapsulation, refrigerated storage and simulated gastrointestinal tract conditions, the kinetic parameters of acidification, and the morphology of microparticles. The bacteria encapsulated with the WAP wall material were adequately protected. Furthermore, after three months of storage at 4 °C, the encapsulated bacteria exhibited a cell viability of >6 log CFU mL-1. In addition, the encapsulated L. plantarum ATCC8014 and L. pentosus ML82 isolates exhibited the highest viability at the end of the storage period among the assayed isolates. Encapsulated bacteria showed greater resistance to acidic conditions than unencapsulated bacteria when exposed to simulated gastrointestinal tract conditions. The maximum rate of milk acidification by encapsulated Lactobacillus spp. was approximately three-fold lower than that observed for unencapsulated bacteria. The resulting size of the microparticles generated using both combinations of wall materials used was approximately 150 μm. The cheese whey and whey permeate combined with alginate and pectin to adequately encapsulate and protect Lactobacillus spp. from the adverse conditions of the simulated gastrointestinal tract and from refrigeration storage temperatures. Furthermore, the sizes of the obtained microparticles indicated that the encapsulated materials are suitable for being incorporated into foods without changing their sensory properties.
Collapse
Affiliation(s)
- Camila Eckert
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Wendell Dall Agnol
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Danieli Dallé
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Vanessa Garcia Serpa
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Mônica Jachetti Maciel
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Sustainable Environmental Systems, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Daniel Neutzling Lehn
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Sustainable Environmental Systems, University of Vale do Taquari - Univates, Lajeado, RS, Brazil..
| |
Collapse
|
26
|
Synbiotic Microencapsulation from Slow Digestible Colored Rice and Its Effect on Yoghurt Quality. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Development of a probiotic delivery system based on gelation of water-in-oil emulsions. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
McFarlin BK, Henning AL, Bowman EM, Gary MA, Carbajal KM. Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. World J Gastrointest Pathophysiol 2017; 8:117-126. [PMID: 28868181 PMCID: PMC5561432 DOI: 10.4291/wjgp.v8.i3.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine if 30-d of oral spore-based probiotic supplementation could reduce dietary endotoxemia.
METHODS Apparently healthy men and women (n = 75) were screened for post-prandial dietary endotoxemia. Subjects whose serum endotoxin concentration increased by at least 5-fold from pre-meal levels at 5-h post-prandial were considered “responders” and were randomized to receive either placebo (rice flour) or a commercial spore-based probiotic supplement [Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans, and Bacillus licheniformis, and Bacillus clausii] for 30-d. The dietary endotoxemia test was repeated at the conclusion of the supplementation period. Dietary endotoxin (LAL) and triglycerides (enzymatic) were measured using an automated chemistry analyzer. Serum disease risk biomarkers were measured using bead-based multiplex assays (Luminex and Milliplex) as secondary, exploratory measures.
RESULTS Data were statistically analyzed using repeated measures ANOVA and a P < 0.05. We found that spore-based probiotic supplementation was associated with a 42% reduction in endotoxin (12.9 ± 3.5 vs 6.1 ± 2.6, P = 0.011) and 24% reduction in triglyceride (212 ± 28 vs 138 ± 12, P = 0.004) in the post-prandial period Placebo subjects presented with a 36% increase in endotoxin (10.3 ± 3.4 vs 15.4 ± 4.1, P = 0.011) and 5% decrease in triglycerides (191 ± 24 vs 186 ± 28, P = 0.004) over the same post-prandial period. We also found that spore-based probiotic supplementation was associated with significant post-prandial reductions in IL-12p70 (24.3 ± 2.2 vs 21.5 ± 1.7, P = 0.017) and IL-1β (1.9 ± 0.2 vs 1.6 ± 0.1, P = 0.020). Compared to placebo post supplementation, probiotic subject had less ghrelin (6.8 ± 0.4 vs 8.3 ± 1.1, P = 0.017) compared to placebo subjects.
CONCLUSION The key findings of the present study is that oral spore-based probiotic supplementation reduced symptoms indicative of “leaky gut syndrome”.
Collapse
|
29
|
Dias DR, Botrel DA, Fernandes RVDB, Borges SV. Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|