1
|
Feng C, Wu Y, Cai Z, Song Z, Shim YY, Reaney MJT, Wang Y, Zhang N. A comparative study on flaxseed lignan biotransformation through resting cell catalysis and microbial fermentation by β-glucosidase production Lactiplantibacillus plantarum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5869-5881. [PMID: 38407005 DOI: 10.1002/jsfa.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with β-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS LAB strains with good β-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing β-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated β-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcheng Feng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - You Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Ziliang Song
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Youn Young Shim
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Martin J T Reaney
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Ning Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Mueed A, Ibrahim M, Shibli S, Madjirebaye P, Deng Z, Jahangir M. The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application. Crit Rev Food Sci Nutr 2022; 64:4312-4330. [PMID: 36345888 DOI: 10.1080/10408398.2022.2140643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lignans are one of the most important and abundant phytochemicals found in flaxseed-diets. These have shown to possess several health-benefits, including anticancer, antioxidant, neuroprotective, cardioprotective, and estrogenic-properties etc. The potential of lignans health-promoting effects are circumscribed due to their poor-bioavailability resulting from their bound structure. Recent studies have demonstrated that various food design strategies can enhance the release of bound-lignans from agro-industrial residues, resulting in a higher bioaccessibility and bioavailability. This review focuses primarily on the bioavailability of flaxseed lignans, key factors affecting it and their pharmacokinetics, different strategies to improve the contents of lignans, their release and delivery. Present study will help to deepen our understanding of the applications of lignans and their dietary-supplements in the prevention and treatment of diseases. Several absorption issues of lignans have been observed such as impaired-bioavailability and variability in pharmacokinetics and pharmacodynamics. Therefore, the development of novel strategies for optimizing lignan bioavailability is critical to ensure its successful application, such as the delivery of lignans to biological targets via "targeted designs." In addition, some detailed examination is required to identify and understand the basis of variation in lignans bioavailability caused by interactions with the gastrointestinal system.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Ibrahim
- Department of Forestry, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Gulsunoglu-Konuskan Z, Kilic-Akyilmaz M. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6901-6910. [PMID: 35164503 DOI: 10.1021/acs.jafc.1c06888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Collapse
Affiliation(s)
- Zehra Gulsunoglu-Konuskan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Meral Kilic-Akyilmaz
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
4
|
Li N, Wang S, Wang T, Liu R, Zhi Z, Wu T, Sui W, Zhang M. Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods 2022; 11:foods11121722. [PMID: 35741920 PMCID: PMC9222537 DOI: 10.3390/foods11121722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
Three medicinal fungi were used to carry out solid-state fermentation (SSF) of wheat bran. The results showed that the use of these fungi for SSF significantly improved wheat bran’s nutritional properties including the extraction yield of soluble dietary fiber (SDF), total phenolic content (TPC), total flavonoid content (TFC), physical properties containing swelling capacity (SC) and oil absorption capacity (OAC), as well as antioxidant activities. Electronic nose and GC–MS analyses showed that fermented wheat bran had different volatiles profiles compared to unfermented wheat bran. The results suggest that SSF by medicinal fungi is a promising way for the high-value utilization of wheat bran.
Collapse
Affiliation(s)
- Ningjie Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Songjun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Tianli Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
- Correspondence: (R.L.); (M.Z.)
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium;
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (R.L.); (M.Z.)
| |
Collapse
|
5
|
Bread Sourdough Lactic Acid Bacteria—Technological, Antimicrobial, Toxin-Degrading, Immune System-, and Faecal Microbiota-Modelling Biological Agents for the Preparation of Food, Nutraceuticals and Feed. Foods 2022; 11:foods11030452. [PMID: 35159602 PMCID: PMC8834576 DOI: 10.3390/foods11030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
This review intends to highlight the fact that bread sourdough is a very promising source of technological, antimicrobial, toxin-degrading, immune system-, and faecal microbiota-modelling biological agents for the preparation of food, nutraceuticals, and feed, which has great potential at industrial biotechnology scale. There are many applications of sourdough lactic acid bacteria (LAB), which are the main microorganisms in spontaneous sourdough. In addition to their application as pure technological strains in the food and feed industries, taking into consideration the specific properties of these microorganisms (antimicrobial, antifungal, immuno-, and microbiota-modulating, etc.), they are used as valuable ingredients in higher-value food as well as nutraceutical formulations. Additionally, a very promising application of LAB is their use in combination with plant- and/or animal-based ingredients to increase the functional properties of the whole combination due to different mechanisms of action, as well as desirable symbiotic activity. In addition to traditional foods prepared using sourdough microorganisms (bread, biscuits, meat products, dairy, beverages, etc.), they could find application in the preparation of added-value ingredients for the food, nutraceutical, and feed industries. Finally, this mini-review gives a brief introduction to the possible applications of sourdough LAB in the food, feed, and nutraceutical industries.
Collapse
|
6
|
Leonard W, Zhang P, Ying D, Adhikari B, Fang Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol Adv 2021; 49:107763. [PMID: 33961978 DOI: 10.1016/j.biotechadv.2021.107763] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
Phenolics are a group of compounds derived from plants that have displayed potent biological activities and health-promoting effects. Fermentation is one of the most conventional but still prevalent bioprocessing methods in the food industry, with the potential to increase phenolic content and enhance its nutritive value. This review details the biotransformation of different classes of phenolics (hydroxycinnamic and hydroxybenzoic acids, flavonoids, tannins, stilbenoids, lignans, alkylresorcinols) by various microorganisms (lactic acid bacteria, yeast, filamentous fungi) throughout the fermentation process in plant-based foods. Several researchers have commenced the use of metabolic engineering, as in recombinant Saccharomyces cerevisiae yeast and Escherichia coli, to enhance the production of this transformation. The impact of phenolics on the metabolism of microorganisms and fermentation process, although complex, is reviewed for the first time. Moreover, this paper highlights the general effect of fermentation on the food's phenolic content, and its bioaccessibility, bioavailability and bioactivities including antioxidant capacity, anti-cancer, anti-diabetic, anti-inflammation, anti-obesity properties. Phenolics of different classes are converted into compounds that are often more bioactive than the parent compounds, and fermentation generally leads to a higher phenolic content and antioxidant activity in most studies. However, biotransformation of several phenolic classes is less studied due to its low concentration and apparent insignificance to the food system. Therefore, there is potential for application of metabolic engineering to further enhance the content of different phenolic classes and bioactivities in food.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danyang Ying
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Vaitkeviciene R, Zadeike D, Gaizauskaite Z, Valentaviciute K, Marksa M, Mazdzieriene R, Bartkiene E, Lele V, Juodeikiene G, Jakstas V. Functionalisation of rice bran assisted by ultrasonication and fermentation for the production of rice bran–lingonberry pulp‐based probiotic nutraceutical. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ruta Vaitkeviciene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Zydrune Gaizauskaite
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Kristina Valentaviciute
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Ramute Mazdzieriene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Elena Bartkiene
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
- Department of Food Safety and Quality Veterinary Academy of Lithuanian University of Health Sciences Kaunas LT‐47181 Lithuania
| | - Vita Lele
- Department of Food Safety and Quality Veterinary Academy of Lithuanian University of Health Sciences Kaunas LT‐47181 Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| |
Collapse
|
8
|
Abstract
Probiotics provide many beneficial effects to the human body. Traditionally, food products used to deliver bacterial cells are fermented dairy products, among which yogurt is the most common. However, many people suffer from lactose intolerance and indigestion, who need nutrients from non-dairy products without using animal proteins. Thus, there is a need to develop synbiotics based on non-dairy food matrices. This paper reviews the potential and emerging candidates of pre and probiotic groups. The criteria for qualifying bacteria as probiotics and nutrients as prebiotics are discussed. One of the promising prebiotics explored in the recent past is the dietary fibers in the peels of potato, apples, and other fruits. This paper summarizes methods for the preparation of dietary fiber-based non-dairy synbiotics such as microencapsulation, freeze-drying, and spray drying. The standard testing protocols of synbiotics including the in vitro trials are presented. Synbiotics not only favor the survival of probiotics in the gastric conditions of the human gut but also exhibit antimicrobial activity, which confirms their ability to protect the human body from infection. Many fiber-based non-dairy synbiotic products are available in the market and these are also highlighted. The challenges faced by non-dairy-based synbiotics which open up new research opportunities and market demand are also identified.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Chemical Engineering, VNIT, Nagpur, India
| | | | | |
Collapse
|
9
|
Li W, Cheng P, Zhang JB, Zhao LM, Ma YB, Ding K. Synergism of microorganisms and enzymes in solid-state fermentation of animal feed. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/133151/2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Combination of Extrusion and Fermentation with Lactobacillus plantarum and L. uvarum Strains for Improving the Safety Characteristics of Wheat Bran. Toxins (Basel) 2021; 13:toxins13020163. [PMID: 33669853 PMCID: PMC7923204 DOI: 10.3390/toxins13020163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Processed wheat bran (W) is of great importance for food and feed. Consequently, the biosafety of W should be evaluated and improved with valorisation strategies. This study tested a design combining extrusion (at temperature of 115 and 130 °C; screw speeds of 16, 20, and 25 rpm) and fermentation with Lactobacillus plantarum and L. uvarum strains for the valorisation of W to provide safer food and feed stock. The influence of different treatments on biogenic amine formation, mycotoxin content, and free amino acids, as well as acidity, microbiological parameters, and sugar concentration, were analysed. This research showed that a combination of extrusion and fermentation with selected strains can change several aspects of W characteristics. There was a significant effect of applied treatments on acidity and the microbiological parameters of W, as well as biogenic amines content. The lowest total mycotoxin concentration (29.8 µg/kg) was found in extruded (130 °C; 25 rpm) and fermented with L. uvarum sample. Finally, the combination of the abovementioned treatments can be confirmed as a prospective innovative pre-treatment for W, capable of potentially enhancing their safety characteristics and composition.
Collapse
|
11
|
Microbial Diversity and Nutritional Properties of Persian "Yellow Curd" ( Kashk Zard), a Promising Functional Fermented Food. Microorganisms 2020; 8:microorganisms8111658. [PMID: 33114666 PMCID: PMC7693697 DOI: 10.3390/microorganisms8111658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
“Yellow curd” (YC) is one of the most popular homemade Persian fermented foods and is consumed by many people. Notwithstanding, no studies are available to date on its nutritional and microbiological composition. In this study, we examined YC samples obtained from different local markets of Sistan and Baluchestan province, Iran. The results of the chemical analyses revealed a homogenous content of protein (13.71% ± 1.07), lipids (4.09% ± 0.73), and carbohydrates (61% ± 2.13) among the samples. By comparing the average mineral content of YC with yogurt, many relevant differences were detected. Apart from the calcium content, which was similar on average to that of YC, all other minerals tested are present in higher amounts in YC than in yogurt. The analysis of the main sugars present (i.e., lactose, galactose and glucose) highlighted relevant differences among samples, indicating that different YC samples contain natural strains with different capabilities to metabolize sugars. The concentration of galactose in YC samples should be taken into consideration by galactose intolerant people. From the microbiological perspective, the metagenomics analysis revealed that lactic acid bacteria, and particularly the genera Lactobacillus, Pediococcus, and Streptococcus, were dominant in YC. The information provided shows that YC is an interesting base for the preparation of novel functional foods with a good content of beneficial bacteria.
Collapse
|
12
|
Chagas Junior GCA, Ferreira NR, Lopes AS. The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: an overview. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gilson Celso Albuquerque Chagas Junior
- Laboratório de Processos Biotecnológicos (LABIOTEC) Programa de Pós‐graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Instituto de Tecnologia (ITEC) Universidade Federal do Pará (UFPA) 66075‐110 Belém Pará Brazil
| | - Nelson Rosa Ferreira
- Laboratório de Processos Biotecnológicos (LABIOTEC) Programa de Pós‐graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Instituto de Tecnologia (ITEC) Universidade Federal do Pará (UFPA) 66075‐110 Belém Pará Brazil
| | - Alessandra Santos Lopes
- Laboratório de Processos Biotecnológicos (LABIOTEC) Programa de Pós‐graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Instituto de Tecnologia (ITEC) Universidade Federal do Pará (UFPA) 66075‐110 Belém Pará Brazil
| |
Collapse
|
13
|
Mao M, Wang P, Shi K, Lu Z, Bie X, Zhao H, Zhang C, Lv F. Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102997] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Bartkiene E, Mozuriene E, Lele V, Zokaityte E, Gruzauskas R, Jakobsone I, Juodeikiene G, Ruibys R, Bartkevics V. Changes of bioactive compounds in barley industry by-products during submerged and solid state fermentation with antimicrobial Pediococcus acidilactici strain LUHS29. Food Sci Nutr 2020; 8:340-350. [PMID: 31993160 PMCID: PMC6977520 DOI: 10.1002/fsn3.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
In this study, changes of bioactive compounds (crude protein (CP), crude fat (CF), dietary fiber (DF), fatty acids (FAs), free amino acids (FAAs), phenolic compounds (PCs), biogenic amines (BAs), lignans, and alkylresorcinols) in barley industry by-products (BB) during submerged and solid state fermentation (SSF) with Pediococcus acidilactici were analyzed. It was established that both fermentation conditions reduce the CP and CF content in BB (by 25.8% and 35.9%, respectively) and increase DF content (on average by 25.0%). Fermentation increases the oleic, arachidic, eicosadienoic, behenic, and lignoceric FA in BB samples. The highest total BA content was found in untreated samples (290.6 mg/kg). Solid state fermentation increased the content of the alkylresorcinol C19:0. Finally, collecting data about the changes of these compounds during technological processes is very important, because according to the specific compounds formed during fermentation, further recommendations for by-product valorization and uses in food, pharmaceutical, or feed industries can be suggested.
Collapse
Affiliation(s)
| | | | - Vita Lele
- Lithuanian University of Health SciencesKaunasLithuania
| | | | | | - Ida Jakobsone
- Centre of Food ChemistryUniversity of LatviaRigaLatvia
- Institute of Food SafetyAnimal Health and EnvironmentRigaLatvia
| | | | - Romas Ruibys
- Institute of Agricultural and Food SciencesAgriculture AcademyVytautas Magnus UniversityKaunasLithuania
| | - Vadims Bartkevics
- Centre of Food ChemistryUniversity of LatviaRigaLatvia
- Institute of Food SafetyAnimal Health and EnvironmentRigaLatvia
| |
Collapse
|
15
|
Bartkiene E, Lele V, Ruzauskas M, Domig KJ, Starkute V, Zavistanaviciute P, Bartkevics V, Pugajeva I, Klupsaite D, Juodeikiene G, Mickiene R, Rocha JM. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2019; 8:E64. [PMID: 31905993 PMCID: PMC7023352 DOI: 10.3390/microorganisms8010064] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
This research effort aimed at isolating and phenotypically characterizing lactic acid bacteria (LAB) isolates from a spontaneous rye sourdough manufactured following traditional protocols, as well as at evaluating their antimicrobial and antifungal properties as key features for future industrial applications. Thirteen LAB strains of potential industrial interest were isolated and identified to species-level via PCR. Most of the sourdough isolates showed versatile carbohydrate metabolisms. The Leuconostoc mesenteroides No. 242 and Lactobacillus brevis No. 173 demonstrated to be gas producers; thus, revealing their heterofermenter or facultative homofermenter features. Viable counts higher than 7.0 log10 (CFU/mL) were observed for Lactobacillus paracasei No. 244, Lactobacillus casei No. 210, L. brevis No. 173, Lactobacillus farraginis No. 206, Pediococcus pentosaceus No. 183, Lactobacillus uvarum No. 245 and Lactobacillus plantarum No. 135 strains, after exposure at pH 2.5 for 2 h. Moreover, L. plantarum No. 122, L. casei No. 210, Lactobacillus curvatus No. 51, L. paracasei No. 244, and L. coryniformins No. 71 showed growth inhibition properties against all the tested fifteen pathogenic strains. Finally, all LAB isolates showed antifungal activities against Aspergillus nidulans, Penicillium funiculosum, and Fusarium poae. These results unveiled the exceptionality of spontaneous sourdough as a source of LAB with effective potential to be considered in the design of novel commercial microbial single/mixed starter cultures, intended for application in a wide range of agri-food industries, where the antimicrobial and antifungal properties are often sought and necessary. In addition, metabolites therefrom may also be considered as important functional and bioactive compounds with high potential to be employed in food and feed, as well as cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Vita Lele
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Modestas Ruzauskas
- Microbiology and Virology Institute, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria;
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Vadims Bartkevics
- Department of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia; (V.B.); (I.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupesiela 3, LV-1076 Riga, Latvia
| | - Iveta Pugajeva
- Department of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia; (V.B.); (I.P.)
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu str. 19, LT-50254 Kaunas, Lithuania;
| | - Ruta Mickiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| |
Collapse
|
16
|
Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Ruzauskas M, Stankevicius A, Grigas J, Pautienius A, Bernatoniene J, Jakstas V, Zadeike D, Viskelis P, Juodeikiene G. Fermented, ultrasonicated, and dehydrated bovine colostrum: Changes in antimicrobial properties and immunoglobulin content. J Dairy Sci 2019; 103:1315-1323. [PMID: 31864741 DOI: 10.3168/jds.2019-16357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
This study evaluated the influence of fermentation with Lactobacillus plantarum LUHS135 and Lactobacillus paracasei LUHS244, ultrasonication, and different methods of dehydration on the content of IgG, IgA, and IgM in bovine colostrum (BC), as well as the antimicrobial activity of the treated and fresh BC samples [fresh = BC; freeze dried = BClyoph; vacuum dried (+45°C) = BCvacdried; BC fermented with LUHS135 = BCLUHS135; BC fermented with LUHS244 = BCLUHS244; BC fermented with LUHS135 and freeze dried = BCLUHS135lyoph; BC fermented with LUHS244 and freeze dried = BCLUHS244 lyoph; BC fermented with LUHS135 and vacuum dried = BCLUHS135 vacdried; BC fermented with LUHS244 and vacuum dried = BCLUHS244 vacdried; BC ultrasonicated and freeze dried = BCultr lyoph; BC ultrasonicated and vacuum dried = BCultr vacdried]. The antimicrobial activity was assessed against Klebsiella pneumoniae, Salmonella enterica, Pseudomonas aeruginosa, Acinetobacter baumanni, Proteus mirabilis, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Bacillus cereus, Streptococcus mutans, Enterobacter cloacae, Citrobacter freundii, Staphylococcus epidermis, Staphylococcus haemolyticus, and Pasteurella multocida using the agar well diffusion method, as well as in liquid medium. In liquid medium analysis showed that the fermented BC samples had the broadest antimicrobial spectrum (of 15 tested pathogenic strains, BCLUHS135 vacdried and BCLUHS135lyoph inhibited 13; BCLUHS244 vacdried inhibited 12; and BCLUHS135, BCLUHS244, and BCLUHS244 lyoph inhibited 11). Based on the inhibition zones, BCLUHS135lyoph samples exhibited the broadest inhibition spectrum, inhibiting the growth of 12 of the 15 tested pathogenic strains). According to the lactic acid bacteria strain selected for BC fermentation, different properties of the BC will be obtained. To ensure a broad antimicrobial spectrum and high IgG content, fermentation with LUHS135 can be recommended (IgG concentration in BCLUHS135 was retained), whereas fermentation with LUHS244 will provide a high IgM concentration (IgM concentration increased by 48.8 and 21.6% in BCLUHS244 and BCLUHS244lyoph samples, respectively). However, IgA is very sensitive for fermentation, and further studies are needed to increase IgA stability in BC. Finally, fermented BC can be recommended as a food/beverage ingredient, providing safety, as well as improved functionality through displaying a broad spectrum of antimicrobial activities.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania.
| | - Vita Lele
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Vytaute Sakiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Arunas Stankevicius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Anatomy and Physiology, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Juozas Grigas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Department of Anatomy and Physiology, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Arnoldas Pautienius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Department of Anatomy and Physiology, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Drug Technology and Social Pharmacy, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Daiva Zadeike
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Biochemistry and Technology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno St. 30, LT-54333 Babtai, Lithuania
| | - Grazina Juodeikiene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
17
|
Kimoto-Nira H, Ohashi Y, Amamiya M, Moriya N, Ohmori H, Sekiyama Y. Fermentation of onion (Allium cepa L.) peel by lactic acid bacteria for production of functional food. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00276-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|