1
|
Zheng Y, Ye X, Hu Y, Wang S, Tian J. Prebiotic properties of extruded maize starch-caffeic acid complexes: A study from the small intestine to colon in vitro. Food Chem 2025; 465:141980. [PMID: 39550966 DOI: 10.1016/j.foodchem.2024.141980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Recent studies show that starch-polyphenols complexes exert positive effects on gut health, but the probiotic effects of maize starch-caffeic complexes remain underexplored. Therefore, this study aimed to investigate the probiotic effect of maize starch-caffeic complexes from the small intestine to the colon. First, maize starch was extruded with caffeic acid and subjected to in vitro digestion, and the undigested parts were fermented in vitro, and the structural characteristics, short chain fatty acids (SCFAs) and microbiota communities were investigated. Results showed that caffeic acid reduced the long/short-range order of maize starch after extrusion, significantly increasing resistant starch to 30.35 ± 2.36 %. In vitro fermentation indicated that microbiota utilized the amorphous area of the residues first, promoting SCFAs production and the growth of Bifidobacterium and Lactococcus genus. Overall, the probiotic properties of extruded maize starch-caffeic acid complexes suggest they could serve as a functional food for health benefits.
Collapse
Affiliation(s)
- Yuxue Zheng
- College of Biological Science and Engineering, Institute of Food and Marine Bio-Resources, Fuzhou University, Fuzhou 350108, PR China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Yanyu Hu
- College of Biological Science and Engineering, Institute of Food and Marine Bio-Resources, Fuzhou University, Fuzhou 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Institute of Food and Marine Bio-Resources, Fuzhou University, Fuzhou 350108, PR China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Cano R, Bermúdez V, Galban N, Garrido B, Santeliz R, Gotera MP, Duran P, Boscan A, Carbonell-Zabaleta AK, Durán-Agüero S, Rojas-Gómez D, González-Casanova J, Díaz-Vásquez W, Chacín M, Angarita Dávila L. Dietary Polyphenols and Gut Microbiota Cross-Talk: Molecular and Therapeutic Perspectives for Cardiometabolic Disease: A Narrative Review. Int J Mol Sci 2024; 25:9118. [PMID: 39201807 PMCID: PMC11354808 DOI: 10.3390/ijms25169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The intricate interplay between the gut microbiota and polyphenols has emerged as a captivating frontier in understanding and potentially harnessing the therapeutic potential of these bioactive compounds. Phenolic compounds, renowned for their antioxidant, anti-inflammatory, antidiabetic, and anticancer properties, are subject to intricate transformations within the gut milieu, where the diverse microbial ecosystem exerts profound effects on their metabolism and bioavailability. Conversely, polyphenols exhibit a remarkable capacity to modulate the composition and activity of the gut microbiota, fostering a bidirectional relationship that extends beyond mere nutrient processing. This symbiotic interaction holds significant implications for human health, particularly in cardiometabolic diseases such as diabetes mellitus, metabolic-dysfunction-associated steatotic liver disease, and cardiovascular disease. Through a comprehensive exploration of molecular interactions, this narrative review elucidates the reciprocal dynamics between the gut microbiota and polyphenols, unveiling novel avenues for therapeutic intervention in cardiometabolic disorders. By unravelling the intricate cross-talk between these two entities, this review underscores the multifaceted roles of polyphenols in overall health and the pivotal role of gut microbiota modulation as a promising therapeutic strategy in mitigating the burden of cardiometabolic diseases.
Collapse
Affiliation(s)
- Raquel Cano
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nestor Galban
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Bermary Garrido
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Raquel Santeliz
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Maria Paula Gotera
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Arturo Boscan
- Escuela de Medicina, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela;
| | | | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile;
| | - Jorge González-Casanova
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Díaz-Vásquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
3
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Zarei I, Koistinen VM, Kokla M, Klåvus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep 2022; 12:15018. [PMID: 36056162 PMCID: PMC9440220 DOI: 10.1038/s41598-022-19327-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Ambrin Farizah Babu
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland.
| |
Collapse
|