1
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
3
|
Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. Toxins (Basel) 2017; 9:toxins9100298. [PMID: 28937604 PMCID: PMC5666345 DOI: 10.3390/toxins9100298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
The anthrax lethal toxin consists of protective antigen (PA) and lethal factor (LF). Understanding both the PA pore formation and LF translocation through the PA pore is crucial to mitigating and perhaps preventing anthrax disease. To better understand the interactions of the LF-PA engagement complex, the structure of the LFN-bound PA pore solubilized by a lipid nanodisc was examined using cryo-EM. CryoSPARC was used to rapidly sort particle populations of a heterogeneous sample preparation without imposing symmetry, resulting in a refined 17 Å PA pore structure with 3 LFN bound. At pH 7.5, the contributions from the three unstructured LFN lysine-rich tail regions do not occlude the Phe clamp opening. The open Phe clamp suggests that, in this translocation-compromised pH environment, the lysine-rich tails remain flexible and do not interact with the pore lumen region.
Collapse
|
4
|
Marx DC, Fleming KG. Influence of Protein Scaffold on Side-Chain Transfer Free Energies. Biophys J 2017; 113:597-604. [PMID: 28793214 DOI: 10.1016/j.bpj.2017.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 11/26/2022] Open
Abstract
The process by which membrane proteins fold involves the burial of side chains into lipid bilayers. Both structure and function of membrane proteins depend on the magnitudes of side-chain transfer free energies (ΔΔGsco). In the absence of other interactions, ΔΔGsco is an independent property describing the energetics of an isolated side chain in the bilayer. However, in reality, side chains are attached to the peptide backbone and surrounded by other side chains in the protein scaffold in biology, which may alter the apparent ΔΔGsco. Previously we reported a whole protein water-to-bilayer hydrophobicity scale using the transmembrane β-barrel Escherichia coli OmpLA as a scaffold protein. To investigate how a different protein scaffold can modulate these energies, we measured ΔΔGsco for all 20 amino acids using the transmembrane β-barrel E. coli PagP as a scaffold protein. This study represents, to our knowledge, the first instance of ΔΔGsco measured in the same experimental conditions in two structurally and sequentially distinct protein scaffolds. Although the two hydrophobicity scales are strongly linearly correlated, we find that there are apparent scaffold induced changes in ΔΔGsco for more than half of the side chains, most of which are polar residues. We propose that the protein scaffold affects the ΔΔGsco of side chains that are buried in unfavorable environments by dictating the mechanisms by which the side chain can reach a more favorable environment and thus modulating the magnitude of ΔΔGsco.
Collapse
|
5
|
Ortiz-Suarez ML, Samsudin F, Piggot TJ, Bond PJ, Khalid S. Full-Length OmpA: Structure, Function, and Membrane Interactions Predicted by Molecular Dynamics Simulations. Biophys J 2017; 111:1692-1702. [PMID: 27760356 PMCID: PMC5071624 DOI: 10.1016/j.bpj.2016.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/02/2022] Open
Abstract
OmpA is a multidomain protein found in the outer membranes of most Gram-negative bacteria. Despite a wealth of reported structural and biophysical studies, the structure-function relationships of this protein remain unclear. For example, it is still debated whether it functions as a pore, and the precise molecular role it plays in attachment to the peptidoglycan of the periplasm is unknown. The absence of a consensus view is partly due to the lack of a complete structure of the full-length protein. To address this issue, we performed molecular-dynamics simulations of the full-length model of the OmpA dimer proposed by Robinson and co-workers. The N-terminal domains were embedded in an asymmetric model of the outer membrane, with lipopolysaccharide molecules in the outer leaflet and phospholipids in the inner leaflet. Our results reveal a large dimerization interface within the membrane environment, ensuring that the dimer is stable over the course of the simulations. The linker is flexible, expanding and contracting to pull the globular C-terminal domain up toward the membrane or push it down toward the periplasm, suggesting a possible mechanism for providing mechanical stability to the cell. The external loops were more stabilized than was observed in previous studies due to the extensive dimerization interface and presence of lipopolysaccharide molecules in our outer-membrane model, which may have functional consequences in terms of OmpA adhesion to host cells. In addition, the pore-gating behavior of the protein was modulated compared with previous observations, suggesting a possible role for dimerization in channel regulation.
Collapse
Affiliation(s)
- Maite L Ortiz-Suarez
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Thomas J Piggot
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Syma Khalid
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
6
|
Iyer BR, Mahalakshmi R. Residue-Dependent Thermodynamic Cost and Barrel Plasticity Balances Activity in the PhoPQ-Activated Enzyme PagP of Salmonella typhimurium. Biochemistry 2015; 54:5712-22. [PMID: 26334694 DOI: 10.1021/acs.biochem.5b00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity. Work here identifies molecular signatures that demarcate thermodynamic stability and variances in catalytic efficiency between S. typhimurium (PagP-St) and E. coli (PagP-Ec) transmembrane PagP barrel variants. We demonstrate that Salmonella PagP displays a 2-fold destabilization of the barrel, while achieving 15-20 magnitude higher lipase efficiency, through subtle alterations of lipid-facing residues distal from the active site. We find that catalytic properties of these homologues are retained across different lipid environments such as micelles, vesicles, and natural extracts. By comparing thermodynamic stability with activity of selectively designed mutants, we conclude that activity-stability trade-offs can be influenced by factors secluded from the catalytic region. Our results provide a compelling correlation of the primary protein structure with enzymatic activity, barrel thermodynamic stability, and scaffold plasticity. Our analysis can open avenues for the development of potent pharmaceuticals against salmonellosis.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| |
Collapse
|
7
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
8
|
Assembly and stability of Salmonella enterica ser. Typhi TolC protein in POPE and DMPE. J Biol Phys 2014; 40:387-400. [PMID: 25011632 DOI: 10.1007/s10867-014-9357-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022] Open
Abstract
In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
Collapse
|
9
|
Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013; 14:18758-89. [PMID: 24036440 PMCID: PMC3794806 DOI: 10.3390/ijms140918758] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Collapse
|
10
|
Neale C, Ghanei H, Holyoake J, Bishop RE, Privé GG, Pomès R. Detergent-mediated protein aggregation. Chem Phys Lipids 2013; 169:72-84. [PMID: 23466535 PMCID: PMC5007131 DOI: 10.1016/j.chemphyslip.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein's hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Hamed Ghanei
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - John Holyoake
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Russell E. Bishop
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Gilbert G. Privé
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
11
|
Paramo T, Garzón D, Holdbrook DA, Khalid S, Bond PJ. The simulation approach to lipid-protein interactions. Methods Mol Biol 2013; 974:435-455. [PMID: 23404287 DOI: 10.1007/978-1-62703-275-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.
Collapse
Affiliation(s)
- Teresa Paramo
- Department of Chemistry, Unilever Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
12
|
Hensen U, Meyer T, Haas J, Rex R, Vriend G, Grubmüller H. Exploring protein dynamics space: the dynasome as the missing link between protein structure and function. PLoS One 2012; 7:e33931. [PMID: 22606222 PMCID: PMC3350514 DOI: 10.1371/journal.pone.0033931] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/20/2012] [Indexed: 12/25/2022] Open
Abstract
Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics.
Collapse
Affiliation(s)
- Ulf Hensen
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Tim Meyer
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jürgen Haas
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - René Rex
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Gert Vriend
- CMBI, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Helmut Grubmüller
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
13
|
Verma D, Jacobs DJ, Livesay DR. Changes in Lysozyme Flexibility upon Mutation Are Frequent, Large and Long-Ranged. PLoS Comput Biol 2012; 8:e1002409. [PMID: 22396637 PMCID: PMC3291535 DOI: 10.1371/journal.pcbi.1002409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
We investigate changes in human c-type lysozyme flexibility upon mutation via a Distance Constraint Model, which gives a statistical mechanical treatment of network rigidity. Specifically, two dynamical metrics are tracked. Changes in flexibility index quantify differences within backbone flexibility, whereas changes in the cooperativity correlation quantify differences within pairwise mechanical couplings. Regardless of metric, the same general conclusions are drawn. That is, small structural perturbations introduced by single point mutations have a frequent and pronounced affect on lysozyme flexibility that can extend over long distances. Specifically, an appreciable change occurs in backbone flexibility for 48% of the residues, and a change in cooperativity occurs in 42% of residue pairs. The average distance from mutation to a site with a change in flexibility is 17–20 Å. Interestingly, the frequency and scale of the changes within single point mutant structures are generally larger than those observed in the hen egg white lysozyme (HEWL) ortholog, which shares 61% sequence identity with human lysozyme. For example, point mutations often lead to substantial flexibility increases within the β-subdomain, which is consistent with experimental results indicating that it is the nucleation site for amyloid formation. However, β-subdomain flexibility within the human and HEWL orthologs is more similar despite the lowered sequence identity. These results suggest compensating mutations in HEWL reestablish desired properties. The functional importance of protein dynamics is universally accepted, making the study of dynamical similarities and differences among proteins of the same function an intriguing problem. While some metrics are likely to be conserved across family, differences are also very common. In previous works we have used a Distance Constraint Model to quantify flexibility differences across sets of orthologous proteins, which reproduce this diversity. In the same manner, this work investigates changes occurring upon individual point mutations. Somewhat surprisingly, the small structural perturbations caused by mutation lead to changes throughout the protein. These changes can be quite large, actually surpassing the scale for differences between ortholog pairs. Moreover, changes in flexibility frequently occur at sites far from the mutation site. These results underscore the sensitivity of protein dynamics in connection with allostery, and help explain why differences across protein families are so common.
Collapse
Affiliation(s)
- Deeptak Verma
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (DJJ); (DRL)
| | - Dennis R. Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (DJJ); (DRL)
| |
Collapse
|
14
|
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, Privé GG. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 2011; 18:1210-9. [PMID: 20826347 DOI: 10.1016/j.str.2010.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 A crystal structure of PagP in an SDS / 2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.
Collapse
Affiliation(s)
- Jose Antonio Cuesta-Seijo
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute and Campbell Family Cancer Research Institute, 101 College Street, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Münz M, Lyngsø R, Hein J, Biggin PC. Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity. BMC Bioinformatics 2010; 11:188. [PMID: 20398246 PMCID: PMC2868010 DOI: 10.1186/1471-2105-11-188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/14/2010] [Indexed: 11/15/2022] Open
Abstract
Background The dynamic motions of many proteins are central to their function. It therefore follows that the dynamic requirements of a protein are evolutionary constrained. In order to assess and quantify this, one needs to compare the dynamic motions of different proteins. Comparing the dynamics of distinct proteins may also provide insight into how protein motions are modified by variations in sequence and, consequently, by structure. The optimal way of comparing complex molecular motions is, however, far from trivial. The majority of comparative molecular dynamics studies performed to date relied upon prior sequence or structural alignment to define which residues were equivalent in 3-dimensional space. Results Here we discuss an alternative methodology for comparative molecular dynamics that does not require any prior alignment information. We show it is possible to align proteins based solely on their dynamics and that we can use these dynamics-based alignments to quantify the dynamic similarity of proteins. Our method was tested on 10 representative members of the PDZ domain family. Conclusions As a result of creating pair-wise dynamics-based alignments of PDZ domains, we have found evolutionarily conserved patterns in their backbone dynamics. The dynamic similarity of PDZ domains is highly correlated with their structural similarity as calculated with Dali. However, significant differences in their dynamics can be detected indicating that sequence has a more refined role to play in protein dynamics than just dictating the overall fold. We suggest that the method should be generally applicable.
Collapse
Affiliation(s)
- Márton Münz
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
16
|
Abstract
Inspired by the seminal work of Anfinsen, investigations of the folding of small water-soluble proteins have culminated in detailed insights into how these molecules attain and stabilize their native folds. In contrast, despite their overwhelming importance in biology, progress in understanding the folding and stability of membrane proteins remains relatively limited. Here we use mutational analysis to describe the transition state involved in the reversible folding of the beta-barrel membrane protein PhoPQ-activated gene P (PagP) from a highly disordered state in 10 M urea to a native protein embedded in a lipid bilayer. Analysis of the equilibrium stability and unfolding kinetics of 19 variants that span all eight beta-strands of this 163-residue protein revealed that the transition-state structure is a highly polarized, partly formed beta-barrel. The results provide unique and detailed insights into the transition-state structure for beta-barrel membrane protein folding into a lipid bilayer and are consistent with a model for outer membrane protein folding via a tilted insertion mechanism.
Collapse
|
17
|
Gkeka P, Sarkisov L. Interactions of Phospholipid Bilayers with Several Classes of Amphiphilic α-Helical Peptides: Insights from Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2009; 114:826-39. [DOI: 10.1021/jp908320b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Paraskevi Gkeka
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, U.K
| | - Lev Sarkisov
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|