1
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Alarcón S, Toro MDLÁ, Villarreal C, Melo R, Fernández R, Ayuso Sacido A, Uribe D, San Martín R, Quezada C. Decreased Equilibrative Nucleoside Transporter 1 (ENT1) Activity Contributes to the High Extracellular Adenosine Levels in Mesenchymal Glioblastoma Stem-Like Cells. Cells 2020; 9:E1914. [PMID: 32824670 PMCID: PMC7463503 DOI: 10.3390/cells9081914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is one of the most malignant types of cancer. This is mainly due to a cell subpopulation with an extremely aggressive potential, called glioblastoma stem-like cells (GSCs). These cells produce high levels of extracellular adenosine which has been associated with increased chemoresistance, migration, and invasion in glioblastoma. In this study, we attempted to elucidate the mechanisms that control extracellular adenosine levels in GSC subtypes. By using primary and U87MG-derived GSCs, we associated increased extracellular adenosine with the mesenchymal phenotype. [3H]-adenosine uptake occurred mainly through the equilibrative nucleoside transporters (ENTs) in GSCs, but mesenchymal GSCs have lower expression and ENT1-mediated uptake activity than proneural GSCs. By analyzing expression and enzymatic activity, we determined that ecto-5'-nucleotidase (CD73) is predominantly expressed in proneural GSCs, driving AMPase activity. While in mesenchymal GSCs, both CD73 and Prostatic Acid Phosphatase (PAP) contribute to the AMP (adenosine monophosphate) hydrolysis. We did not observe significant differences between the expression of proteins involved in the metabolization of adenosine among the GCSs subtypes. In conclusion, the lower expression and activity of the ENT1 transporter in mesenchymal GSCs contributes to the high level of extracellular adenosine that these GSCs present.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - María de los Ángeles Toro
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Carolina Villarreal
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Rómulo Melo
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago 7500691, Chile; (R.M.); (R.F.)
| | - Rodrigo Fernández
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago 7500691, Chile; (R.M.); (R.F.)
| | - Angel Ayuso Sacido
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain;
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Rody San Martín
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Claudia Quezada
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
- Instituto Milenio de Inmunología e Inmunoterapia, Santiago 8320000, Chile
| |
Collapse
|
3
|
Vlachodimou A, IJzerman AP, Heitman LH. Label-free detection of transporter activity via GPCR signalling in living cells: A case for SLC29A1, the equilibrative nucleoside transporter 1. Sci Rep 2019; 9:13802. [PMID: 31551431 PMCID: PMC6760145 DOI: 10.1038/s41598-019-48829-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
Transporters are important therapeutic but yet understudied targets due to lack of available assays. Here we describe a novel label-free, whole-cell method for the functional assessment of Solute Carrier (SLC) inhibitors. As many SLC substrates are also ligands for G protein-coupled receptors (GPCRs), transporter inhibition may affect GPCR signalling due to a change in extracellular concentration of the substrate/ligand, which can be monitored by an impedance-based label-free assay. For this study, a prototypical SLC/GPCR pair was selected, i.e. the equilibrative nucleoside transporter-1 (SLC29A1/ENT1) and an adenosine receptor (AR), for which adenosine is the substrate/ligand. ENT1 inhibition with three reference compounds was monitored sensitively via AR activation on human osteosarcoma cells. Firstly, the inhibitor addition resulted in an increased apparent potency of adenosine. Secondly, all inhibitors concentration-dependently increased the extracellular adenosine concentration, resulting in an indirect quantitative assessment of their potencies. Additionally, AR activation was abolished by AR antagonists, confirming that the monitored impedance was AR-mediated. In summary, we developed a novel assay as an in vitro model system that reliably assessed the potency of SLC29A1 inhibitors via AR signalling. As such, the method may be applied broadly as it has the potential to study a multitude of SLCs via concomitant GPCR signalling.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
4
|
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull 2018; 151:92-108. [PMID: 30458250 DOI: 10.1016/j.brainresbull.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue's responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed.
Collapse
Affiliation(s)
- Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Niterói, RJ, Brazil.
| | | | - Claire H Mitchell
- Department of Anatomy and Cell Biology, Ophthalmology, and Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Alarcón S, Garrido W, Vega G, Cappelli C, Suárez R, Oyarzún C, Quezada C, San Martín R. Deficient Insulin-mediated Upregulation of the Equilibrative Nucleoside Transporter 2 Contributes to Chronically Increased Adenosine in Diabetic Glomerulopathy. Sci Rep 2017; 7:9439. [PMID: 28842605 PMCID: PMC5572683 DOI: 10.1038/s41598-017-09783-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Deficient insulin signaling is a key event mediating diabetic glomerulopathy. Additionally, diabetic kidney disease has been related to increased levels of adenosine. Therefore, we tested a link between insulin deficiency and dysregulated activity of the equilibrative nucleoside transporters (ENTs) responsible for controlling extracellular levels of adenosine. In ex vivo glomeruli, high D-glucose decreased nucleoside uptake mediated by ENT1 and ENT2 transporters, resulting in augmented extracellular levels of adenosine. This condition was reversed by exposure to insulin. Particularly, insulin through insulin receptor/PI3K pathway markedly upregulated ENT2 uptake activity to restores the extracellular basal level of adenosine. Using primary cultured rat podocytes as a cellular model, we found insulin was able to increase ENT2 maximal velocity of transport. Also, PI3K activity was necessary to maintain ENT2 protein levels in the long term. In glomeruli of streptozotocin-induced diabetic rats, insulin deficiency leads to decreased activity of ENT2 and chronically increased extracellular levels of adenosine. Treatment of diabetic rats with adenosine deaminase attenuated both the glomerular loss of nephrin and proteinuria. In conclusion, we evidenced ENT2 as a target of insulin signaling and sensitive to dysregulation in diabetes, leading to chronically increased extracellular adenosine levels and thereby setting conditions conducive to kidney injury.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Wallys Garrido
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Génesis Vega
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Cappelli
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Raibel Suárez
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Oyarzún
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
6
|
Bicket A, Mehrabi P, Naydenova Z, Wong V, Donaldson L, Stagljar I, Coe IR. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding. Am J Physiol Cell Physiol 2016; 310:C808-20. [PMID: 27009875 DOI: 10.1152/ajpcell.00243.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/09/2016] [Indexed: 01/25/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is not known. Here we report the identification of the calcium signaling transducer calmodulin (CaM) as an ENT1-interacting protein, via a conserved classic 1-5-10 motif in ENT1. Calcium-dependent human ENT1-CaM protein interactions were confirmed in human cell lines (HEK293, RT4, U-87 MG) using biochemical assays (HEK293) and the functional assays (HEK293, RT4), which confirmed modified nucleoside uptake that occurred in the presence of pharmacological manipulations of calcium levels and CaM function. Nucleoside and NA drug uptake was significantly decreased (∼12% and ∼39%, respectively) by chelating calcium (EGTA, 50 μM; BAPTA-AM, 25 μM), whereas increasing intracellular calcium (thapsigargin, 1.5 μM) led to increased nucleoside uptake (∼26%). Activation of N-methyl-d-aspartate (NMDA) receptors (in U-87 MG) by glutamate (1 mM) and glycine (100 μM) significantly increased nucleoside uptake (∼38%) except in the presence of the NMDA receptor antagonist, MK-801 (50 μM), or CaM antagonist, W7 (50 μM). These data support the existence of a previously unidentified novel receptor-dependent regulatory mechanism, whereby intracellular calcium modulates nucleoside and NA drug uptake via CaM-dependent interaction of ENT1. These findings suggest that ENT1 is regulated via receptor-dependent calcium-linked pathways resulting in an alteration of purine flux, which may modulate purinergic signaling and influence NA drug efficacy.
Collapse
Affiliation(s)
- Alex Bicket
- Department of Biology, York University, Toronto, Canada
| | - Pedram Mehrabi
- Department of Biology, York University, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Zlatina Naydenova
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Imogen R Coe
- Department of Biology, York University, Toronto, Canada; Department of Chemistry and Biology, Ryerson University, Toronto, Canada;
| |
Collapse
|
7
|
Aseervatham J, Tran L, Machaca K, Boudker O. The Role of Flexible Loops in Folding, Trafficking and Activity of Equilibrative Nucleoside Transporters. PLoS One 2015; 10:e0136779. [PMID: 26406980 PMCID: PMC4583308 DOI: 10.1371/journal.pone.0136779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/07/2015] [Indexed: 11/25/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues. The structure and mechanism, by which ENTs catalyze trans-membrane transport of their substrates, remain unknown. To identify the core of the transporter needed for stability, activity, and for its correct trafficking to the plasma membrane, we have expressed human ENT deletion mutants in Xenopus laevis oocytes and determined their localization, transport properties and susceptibility to inhibition. We found that the carboxyl terminal trans-membrane segments are essential for correct protein folding and trafficking. In contrast, the soluble extracellular and intracellular loops appear to be dispensable, and must be involved in the fine-tuning of transport regulation.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar foundation, Education City, Doha, Qatar
| | - Lucky Tran
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar foundation, Education City, Doha, Qatar
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dos Santos-Rodrigues A, Pereira MR, Brito R, de Oliveira NA, Paes-de-Carvalho R. Adenosine transporters and receptors: key elements for retinal function and neuroprotection. VITAMINS AND HORMONES 2015; 98:487-523. [PMID: 25817878 DOI: 10.1016/bs.vh.2014.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases.
Collapse
Affiliation(s)
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Rafael Brito
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nádia A de Oliveira
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | |
Collapse
|
9
|
Dos Santos-Rodrigues A, Grañé-Boladeras N, Bicket A, Coe IR. Nucleoside transporters in the purinome. Neurochem Int 2014; 73:229-37. [PMID: 24704797 DOI: 10.1016/j.neuint.2014.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
Abstract
The purinome is a rich complex of proteins and cofactors that are involved in fundamental aspects of cellular homeostasis and cellular responses. The purinome is evolutionarily ancient and is made up of thousands of members. Our understanding of the mechanisms linking some parts of this complex network and the physiological relevance of the various connections is well advanced. However, our understanding of other parts of the purinome is less well developed. Our research focuses on the adenosine or nucleoside transporters (NTs), which are members of the membrane purinome. Nucleoside transporters are integral membrane proteins that are responsible for the flux of nucleosides, such as adenosine, and nucleoside analog drugs, used in a variety of anti-cancer, anti-viral and anti-parasite therapies, across cell membranes. Nucleoside transporters form the SLC28 and SLC29 families of solute carriers and the protein members of these families are widely distributed in human tissues including the central nervous system (CNS). NTs modulate purinergic signaling in the CNS primarily through their effects on modulating prevailing adenosine levels inside and outside the cell. By clearing the extracellular milieu of adenosine, NTs can terminate adenosine receptor-dependent signaling and this raises the possibility of regulatory feedback loops that tie together receptor signaling with transporter function. Despite the important role of NTs as modulators of purinergic signaling in the human body, very little is known about the nature or underlying mechanisms of regulation of either the SLC28 or SLC29 families, particularly within the context of the CNS purinome. Here we provide a brief overview of our current understanding of the regulation of members of the SLC29 family and highlight some interesting avenues for future research.
Collapse
Affiliation(s)
| | - Natalia Grañé-Boladeras
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ON, Canada
| | - Alex Bicket
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Imogen R Coe
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada; Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
10
|
Structural determinants for rCNT2 sorting to the plasma membrane of polarized and non-polarized cells. Biochem J 2012; 442:517-25. [DOI: 10.1042/bj20110605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
rCNT2 (rat concentrative nucleoside transporter 2) (Slc28a2) is a purine-preferring concentrative nucleoside transporter. It is expressed in both non-polarized and polarized cells, where it is localized in the brush border membrane. Since no information about the domains implicated in the plasma membrane sorting of rCNT2 is available, the present study aimed to identify structural and functional requirements for rCNT2 trafficking. The comprehensive topological mapping of the intracellular N-terminal tail revealed two main features: (i) a glutamate-enriched region (NPGLELME) between residues 21 and 28 that seems to be implicated in the stabilization of rCNT2 in the cell surface, since mutagenesis of these conserved glutamates resulted in enhanced endocytosis; and (ii) mutation of a potential protein kinase CK2 domain that led to a loss of brush border-specific sorting. Although the shortest proteins assayed (rCNT2-74AA, -48AA and -37AA) accumulated intracellularly and lost their brush border membrane preference, they were still functional. A deeper analysis of CK2 implication in CNT2 trafficking, using a CK2-specific inhibitor [DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)] and other complementary mutations mimicking the negative charge provided by phosphorylation (S46D and S46E), demonstrated an effect of this kinase on rCNT2 activity. In summary, the N-terminal tail of rCNT2 contains dual sorting signals. An acidic region is responsible for its proper stabilization at the plasma membrane, whereas the putative CK2 domain (Ser46) is implicated in the apical sorting of the transporter.
Collapse
|
11
|
dos Santos-Rodrigues A, Ferreira JM, Paes-de-Carvalho R. Differential adenosine uptake in mixed neuronal/glial or purified glial cultures of avian retinal cells: modulation by adenosine metabolism and the ERK cascade. Biochem Biophys Res Commun 2011; 414:175-80. [PMID: 21945936 DOI: 10.1016/j.bbrc.2011.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
Adenosine is an important modulator of neuronal survival and differentiation in the CNS. Our previous work showed that nucleoside transporters (NTs) are present in cultures of chick retinal cells, but little is known about the mechanisms regulating adenosine transport in these cultures. Our aim in the present work was to study the participation of the adenosine metabolism as well as the ERK pathway on adenosine uptake in different types of retinal cultures (mixed and purified glial cultures). Kinetic analysis in both cultures revealed that the uptake reached equilibrium after 30 min and presented two components. Incubation of cultures with S-(p-nitrobenzyl)-6-thioinosine (NBTI) or dipyridamole, different inhibitors of equilibrative nucleoside transporters (ENTs), produced a significant and concentration-dependent uptake reduction in both cultures. However, while dipyridamole presented similar maximal inhibitory effects in both cultures (although in different concentrations), the inhibition by NBTI was smaller in glial cultures than in mixed cultures, suggesting the presence of different transporters. Moreover, pre-incubation of [(3)H]-adenosine with adenosine deaminase (ADA) or adenosine kinase (ADK) inhibition with iodotubercidin promoted significant uptake inhibition in both cultures, indicating that the uptake is predominantly for adenosine and not inosine, and that taken up adenosine is preferentially directed to the synthesis of adenine nucleotides. In both cultures, the MEK inhibitors PD98059 or UO126, but not the inactive analog U0124, induced a significant and concentration-dependent uptake decrease. We have not observed any change in adenosine metabolism induced by MEK inhibitors, suggesting that this pathway is mediating a direct effect on NTs. Our results show the expression of different NTs in retinal cells in culture and that the activity of these transporters can be regulated by the ERK pathway or metabolic enzymes such as ADK which are then potential targets for regulation of Ado levels in normal or pathological conditions.
Collapse
|
12
|
Abstract
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patient's need for the treatment of cardiac disease, cancer and viral infections.
Collapse
|
13
|
Ruby CL, Adams CA, Knight EJ, Nam HW, Choi DS. An essential role for adenosine signaling in alcohol abuse. ACTA ACUST UNITED AC 2011; 3:163-74. [PMID: 21054262 DOI: 10.2174/1874473711003030163] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/20/2010] [Indexed: 12/16/2022]
Abstract
In the central nervous system (CNS), adenosine plays an important role in regulating neuronal activity and modulates signaling by other neurotransmitters, including GABA, glutamate, and dopamine. Adenosine suppresses neurotransmitter release, reduces neuronal excitability, and regulates ion channel function through activation of four classes of G protein-coupled receptors, A(1), A(2A), A(2B), and A(3). Central adenosine are largely controlled by nucleoside transporters, which transport adenosine levels across the plasma membrane. Adenosine has been shown to modulate cortical glutamate signaling and ventral-tegmental dopaminergic signaling, which are involved in several aspects of alcohol use disorders. Acute ethanol elevates extracellular adenosine levels by selectively inhibiting the type 1 equilibrative nucleoside transporter, ENT1. Raised adenosine levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A(1) receptors in the cerebellum, striatum, and cerebral cortex. Recently, we have shown that pharmacological inhibition or genetic deletion of ENT1 reduces the expression of excitatory amino acid transporter 2 (EAAT2), the primary regulator of extracellular glutamate, in astrocytes. These lines of evidence support a central role for adenosine-mediated glutamate signaling and the involvement of astrocytes in regulating ethanol intoxication and preference. In this paper, we discuss recent findings on the implication of adenosine signaling in alcohol use disorders.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
14
|
Nivillac NMI, Bacani J, Coe IR. The life cycle of human equilibrative nucleoside transporter 1: from ER export to degradation. Exp Cell Res 2011; 317:1567-79. [PMID: 21402067 DOI: 10.1016/j.yexcr.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/06/2011] [Accepted: 03/07/2011] [Indexed: 11/25/2022]
Abstract
Nucleoside transporters (NTs) play an essential role in the transport of nucleosides across cellular membranes. Equilibrative NTs (ENTs) allow facilitated diffusion of nucleosides and the prototypic ENT, hENT1, is primarily localized to the plasma membrane (PM). hENT1 is responsible for the uptake of nucleoside analog drugs used in treating viral infections and cancer, but despite its clinical importance, virtually nothing is known about the dynamics of the hENT1 life cycle including trafficking to the PM, endocytosis and degradation. Therefore, we followed the life cycle of tagged hENT1 (GFP- or FLAG-) transiently transfected into mammalian cells to gain insight into the sequence of events, timing and underlying mechanisms regulating the hENT1 life cycle. Protein translocation to the PM was examined using fixed and live cell confocal microscopy while endocytosis and degradation were analyzed by cell surface biotinylation and [(35)S] pulse chase analysis respectively. We determined that tagged hENT1 is trafficked to the PM in association with microtubules and incorporated in the plasma membrane where it subsequently undergoes clathrin-mediated endocytosis and recycling. Finally, internalized protein is degraded via the lysosomal pathway and observations suggest the complete life cycle of tagged hENT1 within these cells is approximately 14 hours.
Collapse
|
15
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
16
|
Kim JH, Karpyak VM, Biernacka JM, Nam HW, Lee MR, Preuss UW, Zill P, Yoon G, Colby C, Mrazek DA, Choi DS. Functional role of the polymorphic 647 T/C variant of ENT1 (SLC29A1) and its association with alcohol withdrawal seizures. PLoS One 2011; 6:e16331. [PMID: 21283641 PMCID: PMC3026043 DOI: 10.1371/journal.pone.0016331] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/11/2010] [Indexed: 01/10/2023] Open
Abstract
Background Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Principal Findings Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Conclusions Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Victor M. Karpyak
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Joanna M. Biernacka
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moonnoh R. Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ulrich W. Preuss
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University, Halle/Saale, Germany
| | - Peter Zill
- Section Psychiatric Genetics and Neurochemistry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Gihyun Yoon
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colin Colby
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - David A. Mrazek
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
17
|
Leisewitz AV, Zimmerman EI, Huang M, Jones SZ, Yang J, Graves LM. Regulation of ENT1 expression and ENT1-dependent nucleoside transport by c-Jun N-terminal kinase. Biochem Biophys Res Commun 2010; 404:370-5. [PMID: 21145879 DOI: 10.1016/j.bbrc.2010.11.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/27/2010] [Indexed: 01/17/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) are facilitative transporters broadly selective for pyrimidine and purine nucleosides and are essential for the modulation of nucleoside concentration and nucleoside analog availability. Resistance to nucleoside-derived drugs strongly correlates with a deficiency of ENT1 expression in several tumor cells. Thus, it is crucial to understand the mechanisms by which this transporter is modulated. Using a mouse myeloid leukemic cell line as a model, we investigated whether stress-activated kinases regulate ENT1 expression and function. JNK activation, but not p38 MAPK results in rapid loss of mENT1 function, mRNA expression and promoter activity. c-Jun but not the mutant c-Jun Ser63/73Ala, decreased mENT1 promoter activity. Moreover cJun bound to an AP-1 site identified at -1196 of the promoter, suggesting a specific role for this transcription factor in mENT1 regulation. We propose that activation of JNK-cJun pathway negatively regulates mENT1 and suggest that this mechanism might contribute to the development of nucleoside analog-derived drug resistance.
Collapse
Affiliation(s)
- Andrea V Leisewitz
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7365, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Reyes G, Naydenova Z, Abdulla P, Chalsev M, Villani A, Rose JB, Chaudary N, DeSouza L, Siu KWM, Coe IR. Characterization of mammalian equilibrative nucleoside transporters (ENTs) by mass spectrometry. Protein Expr Purif 2010; 73:1-9. [PMID: 20399865 DOI: 10.1016/j.pep.2010.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins that facilitate the movement of nucleosides and hydrophilic nucleoside analog (NA) drugs across cell membranes. ENTs are also targets for cardioprotectant drugs, which block re-uptake of the purine nucleoside adenosine, thereby enhancing purinergic receptor signaling pathways. ENTs are therefore important contributors to drug bioavailability and efficacy. Despite this important clinical role, very little is known about the structure and regulation of ENTs. Biochemical and structural studies on ENT proteins have been limited by their low endogenous expression levels, hydrophobicity and labile nature. To address these issues, we developed an approach whereby tagged mammalian ENT1 protein was over-expressed in mammalian cell lines, confirmed to be functional and isolated by affinity purification to sufficient levels to be analyzed using MALDI-TOF and tandem MS mass spectrometry. This proteomic approach will allow for a more detailed analysis of the structure, function and regulation of ENTs in the future.
Collapse
Affiliation(s)
- German Reyes
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Parkinson FE, Xiong W, Zamzow CR, Chestley T, Mizuno T, Duckworth ML. Transgenic expression of human equilibrative nucleoside transporter 1 in mouse neurons. J Neurochem 2009; 109:562-72. [PMID: 19222701 DOI: 10.1111/j.1471-4159.2009.05991.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [(3)H]adenosine uptake and [(3)H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
Collapse
Affiliation(s)
- Fiona E Parkinson
- Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Young JD, Yao SYM, Sun L, Cass CE, Baldwin SA. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 2008; 38:995-1021. [PMID: 18668437 DOI: 10.1080/00498250801927427] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.
Collapse
Affiliation(s)
- J D Young
- Membrane Protein Research Group, Department of Physiology and Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
21
|
Sarker R, Grønborg M, Cha B, Mohan S, Chen Y, Pandey A, Litchfield D, Donowitz M, Li X. Casein kinase 2 binds to the C terminus of Na+/H+ exchanger 3 (NHE3) and stimulates NHE3 basal activity by phosphorylating a separate site in NHE3. Mol Biol Cell 2008; 19:3859-70. [PMID: 18614797 DOI: 10.1091/mbc.e08-01-0019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Na(+)/H(+) exchanger 3 (NHE3) is the epithelial-brush border isoform responsible for most intestinal and renal Na(+) absorption. Its activity is both up- and down-regulated under normal physiological conditions, and it is inhibited in most diarrheal diseases. NHE3 is phosphorylated under basal conditions and Ser/Thr phosphatase inhibitors stimulate basal exchange activity; however, the kinases involved are unknown. To identify kinases that regulate NHE3 under basal conditions, NHE3 was immunoprecipitated; LC-MS/MS of trypsinized NHE3 identified a novel phosphorylation site at S(719) of the C terminus, which was predicted to be a casein kinase 2 (CK2) phosphorylation site. This was confirmed by an in vitro kinase assay. The NHE3-S719A mutant but not NHE3-S719D had reduced NHE3 activity due to less plasma membrane NHE3. This was due to reduced exocytosis plus decreased plasma membrane delivery of newly synthesized NHE3. Also, NHE3 activity was inhibited by the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole DMAT when wild-type NHE3 was expressed in fibroblasts and Caco-2 cells, but the NHE3-S(719) mutant was fully resistant to DMAT. CK2 bound to the NHE3 C-terminal domain, between amino acids 590 and 667, a site different from the site it phosphorylates. CK2 binds to the NHE3 C terminus and stimulates basal NHE3 activity by phosphorylating a separate single site on the NHE3 C terminus (S(719)), which affects NHE3 trafficking.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Robillard KR, Bone DB, Park JS, Hammond JR. Characterization of mENT1Δ11, a Novel Alternative Splice Variant of the Mouse Equilibrative Nucleoside Transporter 1. Mol Pharmacol 2008; 74:264-73. [DOI: 10.1124/mol.107.041871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Bone DBJ, Hammond JR. Nucleoside and nucleobase transporters of primary human cardiac microvascular endothelial cells: characterization of a novel nucleobase transporter. Am J Physiol Heart Circ Physiol 2007; 293:H3325-32. [PMID: 17921321 DOI: 10.1152/ajpheart.01006.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.4 +/- 1 pmol.microl(-1).s(-1), with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs (K(m) = 96 +/- 37 microM; V(max) = 1.6 +/- 0.3 pmol.microl(-1).s(-1)) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine (K(i) = 19 +/- 7 microM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK(15) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na(+) or H(+). PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.
Collapse
Affiliation(s)
- Derek B J Bone
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|