1
|
Nour SA, Foda DS, Elsehemy IA, Hassan ME. Co-administration of xylo-oligosaccharides produced by immobilized Aspergillus terreus xylanase with carbimazole to mitigate its adverse effects on the adrenal gland. Sci Rep 2024; 14:17481. [PMID: 39080323 PMCID: PMC11289116 DOI: 10.1038/s41598-024-67310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Carbimazole has disadvantages on different body organs, especially the thyroid gland and, rarely, the adrenal glands. Most studies have not suggested any solution or medication for ameliorating the noxious effects of drugs on the glands. Our study focused on the production of xylooligosaccharide (XOS), which, when coadministered with carbimazole, relieves the toxic effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity. This XOS produced by Aspergillus terreus xylanase was covalently immobilized using microbial Scleroglucan gel beads, which improved the immobilization yield, efficiency, and operational stability. Over a wide pH range (6-7.5), the covalent immobilization of xylanase on scleroglucan increased xylanase activity compared to that of its free form. Additionally, the reaction temperature was increased to 65 °C. However, the immobilized enzyme demonstrated superior thermal stability, sustaining 80.22% of its original activity at 60 °C for 120 min. Additionally, the full activity of the immobilized enzyme was sustained after 12 consecutive cycles, and the activity reached 78.33% after 18 cycles. After 41 days of storage at 4 °C, the immobilized enzyme was still active at approximately 98%. The immobilized enzyme has the capability to produce xylo-oligosaccharides (XOSs). Subsequently, these XOSs can be coadministered alongside carbimazole to mitigate the adverse effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity.
Collapse
Affiliation(s)
- Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Doaa S Foda
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
- Centre of Excellence, Encapsulation and Nano Biotechnology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Oyouni AAA, Al-Amer OM, Ali FAZ, Altayar MA, Jalal MM, Albalawi RSM, Abuderman AA, Alsharif KF, AlZamzami W, Albrakati A, Elmahallawy EK. Melatonin ameliorates the adrenal and pancreatic alterations in streptozotocin-induced diabetic rats: Clinical, biochemical, and descriptive histopathological studies. Front Vet Sci 2022; 9:1016312. [PMID: 36337190 PMCID: PMC9634159 DOI: 10.3389/fvets.2022.1016312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have demonstrated the beneficial effects of melatonin in diabetic rats. However, limited studies have been conducted on the potential effects of melatonin on the descriptive histopathological and morphometric findings in different compartments of the adrenal glands in diabetic animal models. In this study, using a streptozotocin (STZ)-induced diabetic rat model, we sought to examine histological alterations in the pancreas and adrenal glands and observe the effect of the administration of melatonin on the histopathology and morphology of the pancreas and the adrenal gland cortex and medulla that are altered by STZ-induced hyperglycemia. Rats were randomly assigned to four different groups: Group I, normal control; Group II, melatonin group (MT) (10 mg/kg/day); Group III, (diabetic STZ group), and Group IV, diabetic (STZ) + melatonin group (MT). Throughout the experiment, the animals' fasting blood sugar levels were measured. Blood was obtained to determine the animals' cumulative blood sugar levels after sacrification. For histological and morphometrical evaluations, the pancreatic and adrenal gland tissues were dissected and processed. Our results showed that diabetic rats receiving melatonin significantly (P < 0.05) improved their fasting blood sugar and cumulative blood sugar levels compared to the diabetic group not receiving melatonin. Furthermore, histopathological examinations of the pancreatic and adrenal tissues of the diabetic rats indicated the occurrence of severe histopathological and morphometric changes. Morphometric analysis of the adrenals indicated a significant increase (P < 0.05) in the thickness of the cortex zones [zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR)] for the diabetic STZ group compared with other groups, and a significant decrease (P < 0.05) in the diameter of the in adrenal gland medullas in the diabetic STZ rats compared to the other groups. Furthermore, treatment with melatonin restored these changes in both the pancreatic and adrenal gland tissues and produced a significant (P < 0.05) improvement in the cortex and medulla thickness compared to the untreated diabetic rats. Overall, melatonin significantly reduced the hyperglycemic levels of glucose in diabetic rats and reversed the majority of histopathological alterations in the tissues of the pancreas and adrenals, demonstrating its anti-diabetic activity.
Collapse
Affiliation(s)
- Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Malik A. Altayar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed M. Jalal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Abdulwahab Ali Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Waseem AlZamzami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Samprathi A, Chacko B, D'sa SR, Rebekah G, Vignesh Kumar C, Sadiq M, Victor P, Prasad J, Jayakaran JAJ, Peter JV. Adrenaline is effective in reversing the inadequate heart rate response in atropine treated organophosphorus and carbamate poisoning. Clin Toxicol (Phila) 2020; 59:604-610. [PMID: 33135482 DOI: 10.1080/15563650.2020.1836376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND In acute organophosphorus (OP) or carbamate poisoning, some patients require high dose atropine to counteract the effects on heart rate (HR) and blood pressure (BP). This study describes the factors associated with high dose atropine therapy and the use of adrenaline to reverse the inadequate HR response to atropine. METHODS Consecutive patients admitted to the intensive care unit (ICU) were prospectively recruited. Demographic data, treatment and outcomes of patients who failed to achieve target HR (100/min) or systolic BP >90 mm Hg with either a cumulative atropine dose of 100-mg within 6-h following admission or an infusion of 30 mg/h for at least 3-h were compared with patients who achieved the targets. Factors associated with high dose atropine therapy were explored using logistic regression analysis and expressed as odds ratio (OR) with 95% confidence intervals (CIs). RESULTS Of the 181 patients admitted with OP or carbamate poisoning, 155 patients fulfilled inclusion criteria. The mean (SD) age was 35.7 (15.8) years; admission APACHE-II score was 14.6 (7.5). Heart rate and/or BP target was not achieved in 13.6%. In these patients, target HR was achieved after adding adrenaline infusion at 2-4 μg/min. Ventilation duration (11.6 ± 6.3 vs. 8.4 ± 6.9 days, p = 0.05) and ICU stay (12.3 ± 5.8 vs. 8.9 ± 5.8 days, p = 0.01) were longer in patients requiring high dose atropine when compared with others. On multivariate logistic regression analysis, shorter time to presentation to hospital (p = 0.04) was associated with need for high dose atropine. Overall mortality was 9% and similar in both groups (p = 0.41). CONCLUSIONS High dose atropine therapy is required in a subset of patients with OP and carbamate poisoning and was associated with longer ventilation duration and ICU stay. Adrenaline infusion improved hemodynamics in these patients.
Collapse
Affiliation(s)
| | - Binila Chacko
- Medical Intensive Care Unit, Christian Medical College, Vellore, India
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - C Vignesh Kumar
- Department of Medicine, Christian Medical College, Vellore, India
| | - Mohammad Sadiq
- Department of Medicine, Christian Medical College, Vellore, India.,Speciality Registrar, Edinburgh Center for Endocrinology and Diabetes, NHS, Edinburgh, UK
| | - Punitha Victor
- Department of Medicine, Christian Medical College, Vellore, India
| | - John Prasad
- Department of Medicine, Christian Medical College, Vellore, India
| | | | - John Victor Peter
- Medical Intensive Care Unit, Christian Medical College, Vellore, India
| |
Collapse
|
5
|
Yang FW, Zhao GP, Ren FZ, Pang GF, Li YX. Assessment of the endocrine-disrupting effects of diethyl phosphate, a nonspecific metabolite of organophosphorus pesticides, by in vivo and in silico approaches. ENVIRONMENT INTERNATIONAL 2020; 135:105383. [PMID: 31835022 DOI: 10.1016/j.envint.2019.105383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Organophosphorus pesticides (OPs) remain one of the most commonly used pesticides, and their detection rates and residues in agricultural products, foods and environmental samples have been underestimated. Humans and environmental organisms are at high risk of exposure to OPs. Most OPs can be degraded and metabolized into dialkyl phosphates (DAPs) in organisms and the environment, and can be present in urine as biomarkers for exposure to OPs, of which diethyl phosphate (DEP) is a high-exposure metabolite. Epidemiological and cohort studies have found that DAPs are associated with endocrine hormone disorders, especially sex hormone disorders and thyroid hormone disorders, but there has been no direct causal evidence to support these findings. Our study explored the effects of chronic exposure to DEP on endocrine hormones and related metabolic indicators in adult male rats at actual doses that can be reached in the human body. The results showed that chronic exposure to DEP could cause thyroid-related hormone disorders in the serum of rats, causing symptoms of hyperthyroidism in rats, and could also lead to abnormal expression of thyroid hormone-related genes in the rat liver. However, DEP exposure did not seem to affect serum sex hormone levels, spermatogenesis or sperm quality in rats. The molecular interactions between DEP and thyroid hormone-related enzymes/proteins were investigated by molecular docking and molecular dynamics methods in silico. It was found that DEP could strongly interact with thyroid hormone biosynthesis, blood transport, receptor binding and metabolism-related enzymes/proteins, interfering with the production and signal regulation of thyroid hormones. In vivo and in silico experiments showed that DEP might be a potential thyroid hormone-disrupting chemical, and therefore, we need to be more cautious and rigorous regarding organophosphorus chemical exposure.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Yang FW, Li YX, Ren FZ, Luo J, Pang GF. Assessment of the endocrine-disrupting effects of organophosphorus pesticide triazophos and its metabolites on endocrine hormones biosynthesis, transport and receptor binding in silico. Food Chem Toxicol 2019; 133:110759. [PMID: 31421215 DOI: 10.1016/j.fct.2019.110759] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Triazophos (TAP) was a widely used organophosphorus insecticide in developing countries. TAP could produce specific metabolites triazophos-oxon (TAPO) and 1-phenyl-3-hydroxy-1,2,4-triazole (PHT) and non-specific metabolites diethylthiophosphate (DETP) and diethylphosphate (DEP). The objective of this study involved computational approaches to discover potential mechanisms of molecular interaction of TAP and its major metabolites with endocrine hormone-related proteins using molecular docking in silico. We found that TAP, TAPO and DEP showed high binding affinity with more proteins and enzymes than PHT and DETP. TAP might interfere with the endocrine function of the adrenal gland, and TAP might also bind strongly with glucocorticoid receptors and thyroid hormone receptors. TAPO might disrupt the normal binding of androgen receptor, estrogen receptor, progesterone receptor and adrenergic receptor to their natural hormone ligands. DEP might affect biosynthesis of steroid hormones and thyroid hormones. Meanwhile, DEP might disrupt the binding and transport of thyroid hormones in the blood and the normal binding of thyroid hormones to their receptors. These results suggested that TAP and DEP might have endocrine disrupting activities and were potential endocrine disrupting chemicals. Our results provided further reference for the comprehensive evaluation of toxicity of organophosphorus chemicals and their metabolites.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, 100083, China
| | - Jie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
7
|
Yang F, Li J, Pang G, Ren F, Fang B. Effects of Diethyl Phosphate, a Non-Specific Metabolite of Organophosphorus Pesticides, on Serum Lipid, Hormones, Inflammation, and Gut Microbiota. Molecules 2019; 24:molecules24102003. [PMID: 31137755 PMCID: PMC6572208 DOI: 10.3390/molecules24102003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Organophosphorus pesticides (OPs) can be metabolized to diethyl phosphate (DEP) in the gut environment, which may affect the immune and endocrine systems and the microbiota. Correlations between OPs and diseases have been established by epidemiological studies, mainly based on the contents of their metabolites, including DEP, in the serum or urine. However, the effects of DEP require further study. Therefore, in this study, adult male rats were exposed to 0.08 or 0.13 mg/kg DEP for 20 weeks. Serum levels of hormones, lipids, and inflammatory cytokines as well as gut microbiota were measured. DEP significantly enriched opportunistic pathogens, including Paraprevotella, Parabacteroides, Alloprevotella, and Helicobacter, leading to a decrease in interleukin-6 (IL-6). Exposure to the high dose of DEP enriched the butyrate-producing genera, Alloprevotella and Intestinimonas, leading to an increase in estradiol and a resulting decrease in total triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C); meanwhile, DEP-induced increases in peptide tyrosine‒tyrosine (PYY) and ghrelin were attributed to the enrichment of short-chain fatty acid-producing Clostridium sensu stricto 1 and Lactobacillus. These findings indicate that measuring the effects of DEP is not a proxy for measuring the effects of its parent compounds.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinwang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guofang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|