1
|
Chandra P, Kaleem M, Sachan N, Pathak R, Alanazi AS, Alsaif NA, Alsanea S, Alsuwayt B, Alanazi MM, Kabra A. Gastroprotective evaluation of Medicago sativa L. (Fabaceae) on diabetic rats. Saudi Pharm J 2023; 31:101815. [PMID: 37860685 PMCID: PMC10582054 DOI: 10.1016/j.jsps.2023.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Traditional uses for the plant Medicago sativa (M. sativa) (Alfalfa) (Family: Fabaceae) include liver protection, antioxidant activity, and the treatment of bleeding and digestive issues. This study aims to assess the effect of ethanol extract of M. sativa (EEMS) on experimental-induced ulcers in diabetic rats. By pylorus ligation and ethanol administration, gastric ulcers were induced in diabetic rats. Five groups each consisting of six rats in each model were used. All other groups except Group I were made diabetic by giving rats alloxan (140 mg/kg i.p.). Vehicles were given to Group I (normal control) and Group II (diabetes control) rats. Group III (positive control) received ranitidine 50 mg/kg, and Group IV and V received EEMS at doses of 100 and 400 mg/kg, respectively. In the pylorus ligation and ethanol-induced stomach ulcer model of rats, the findings demonstrated that EEMS (100 mg/kg) showed a decreased ulcer index of 2.01 ± 0.41 and was found statistically significant against the diabetes control group (p < 0.001) as well as, an ulcer index of 0.68 ± 0.22 by EEMS (400 mg/kg) with a significant reduction in the ulcer index (p < 0.001). EEMS (100 and 400 mg/kg) reduce free acidity by 13.16 ± 0.65 mEq/L and 9.83 ± 0.30 mEq/L, respectively. EEMS also showed a protective impact on the liver and kidneys of diabetic rats. Antihyperglycemic action was also discovered in diabetic animals. The findings of the current investigation demonstrated that ethanolic extract of M. sativa possesses anti-ulcer activity in diabetic rats. Ethanolic extract of M. sativa may be a treatment option for stomach ulcers that also have diabetes.
Collapse
Affiliation(s)
- Phool Chandra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, U.P. 244001, India
| | - Mohammad Kaleem
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad 244 102, U.P., India
| | - Neetu Sachan
- Maharana Pratap College of Pharmacy, Mandhana, Kanpur 209217, U.P., India
| | - Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly 243123, U.P., India
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali 140301, Punjab, India
| |
Collapse
|
2
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
3
|
Yang F, Yang F, Zhai ZH, Wang SQ, Zhao L, Zhang BL, Chen JC, Wang YQ. Effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in Small-Tailed Han sheep. Front Vet Sci 2022; 9:924373. [PMID: 35937299 PMCID: PMC9353124 DOI: 10.3389/fvets.2022.924373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the potential effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in sheep. Twenty Small-Tailed Han sheep were equally and randomly divided into Groups 1–4, fed with diets containing 0, 5, 10, and 20 g alfalfa saponins per kg, respectively, for 40 consecutive days. During the treatments, the body weight change was recorded for each sheep. Before, during, and after the treatments of alfalfa saponins, serum was collected from each group to compare the levels of biochemical and immune factors. All sheep were killed after the treatments, and the longissimus dorsi muscle was collected to compare the meat quality. The results validated the effects of alfalfa saponins on the growth performance and meat quality in Small-Tailed Han sheep, and the supplementation level of 10 g/kg was the best. Alfalfa saponins also had effects on the levels of biochemical factors in serum. However, both dose- and time-dependent effects were observed. After a shorter feeding period (14 days), the concentrations of cholesterol (CHOL) and low-density lipoprotein (LDL) in Groups 2, 3, and 4 were all lower than those in the control group; however, when alfalfa saponins were continuously fed, this effect was not apparent or even gone. Supplying alfalfa saponins increased serum concentrations of IgA, IgG, IgE, IgM, IL-1, IFN-α, and IFN-β. And this effect was distinctly observed in Groups 3 and 4. Based on the current results, the alfalfa saponins concentration of 10 g/kg (for 14 consecutive days) could be suggested as the optimum ratio for good health conditions of Small-Tailed Han sheep.
Collapse
|