1
|
Xu W, Zhang X, Ni D, Zhang W, Guang C, Mu W. A review of fructosyl-transferases from catalytic characteristics and structural features to reaction mechanisms and product specificity. Food Chem 2024; 440:138250. [PMID: 38154282 DOI: 10.1016/j.foodchem.2023.138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and β-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed β-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and β-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Aragón-León A, Moreno-Vilet L, González-Ávila M, Mondragón-Cortez PM, Sassaki GL, Martínez-Pérez RB, Camacho-Ruíz RM. Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties. Carbohydr Polym 2023; 321:121333. [PMID: 37739546 DOI: 10.1016/j.carbpol.2023.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.
Collapse
Affiliation(s)
- Alejandra Aragón-León
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Lorena Moreno-Vilet
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Marisela González-Ávila
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Pedro Martín Mondragón-Cortez
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidad de Federal do Paraná, CEP 81.531-980, CP 19046 Curitiba, PR, Brazil
| | | | - Rosa María Camacho-Ruíz
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico.
| |
Collapse
|
3
|
Kido Y, Saburi W, Nagura T, Mori H. Hydrolysis-transglycosylation of sucrose and production of β-(2→1)-fructan by inulosucrase from Neobacillus drentensis 57N. Biosci Biotechnol Biochem 2023; 87:1169-1182. [PMID: 37491698 DOI: 10.1093/bbb/zbad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Inulin, β-(2→1)-fructan, is a beneficial polysaccharide used as a functional food ingredient. Microbial inulosucrases (ISs), catalyzing β-(2→1)-transfructosylation, produce β-(2→1)-fructan from sucrose. In this study, we identified a new IS (NdIS) from the soil isolate, Neobacillus drentensis 57N. Sequence analysis revealed that, like other Bacillaceae ISs, NdIS consists of a glycoside hydrolase family 68 domain and shares most of the 1-kestose-binding residues of the archaeal IS, InuHj. Native and recombinant NdIS were characterized. NdIS is a homotetramer. It does not require calcium for activity. High performance liquid chromatography and 13C-nuclear magnetic resonance indicated that NdIS catalyzed the hydrolysis and β-(2→1)-transfructosylation of sucrose to synthesize β-(2→1)-fructan with chain lengths of 42 or more residues. The rate dependence on sucrose concentration followed hydrolysis-transglycosylation kinetics, and a 50% transglycosylation ratio was obtained at 344 m m sucrose. These results suggest that transfructosylation from sucrose to β-(2→1)-fructan occurs predominantly to elongate the fructan chain because sucrose is an unfavorable acceptor.
Collapse
Affiliation(s)
- Yusuke Kido
- Research Center, Nippon Beet Sugar Mfg. Co., Ltd., Obihiro, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taizo Nagura
- Research Center, Nippon Beet Sugar Mfg. Co., Ltd., Obihiro, Hokkaido, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Ni D, Zhang S, Kırtel O, Xu W, Chen Q, Öner ET, Mu W. Improving the Thermostability and Catalytic Activity of an Inulosucrase by Rational Engineering for the Biosynthesis of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13125-13134. [PMID: 34618455 DOI: 10.1021/acs.jafc.1c04852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermostability and enzymatic activity are two vital indexes determining the application of an enzyme on an industrial scale. A truncated inulosucrase, Laga-ISΔ138-702, from Lactobacillus gasseri showed high catalysis activity. To further enhance its thermostability and activity, multiple sequence alignment (MSA) and rational design based on the modeled structure were performed. Variants A446E, S482A, I614M, and A627S were identified with an improved denaturation temperature (Tm) of more than 1 °C. A combinational mutation method was further carried out to explore the synergistic promotion effects of single-point mutants. Additionally, 33 residues at the N-terminus were truncated to construct mutant M4N-33. The half-life of M4N-33 at 55 °C increased by 120 times compared to that of Laga-ISΔ138-702, and the relative activity of M4N-33 increased up to 152% at the optimal pH and temperature (pH 5.5 and 60 °C). Molecular dynamics (MD) simulations illustrated the decreased b-factor of the surface loop of M4N-33.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Onur Kırtel
- IBSB─Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, 34722 Istanbul, Turkey
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ebru Toksoy Öner
- IBSB─Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, 34722 Istanbul, Turkey
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
5
|
Yokoi KJ, Tsutsui S, Arakawa GY, Takaba M, Fujii K, Kaneko S. Molecular and biochemical characteristics of inulosucrase InuBK from Alkalihalobacillus krulwichiae JCM 11691. Biosci Biotechnol Biochem 2021; 85:1830-1838. [PMID: 34021568 DOI: 10.1093/bbb/zbab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Information about the inulosucrase of nonlactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the Gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0-9.0 and 50-55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multiangle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3-27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.
Collapse
Affiliation(s)
- Ken-Ji Yokoi
- Toyama Prefectural Food Research Institute, Toyama, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Gen-Ya Arakawa
- Toyama Prefectural Food Research Institute, Toyama, Japan
| | | | | | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
6
|
Ghauri K, Pijning T, Munawar N, Ali H, Ghauri MA, Anwar MA, Wallis R. Crystal structure of an inulosucrase from
Halalkalicoccus
jeotgali
B3T, a halophilic archaeal strain. FEBS J 2021. [DOI: https://doi.org/10.1111/febs.15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Komal Ghauri
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Tjaard Pijning
- Department of Biomolecular X‐ray Crystallography Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| | - Nayla Munawar
- Department of Chemistry College of Sciences United Arab Emirates University Al‐Ain UAE
| | - Hazrat Ali
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Muhammad A. Ghauri
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Munir A. Anwar
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Russell Wallis
- Department of Respiratory Sciences Maurice Shock Medical Sciences Building University of Leicester UK
| |
Collapse
|
7
|
Abaramak G, Porras-Domínguez JR, Janse van Rensburg HC, Lescrinier E, Toksoy Öner E, Kırtel O, Van den Ende W. Functional and Molecular Characterization of the Halomicrobium sp. IBSBa Inulosucrase. Microorganisms 2021; 9:microorganisms9040749. [PMID: 33918392 PMCID: PMC8066391 DOI: 10.3390/microorganisms9040749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.
Collapse
Affiliation(s)
- Gülbahar Abaramak
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul 34722, Turkey; (G.A.); (E.T.Ö.)
| | - Jaime Ricardo Porras-Domínguez
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium; (J.R.P.-D.); (H.C.J.v.R.)
| | | | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, P.O. Box 1041, 3000 Leuven, Belgium;
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul 34722, Turkey; (G.A.); (E.T.Ö.)
| | - Onur Kırtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul 34722, Turkey; (G.A.); (E.T.Ö.)
- Correspondence: (O.K.); (W.V.d.E.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium; (J.R.P.-D.); (H.C.J.v.R.)
- Correspondence: (O.K.); (W.V.d.E.)
| |
Collapse
|
8
|
Ghauri K, Pijning T, Munawar N, Ali H, Ghauri MA, Anwar MA, Wallis R. Crystal structure of an inulosucrase from Halalkalicoccus jeotgali B3T, a halophilic archaeal strain. FEBS J 2021; 288:5723-5736. [PMID: 33783128 DOI: 10.1111/febs.15843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022]
Abstract
Several archaea harbor genes that code for fructosyltransferase (FTF) enzymes. These enzymes have not been characterized yet at structure-function level, but are of extreme interest in view of their potential role in the synthesis of novel compounds for food, nutrition, and pharmaceutical applications. In this study, 3D structure of an inulin-type fructan producing enzyme, inulosucrase (InuHj), from the archaeon Halalkalicoccus jeotgali was resolved in its apo form and with bound substrate (sucrose) molecule and first transglycosylation product (1-kestose). This is the first crystal structure of an FTF from halophilic archaea. Its overall five-bladed β-propeller fold is conserved with previously reported FTFs, but also shows some unique features. The InuHj structure is closer to those of Gram-negative bacteria, with exceptions such as residue E266, which is conserved in FTFs of Gram-positive bacteria and has possible role in fructan polymer synthesis in these bacteria as compared to fructooligosaccharide (FOS) production by FTFs of Gram-negative bacteria. Highly negative electrostatic surface potential of InuHj, due to a large amount of acidic residues, likely contributes to its halophilicity. The complex of InuHj with 1-kestose indicates that the residues D287 in the 4B-4C loop, Y330 in 4D-5A, and D361 in the unique α2 helix may interact with longer FOSs and facilitate the binding of longer FOS chains during synthesis. The outcome of this work will provide targets for future structure-function studies of FTF enzymes, particularly those from archaea.
Collapse
Affiliation(s)
- Komal Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Tjaard Pijning
- Department of Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Nayla Munawar
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad A Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Munir A Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Russell Wallis
- Department of Respiratory Sciences, Maurice Shock Medical Sciences Building, University of Leicester, UK
| |
Collapse
|