1
|
Saleh AK, El-Mahdy NA, El-Masry TA, El-Kadem AH. Trifluoperazine mitigates cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in mice by modulating the AKT/mTOR-driven autophagy and Nrf2/HO-1 signaling cascades. Life Sci 2024; 344:122566. [PMID: 38499285 DOI: 10.1016/j.lfs.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
AIM This study aims to investigate the hepatoprotective effect of the antipsychotic drug trifluoperazine (TFP) against cyclophosphamide (CPA)-induced hepatic injury by exploring its effect on autophagy and the Nrf2/HO-1 signaling pathway. MAIN METHODS The hepatotoxicity of CPA was assessed by biochemical analysis of the serum hepatotoxicity markers (ALT, AST, and direct bilirubin), histopathological examination, and ultrastructure analysis by transmission electron microscopy (TEM). The ELISA technique was used to assess the hepatic content of oxidative stress (MDA and SOD) and inflammatory markers (IL-1β and TNF-α). Immunohistochemical assessment was used to investigate the hepatic expression of NF-κB, Nrf2, caspase-3, as well as autophagy flux markers (p62 and LC3B). The mRNA expression of HO-1 was assessed using RT-qPCR. Western blot assay was used to determine the expression of p-AKT and p-mTOR. KEY FINDINGS TFP improved CPA-induced hepatotoxicity by reducing the elevated hepatotoxicity markers, and alleviating the histopathological changes with improving ultrastructure alterations. It also reduced oxidative stress by reducing MDA content and upregulating SOD activity. In addition, it exhibited anti-inflammatory and anti-apoptotic effects by decreasing NF-κB expression, IL-1β, TNF-α levels, and caspase-3 expression. Furthermore, TFP-induced hepatoprotection was mediated by favoring Nrf2 expression and increasing the mRNA level of HO-1. As well, it improved autophagy by increasing LC3B expression concurrently with reducing p62 expression. Moreover, TFP modulated the AKT/mTOR pathway by reducing the expression of p-AKT and p-mTOR. SIGNIFICANCE TFP significantly protected against CPA-induced hepatotoxicity by upregulating Nrf2/HO-1 signaling along with enhancement of protective autophagy via inhibition of the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Nageh A El-Mahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Aya H El-Kadem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Vanneste M, Venzke A, Guin S, Fuller AJ, Jezewski AJ, Beattie SR, Krysan DJ, Meyers MJ, Henry MD. The anti-cancer efficacy of a novel phenothiazine derivative is independent of dopamine and serotonin receptor inhibition. Front Oncol 2023; 13:1295185. [PMID: 37909019 PMCID: PMC10613967 DOI: 10.3389/fonc.2023.1295185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists. Methods In this study, we evaluated the anti-cancer efficacy of a novel PTZ analog, CWHM-974, that was shown to be 100-1000-fold less potent against DR/5-HTR than its analog fluphenazine (FLU). Results CWHM-974 was more potent than FLU against a panel of cancer cell lines, thus clearly demonstrating that its anti-cancer effects were independent of DR/5-HTR signaling. Our results further suggested that calmodulin (CaM) binding may be necessary, but not sufficient, to explain the anti-cancer effects of CWHM-974. While both FLU and CWHM-974 induced apoptosis, they induced distinct effects on the cell cycle (G0/G1 and mitotic arrest respectively) suggesting that they may have differential effects on CaM-binding proteins involved in cell cycle regulation. Discussion Altogether, our findings indicated that the anti-cancer efficacy of the CWHM-974 is separable from DR/5-HTR antagonism. Thus, reducing the toxicity associated with phenothiazines related to DR/5-HTR antagonism may improve the potential to repurpose this class of drugs to treat brain tumors and/or brain metastasis.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Anita Venzke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Soumitra Guin
- Department of Chemistry, Saint Louis University, Saint Louis, MO, United States
| | - Andrew J. Fuller
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Andrew J. Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Damian J. Krysan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, Saint Louis, MO, United States
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
4
|
Lin WZ, Liu YC, Lee MC, Tang CT, Wu GJ, Chang YT, Chu CM, Shiau CY. From GWAS to drug screening: repurposing antipsychotics for glioblastoma. J Transl Med 2022; 20:70. [PMID: 35120529 PMCID: PMC8815269 DOI: 10.1186/s12967-021-03209-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is currently an incurable cancer. Genome-wide association studies have demonstrated that 41 genetic variants are associated with glioblastoma and may provide an option for drug development. METHODS We investigated FDA-approved antipsychotics for their potential treatment of glioblastoma based on genome-wide association studies data using a 'pathway/gene-set analysis' approach. RESULTS The in-silico screening led to the discovery of 12 candidate drugs. DepMap portal revealed that 42 glioma cell lines show higher sensitivities to 12 candidate drugs than to Temozolomide, the current standard treatment for glioblastoma. CONCLUSION In particular, cell lines showed significantly higher sensitivities to Norcyclobenzaprine and Protriptyline which were predicted to bind targets to disrupt a certain molecular function such as DNA repair, response to hormones, or DNA-templated transcription, and may lead to an effect on survival-related pathways including cell cycle arrest, response to ER stress, glucose transport, and regulation of autophagy. However, it is recommended that their mechanism of action and efficacy are further determined.
Collapse
Affiliation(s)
- Wei-Zhi Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Yen-Chun Liu
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Meng-Chang Lee
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Tun Tang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Yu-Tien Chang
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Ming Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chia-Yang Shiau
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- Fidelity Regulation Therapeutics Inc., 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| |
Collapse
|
5
|
Goda AE, Elenany AM, Elsisi AE. Novel in vivo potential of trifluoperazine to ameliorate doxorubicin-induced cardiotoxicity involves suppression of NF-κB and apoptosis. Life Sci 2021; 283:119849. [PMID: 34343539 DOI: 10.1016/j.lfs.2021.119849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022]
Abstract
AIMS Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.
Collapse
Affiliation(s)
- Ahmed E Goda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt.
| | - Amr M Elenany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
6
|
Wang R, Li L, Duan A, Li Y, Liu X, Miao Q, Gong J, Zhen Y. Crizotinib enhances anti-CD30-LDM induced antitumor efficacy in NPM-ALK positive anaplastic large cell lymphoma. Cancer Lett 2019; 448:84-93. [PMID: 30742941 DOI: 10.1016/j.canlet.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Combining antibody-drug conjugates (ADCs) with targeted small-molecule inhibitors can enhance antitumor effects beyond those attainable with monotherapy. In this study, we investigated the therapeutic combination of a CD30-targeting ADC (anti-CD30-lidamycin [LDM]) with a small-molecule inhibitor (crizotinib) of nucleophosmin-anaplastic lymphoma kinase NPM-ALK in CD30+/ALK+ anaplastic large cell lymphoma (ALCL). In vitro, anti-CD30-LDM showed strong synergistic antiproliferative activity when combined with crizotinib. Furthermore, treatment with anti-CD30-LDM plus crizotinib resulted in a stronger induction of cell apoptosis than monotherapy with either treatment. Western blot analysis revealed that ERK1/2 phosphorylation was increased in response to anti-CD30-LDM-induced DNA damage. Interestingly, the addition of crizotinib inhibited the expression of phosphorylated ERK1/2 and further augmented anti-CD30-LDM-mediated apoptosis, providing a potential synergistic mechanism for DNA-damaging agents combined with NPM-ALK inhibitors. In Karpas299 and SU-DHL-1 xenograft models, anti-CD30-LDM plus crizotinib was more effective in inhibiting tumor growth than either treatment alone. This research demonstrated for the first time that the combination of anti-CD30-LDM and crizotinib exhibits a synergistic inhibitory effect in tumor cells. These results provide scientific support for future clinical evaluations of anti-CD30-LDM, or other DNA-damaging agents, combined with NPM-ALK inhibitors.
Collapse
Affiliation(s)
- Rong Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liang Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aijun Duan
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yongsu Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Zeng D, Xiao Y, Zhu J, Peng C, Liang W, Lin H. Knockdown of nucleophosmin 1 suppresses proliferation of triple-negative breast cancer cells through activating CDH1/Skp2/p27kip1 pathway. Cancer Manag Res 2018; 11:143-156. [PMID: 30613163 PMCID: PMC6306051 DOI: 10.2147/cmar.s191176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background NPM1 is a multifunctional phosphoprotein that commutes between the cytoplasm and nucleus in cell cycle process, which appears to be actively involved in tumorigenesis. Herein, we sought to investigate the possible role and prognostic value of NPM1 in triple-negative breast cancer (TNBC). Methods An array of public databases, including bc-GenExMiner v4.0, GOBO, GEPIA, UAL-CAN, ONCOMINE database and Kaplan-Meier plotter, were used to investigate the expression feature and potential function of NPM1 in TNBC. Immunohistochemistry, immunofluorescence, proliferation and colony formation, flow cytometry and western-blotting assays were used to analyze and verify the function and relevant mechanism of NPM1 in TNBC tissues and cells. Results According to analysis from bc-GenExMiner, the expression level of NPM1 was significantly higher in basal-like subtypes than luminal-A, HER-2 or normal-like subtypes of breast cancer (P<0.0001). GOBO database analysis indicated that the expression of NPM1 in basal-A or basal-B was significantly higher than luminal-like breast cancer cells. Immunohistochemistry assay in 52 TNBC tissue samples showed that positive expression of Ki-67 was 93.5% in the high-NPM1-expression group and 66.7% in the low-NPM1-expression group, respectively (P=0.032). Proliferation and colony formation assays demonstrated that inhibition of NPM1 suppressed cell growth by approximately 2-fold and reduced the number of colonies by 3-4-fold in MDA-MB-231 and BT549 cells. Moreover, inhibition of NPM1 in MDA-MB-231 and BT549 cells increased the percentage of cells at G0/G1 phase and decreased the percentage of cells at both S and G2/M phase, as compared with control counterparts. Western-blotting results showed that down-regulation of NPM1 could elevate CDH1 and p27kip1 expression, while decrease Skp2 expression both in MDA-MB-231 and BT549 cells. In addition, high mRNA expression of NPM1 correlated with shorter RFS (HR=1.64, P=0.00013) and OS (HR=2.45, P=0.00034) in patients with TNBC. Conclusions NPM1 is significantly high expressed basal-like/triple-negative breast cancer and is correlated with shorter RFS and OS in this subset of patients. Knockdown of NPM1 impairs the proliferative capacity of TNBC cells via activation of the CDH1/Skp2/p27kip1 pathway. Targeting NPM1 is a potential therapeutic strategy against TNBC.
Collapse
Affiliation(s)
- De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China,
| | - Yingsheng Xiao
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou 515000, China
| | - Jianling Zhu
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Chunyan Peng
- Department of Clinical Laboratory, Taihe Hospital of Hubei University of Medicine, Hubei 442008, China
| | - Weiquan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China,
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China,
| |
Collapse
|