1
|
van der Zee TJ, Tecchio P, Hahn D, Raiteri BJ. UltraTimTrack: a Kalman-filter-based algorithm to track muscle fascicles in ultrasound image sequences. PeerJ Comput Sci 2025; 11:e2636. [PMID: 39896012 PMCID: PMC11784871 DOI: 10.7717/peerj-cs.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/06/2024] [Indexed: 02/04/2025]
Abstract
Background Brightness-mode (B-mode) ultrasound is a valuable tool to non-invasively image skeletal muscle architectural changes during movement, but automatically tracking muscle fascicles remains a major challenge. Existing fascicle tracking algorithms either require time-consuming drift corrections or yield noisy estimates that require post-processing. We therefore aimed to develop an algorithm that tracks fascicles without drift and with low noise across a range of experimental conditions and image acquisition settings. Methods We applied a Kalman filter to combine fascicle length and fascicle angle estimates from existing and openly-available UltraTrack and TimTrack algorithms into a hybrid algorithm called UltraTimTrack. We applied the hybrid algorithm to ultrasound image sequences collected from the human medial gastrocnemius of healthy individuals (N = 8, four women), who performed cyclical submaximal plantar flexion contractions or remained at rest during passive ankle joint rotations at given frequencies and amplitudes whilst seated in a dynamometer chair. We quantified the algorithm's tracking accuracy, noise, and drift as the respective mean, cycle-to-cycle variability, and accumulated between-contraction variability in fascicle length and fascicle angle. We expected UltraTimTrack's estimates to be less noisy than TimTrack's estimates and to drift less than UltraTrack's estimates across a range of conditions and image acquisition settings. Results The proposed algorithm yielded low-noise estimates like UltraTrack and was drift-free like TimTrack across the broad range of conditions we tested. Over 120 cyclical contractions, fascicle length and fascicle angle deviations of UltraTimTrack accumulated to 2.1 ± 1.3 mm (mean ± sd) and 0.8 ± 0.7 deg, respectively. This was considerably less than UltraTrack (67.0 ± 59.3 mm, 9.3 ± 8.6 deg) and similar to TimTrack (1.9 ± 2.2 mm, 0.9 ± 1.0 deg). Average cycle-to-cycle variability of UltraTimTrack was 1.4 ± 0.4 mm and 0.6 ± 0.3 deg, which was similar to UltraTrack (1.1 ± 0.3 mm, 0.5 ± 0.1 deg) and less than TimTrack (3.5 ± 1.0 mm, 1.4 ± 0.5 deg). UltraTimTrack was less affected by experimental conditions and image acquisition settings than its parent algorithms. It also yielded similar or lower root-mean-square deviations from manual tracking for previously published image sequences (fascicle length: 2.3-2.6 mm, fascicle angle: 0.8-0.9 deg) compared with a recently-proposed hybrid algorithm (4.7 mm, 0.9 deg), and the recently-proposed DL_Track algorithm (3.8 mm, 3.9 deg). Furthermore, UltraTimTrack's processing time (0.2 s per image) was at least five times shorter than that of these recently-proposed algorithms. Conclusion We developed a Kalman-filter-based algorithm to improve fascicle tracking from B-mode ultrasound image sequences. The proposed algorithm provides low-noise, drift-free estimates of muscle architectural changes that may better inform muscle function interpretations.
Collapse
Affiliation(s)
- Tim J. van der Zee
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Department of Human Movement Science, Ruhr University Bochum, Bochum, Germany
- Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paolo Tecchio
- Department of Human Movement Science, Ruhr University Bochum, Bochum, Germany
| | - Daniel Hahn
- Department of Human Movement Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Brent J. Raiteri
- Department of Human Movement Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Monte A, Tsui PH, Zamparo P. Changes in mechanical properties at the muscle level could be detected by Nakagami imaging during in-vivo fixed-end contractions. PLoS One 2024; 19:e0308177. [PMID: 39269968 PMCID: PMC11398637 DOI: 10.1371/journal.pone.0308177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/17/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we investigated the capability of the Nakagami transformation to detect changes in vastus lateralis muscle-tendon stiffness (k) during dynamic (and intense) contractions. k was evaluated in eleven healthy males using the gold-standard method (a combination of ultrasound and dynamometric measurements) during maximal and sub-maximal voluntary fixed-end contractions of the knee extensors (20, 40, 60, 80, and 100% of maximum voluntary force), while Nakagami parameters were analysed using the Nakagami transformation during the same contractions. Muscle-belly behaviour was investigated by means of B-mode ultrasound analysis, while Nakagami parameters were obtained in post-processing using radiofrequency data. k was calculated as the slope of the force-muscle-belly elongation relationship. Three contractions at each intensity were performed to calculate the intra-trial reliability and the coefficient of variation (CV) of the Nakagami parameters. At all contraction intensities, high values of intra-trial reliability (range: 0.92-0.96) and low CV (<9%) were observed. k and Nakagami parameters increased as a function of contraction intensity, and significant positive correlations were observed between these variables. These data suggest that changes in mechanical properties (e.g., stiffness) at the muscle level could be investigated by means of Nakagami parameters.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Po-Hsian Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Mao L, Ren D, Huang S, Wu X, Ruan M. Fascicle Behavior and Muscle Activity of The Biceps Femoris Long Head during Running at Increasing Speeds. J Sports Sci Med 2024; 23:603-610. [PMID: 39228786 PMCID: PMC11366839 DOI: 10.52082/jssm.2024.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/13/2024] [Indexed: 09/05/2024]
Abstract
Hamstring strain injuries (HSIs) are prevalent in sports involving high-speed running and most of the HSIs are biceps femoris long head (BFlh) injuries. The primary cause for HSIs during high-speed running remains controversial due to the lack of in vivo measurement of the BFlh muscle behavior during running. Therefore, the purpose of this study was to quantify the muscle-tendon unit (MTU) and fascicle behavior of BFlh during running. Seven college male sprinters (22.14 ± 1.8 years; 177.7 ± 2.5 cm; 70.57 ± 5.1 kg; personal bests in 100m: 11.1 ± 0.2 s) were tested on a motorized treadmill instrumented with two force plate for running at 4, 5, 6m/s. The ground reaction force (GRF), 3D lower limb kinematics, EMG, and ultrasound images of biceps femoris long head (BFlh) in the middle region were recorded simultaneously. BFlh fascicles undergo little length change (about 1 cm) in the late swing phase during running at three submaximal speeds. BFlh fascicle lengthening accounted for about 30% of MTU length change during the late swing phase. BFlh was most active during the late swing and early stance phases, ranging from 83%MVC at a running speed of 4 m/s to 116%MVC at 6 m/s. Muscle fascicles in the middle region of BFlh undergo relatively little lengthening relative to the MTU in the late swing phase during running in comparison to results from simulation studies. These results suggest that there is a decoupling between the fascicle in the middle region and MTU length changes during the late swing phase of running.
Collapse
Affiliation(s)
- Lizhi Mao
- College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Dahua Ren
- College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Shangjun Huang
- Department of Orthopedics and Traumatology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xie Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mianfang Ruan
- College of Physical Education and Health, Wenzhou University, Wenzhou, China
| |
Collapse
|
4
|
Song H, Hsieh TH, Yeon SH, Shu T, Nawrot M, Landis CF, Friedman GN, Israel EA, Gutierrez-Arango S, Carty MJ, Freed LE, Herr HM. Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nat Med 2024; 30:2010-2019. [PMID: 38951635 PMCID: PMC11271427 DOI: 10.1038/s41591-024-02994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/11/2024] [Indexed: 07/03/2024]
Abstract
For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented. To test this hypothesis, we present a neuroprosthetic interface consisting of surgically connected, agonist-antagonist muscles including muscle-sensing electrodes. In a cohort of seven leg amputees, the interface is shown to augment residual muscle afferents by 18% of biologically intact values. Compared with a matched amputee cohort without the afferent augmentation, the maximum neuroprosthetic walking speed is increased by 41%, enabling equivalent peak speeds to persons without leg amputation. Further, this level of afferent augmentation enables biomimetic adaptation to various walking speeds and real-world environments, including slopes, stairs and obstructed pathways. Our results suggest that even a small augmentation of residual muscle afferents restores biomimetic gait under continuous neuromodulation in individuals with leg amputation.
Collapse
Affiliation(s)
- Hyungeun Song
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tsung-Han Hsieh
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seong Ho Yeon
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tony Shu
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Nawrot
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christian F Landis
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel N Friedman
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erica A Israel
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha Gutierrez-Arango
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew J Carty
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Lisa E Freed
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh M Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ritsche P, Franchi MV, Faude O, Finni T, Seynnes O, Cronin NJ. Fully Automated Analysis of Muscle Architecture from B-Mode Ultrasound Images with DL_Track_US. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:258-267. [PMID: 38007322 DOI: 10.1016/j.ultrasmedbio.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE B-mode ultrasound can be used to image musculoskeletal tissues, but one major bottleneck is analyses of muscle architectural parameters (i.e., muscle thickness, pennation angle and fascicle length), which are most often performed manually. METHODS In this study we trained two different neural networks (classic U-Net and U-Net with VGG16 pre-trained encoder) to detect muscle fascicles and aponeuroses using a set of labeled musculoskeletal ultrasound images. We determined the best-performing model based on intersection over union and loss metrics. We then compared neural network predictions on an unseen test set with those obtained via manual analysis and two existing semi/automated analysis approaches (simple muscle architecture analysis [SMA] and UltraTrack). DL_Track_US detects the locations of the superficial and deep aponeuroses, as well as multiple fascicle fragments per image. RESULTS For single images, DL_Track_US yielded results similar to those produced by a non-trainable automated method (SMA; mean difference in fascicle length: 5.1 mm) and human manual analysis (mean difference: -2.4 mm). Between-method differences in pennation angle were within 1.5°, and mean differences in muscle thickness were less than 1 mm. Similarly, for videos, there was overlap between the results produced with UltraTrack and DL_Track_US, with intraclass correlations ranging between 0.19 and 0.88. CONCLUSION DL_Track_US is fully automated and open source and can estimate fascicle length, pennation angle and muscle thickness from single images or videos, as well as from multiple superficial muscles. We also provide a user interface and all necessary code and training data for custom model development.
Collapse
Affiliation(s)
- Paul Ritsche
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Oliver Faude
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Taija Finni
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Olivier Seynnes
- Department for Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Neil J Cronin
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland; School of Sport & Exercise, University of Gloucestershire, Gloucester, UK
| |
Collapse
|
6
|
Mahdian ZS, Wang H, Refai MIM, Durandau G, Sartori M, MacLean MK. Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review. J Appl Biomech 2023; 39:318-333. [PMID: 37751903 DOI: 10.1123/jab.2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Lower limb exoskeletons and exosuits ("exos") are traditionally designed with a strong focus on mechatronics and actuation, whereas the "human side" is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons. We report methods to measure muscle biomechanics directly and indirectly and summarize the studies that have incorporated muscle measures for improved design and control of intuitive lower limb exos. Finally, we delve into articles that have studied how the human-exo interaction influences muscle biomechanics during locomotion. To support neurorehabilitation and facilitate everyday use of wearable assistive technologies, we believe that future studies should investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle force resulting in joint torques should be combined with musculoskeletal models to address time-varying parameters such as adaptation to exos and fatigue. Development of smarter predictive controllers that steer rather than assist biological components could result in a synchronized human-machine system that optimizes the biological and electromechanical performance of the combined system.
Collapse
Affiliation(s)
- Zahra S Mahdian
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Huawei Wang
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | | | - Guillaume Durandau
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Mhairi K MacLean
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| |
Collapse
|
7
|
Monte A, Zamparo P. Impairments in muscle shape changes affect metabolic demands during in-vivo contractions. Proc Biol Sci 2023; 290:20231469. [PMID: 37670588 PMCID: PMC10510444 DOI: 10.1098/rspb.2023.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
The uncoupling behaviour between muscle belly and fascicle shortening velocity (i.e. belly gearing), affects mechanical output by allowing the muscle to circumvent the limits imposed by the fascicles' force-velocity relationship. However, little is known about the 'metabolic effect' of a decrease/increase in belly gearing. In this study, we manipulated the plantar flexor muscles' capacity to change in shape (and hence belly gearing) by using compressive multidirectional loads. Metabolic, kinetic, electromyography activity and ultrasound data (in soleus and gastrocnemius medialis) were recorded during cyclic fixed-end contractions of the plantar flexor muscles in three different conditions: no load, +5 kg and +10 kg of compression. No differences were observed in mechanical power and electrophysiological variables as a function of compression intensity, whereas metabolic power increased as a function of it. At each compression intensity, differences in efficiency were observed when calculated based on fascicle or muscle behaviour and significant positive correlations (R2 range: 0.7-0.8 and p > 0.001) were observed between delta efficiency (ΔEff: Effmus-Efffas) and belly gearing (Vmus/Vfas) or ΔV (Vmus-Vfas). Thus, changes in the muscles' capacity to change in shape (e.g. in muscle stiffness or owing to compressive garments) affect the metabolic demands and the efficiency of muscle contraction.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Held S, Raiteri B, Rappelt L, Hahn D, Donath L. Ultrasound and surface electromyography analyses reveal an intensity dependent active stretch-shortening cycle of the vastus lateralis muscle during ergometer rowing. Eur J Sport Sci 2023; 23:1940-1949. [PMID: 36043353 DOI: 10.1080/17461391.2022.2119434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A rowing cycle is characterised by a stretch-shortening cycle (SSC) at the quadriceps femoris muscle-tendon unit (MTU) level. However, due to the associated decoupling between MTU and muscle fascicle length changes, it remains unclear whether a rowing cycle causes active stretch at the muscle level. Fifteen young, sub-elite, male rowers (19.5 ± 1.6 yr; 1.94 ± 0.06 m; 91.9 ± 5.4 kg; rowing experience: 7.5 ± 2.8 yr) performed randomised 60-s rowing intervals using a traditional style at a low (LiR) and high intensity (HiR) and a micro-pause style at a low intensity (MpR). Muscle activity, knee joint angles, and muscle fascicle length changes from the left-sided vastus lateralis (VL) muscle were quantified using surface electromyography, inertial measurement units, and B-mode ultrasound imaging, respectively. All rowing conditions showed active fascicle stretch during late knee flexion (p≤0.001, standardised mean difference (SMD) ≥0.72) and subsequent active fascicle shortening throughout knee extension. Active fascicle stretch duration, amplitude and velocity (rANOVA: p≤0.001, ηp2 = 0.49) were not significantly different (p≥0.174; SMD≤0.26) between LiR and MpR, but were significantly increased during HiR (p≤0.001; SMD≥0.70). The percentage of rowing cycles that involved active fascicle stretch (rANOVA: p≤0.001, ηp2 = 0.95; post-hoc: p≤0.001, SMD≥0.87) was also significantly higher for HiR (98.3 ±12.9%) compared with both LiR (65.0 ± 48.1%) and MpR (68.3 ± 46.9%). In conclusion, rowing involves SSC at the VL muscle fascicle level, but the amount of active stretch differs between rowing intensities, with the longest, largest, and fastest active stretch occurring during HiR. SSC-based mechanisms may therefore contribute more to rowing performance during HiR than LiR or MpR.HighlightsSurface electromyography and ultrasound imaging revealed stretch-shortening cycles (SSCs) of the vastus lateralis muscle fascicles during rowingIncreased active fascicle stretch duration, amplitude and velocity from low- to high-intensity rowing indicate that SSC-based mechanisms likely contribute more to performance during high-intensity rowingThe SSC within the vastus lateralis muscle was independent of the rowing style at the same low rowing intensity.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Brent Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
9
|
Perotti L, Stamm O, Mesletzky L, Vorwerg S, Fournelle M, Müller-Werdan U. Needs and Attitudes of Older Chronic Back Pain Patients towards a Wearable for Ultrasound Biofeedback during Stabilization Exercises: A Qualitative Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4927. [PMID: 36981835 PMCID: PMC10049307 DOI: 10.3390/ijerph20064927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Chronic back pain has a high prevalence, especially in older adults, and seriously affects sufferers' quality of life. Segmental stabilization exercise (SSE) is often used during physiotherapy to enhance core stability. The execution of SSE requires the selective contraction of deep abdominal and back muscles. Motor learning can be supported using ultrasound imaging as visual biofeedback. ULTRAWEAR is a mobile ultrasound system that provides deep learning-based biofeedback on SSE execution, which is currently under development. We interviewed 15 older chronic back pain patients (CBPPs) to investigate their pain management behavior, experience with SSE, as well as their needs and requirements for ULTRAWEAR. We also gathered information about future-usage scenarios. CBPPs reported a high willingness to use the system as a feedback tool both in physiotherapeutic practices and at home. The automated detection and evaluation of muscle contraction states was highlighted as a major benefit of the system compared to the more subjective feedback provided by traditional methods such as palpation. The system to be developed was perceived as a helpful solution to support learning about SSE.
Collapse
Affiliation(s)
- Luis Perotti
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | - Oskar Stamm
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | - Lisa Mesletzky
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | - Susan Vorwerg
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | - Marc Fournelle
- Department of Ultrasound, Fraunhofer Institute for Biomedical Engineering, 66280 Sulzbach, Germany
| | - Ursula Müller-Werdan
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
10
|
Monte A, Magris R, Nardello F, Bombieri F, Zamparo P. Muscle shape changes in Parkinson's disease impair function during rapid contractions. Acta Physiol (Oxf) 2023; 238:e13957. [PMID: 36876976 DOI: 10.1111/apha.13957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIM Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized, among the others, by muscle weakness. PD patients reach lower values of peak torque during maximal voluntary contractions but also slower rates of torque development (RTD) during explosive contractions. The aim of this study was to better understand how an impairment in structural/mechanical (peripheral) factors could explain the difficulty of PD patients to raise torque rapidly. METHODS Participants (PD patients and healthy matched controls) performed maximum voluntary explosive fixed-end contraction of the knee extensor muscles during which dynamic muscle shape changes (in muscle thickness, pennation angle, and belly gearing: the ratio between muscle belly velocity and fascicle velocity), muscle-tendon unit (MTU) stiffness and EMG activity of the vastus lateralis (VL) were investigated. Both the affected (PDA) and less affected limb (PDNA) were investigated in patients. RESULTS Control participants reached higher values of peak torque and showed a better capacity to express force rapidly compared to patients (PDA and PDNA). EMG activity was observed to differ between patients (PDA) and controls, but not between controls and PDNA. This suggests a specific neural/nervous effect on the most affected side. On the contrary, MTU stiffness and dynamic muscle shape changes were found to differ between controls and patients, but not between PDA and PDNA. Both sides are thus similarly affected by the pathology. CONCLUSION The higher MTU stiffness in PD patients is likely responsible for the impaired muscle capability to change in shape which, in turn, negatively affects the torque rise.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Riccardo Magris
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Mooijekind B, Flux E, Buizer AI, van der Krogt MM, Bar-On L. The influence of wearing an ultrasound device on gait in children with cerebral palsy and typically developing children. Gait Posture 2023; 101:138-144. [PMID: 36841120 DOI: 10.1016/j.gaitpost.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Ultrasonography with motion analysis enables dynamic imaging of medial gastrocnemius (MG) muscles and tendons during gait. This revealed pathological muscle-tendon dynamics in children with spastic cerebral palsy (CP) compared to typically developing (TD) children. However, wearing an ultrasound probe on the lower leg could interfere with gait and bias muscle length changes observed with ultrasound. RESEARCH QUESTION Does wearing an ultrasound probe on the MG influence gait in children with CP and TD children? METHODS Eighteen children with spastic CP and 16 age-matched TD children walked at comfortable walking speed on an instrumented treadmill. One baseline gait condition (BASE) and two conditions with an ultrasound probe and custom-made probe holder were measured: on the mid-muscle fascicles (FAS) and on the muscle-tendon junction (MTJ). The effect of condition and group on spatiotemporal parameters, hip, knee and ankle kinematics, ankle moment, ankle power, and modeled MG muscle-tendon unit (MTU) length was assessed using two-way repeated measures ANOVA's. Statistical non-parametric mapping was applied for time-series. Post-hoc paired-samples t-tests were conducted, and the root mean square difference was calculated for significant parts. RESULTS Children took wider steps during FAS (CP, TD) and MTJ (TD) compared to BASE, and during FAS compared to MTJ (CP). Hip extension was lower (2.7°) during terminal stance for MTJ compared to FAS for TD only. There was less swing knee flexion (FAS 4.9°; MTJ 4.0°) and ankle plantarflexion around toe-off (FAS 3.0°; MTJ 2.4°) for both ultrasound placements, with no group effect. Power absorption during loading response was slightly increased for both ultrasound placements (0.12 W/kg), with no group effect. MTU shortened less in swing for both ultrasound placements (FAS 3.6 mm; MTJ 3.7 mm), with no group effect. SIGNIFICANCE Wearing an ultrasound probe causes minimal lower-limb gait alterations and MTU length changes that are mostly similar in CP and TD.
Collapse
Affiliation(s)
- Babette Mooijekind
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam, The Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands; Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium.
| | - Eline Flux
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam, The Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
| | - Annemieke I Buizer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam, The Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands; Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Marjolein M van der Krogt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam, The Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
| | - Lynn Bar-On
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| |
Collapse
|
12
|
Bao X, Zhang Q, Fragnito N, Wang J, Sharma N. A clustering-based method for estimating pennation angle from B-mode ultrasound images. WEARABLE TECHNOLOGIES 2023; 4:e6. [PMID: 38487764 PMCID: PMC10936288 DOI: 10.1017/wtc.2022.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 03/17/2024]
Abstract
B-mode ultrasound (US) is often used to noninvasively measure skeletal muscle architecture, which contains human intent information. Extracted features from B-mode images can help improve closed-loop human-robotic interaction control when using rehabilitation/assistive devices. The traditional manual approach to inferring the muscle structural features from US images is laborious, time-consuming, and subjective among different investigators. This paper proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fascicle and aponeurosis and, therefore, compute the pennation angle. The clustering-based architecture assumes that muscle fibers have tubular characteristics. It is robust for low-frequency image streams. We compared the proposed algorithm to two mature benchmark techniques: UltraTrack and ImageJ. The performance of the proposed approach showed higher accuracy in our dataset (frame frequency is 20 Hz), that is, similar to the human expert. The proposed method shows promising potential in automatic muscle fascicle orientation detection to facilitate implementations in biomechanics modeling, rehabilitation robot control design, and neuromuscular disease diagnosis with low-frequency data stream.
Collapse
Affiliation(s)
- Xuefeng Bao
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Qiang Zhang
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC, USA
| | - Natalie Fragnito
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC, USA
| | | | - Nitin Sharma
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Pridham PS, Stirling L. Ankle exoskeleton torque controllers based on soleus muscle models. PLoS One 2023; 18:e0281944. [PMID: 36848340 PMCID: PMC9970081 DOI: 10.1371/journal.pone.0281944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Powered exoskeletons are typically task-specific, but to facilitate their wider adoption they should support a variety of tasks, which requires generalizeable controller designs. In this paper, we present two potential controllers for ankle exoskeletons based on soleus fascicles and Achilles tendon models. The methods use an estimate of the adenosine triphosphate hydrolysis rate of the soleus based on fascicle velocity. Models were evaluated using muscle dynamics from the literature, which were measured with ultrasound. We compare the simulated behavior of these methods against each other and to human-in-the-loop optimized torque profiles. Both methods generated distinct profiles for walking and running with speed variations. One of the approaches was more appropriate for walking, while the other approach estimated profiles similar to the literature for both walking and running. Human-in-the-loop methods require long optimizations to set parameters per individual for each specific task, the proposed methods can produce similar profiles, work across walking and running, and be implemented with body-worn sensors without requiring torque profile parameterization and optimization for every task. Future evaluations should examine how human behavior changes due to external assistance when using these control models.
Collapse
Affiliation(s)
- Paul S. Pridham
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Leia Stirling
- Industrial and Operations Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
14
|
Personalisation of Plantarflexor Musculotendon Model Parameters in Children with Cerebral Palsy. Ann Biomed Eng 2022; 51:938-950. [PMID: 36380165 PMCID: PMC10122634 DOI: 10.1007/s10439-022-03107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
AbstractNeuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate personalised parameters that capture the mechanical behaviour of the plantarflexors in children with CP and typically developing (TD) children. Ankle angle (using motion capture), torque (using a load-cell), and medial gastrocnemius fascicle lengths (using ultrasound) were measured during slow passive ankle dorsiflexion rotation for thirteen children with spastic CP and thirteen TD children. Per subject, the measured rotation was input to a scaled OpenSim model to simulate the torque and fascicle length output. Musculotendon model parameters were personalised by the best match between simulated and experimental torque–angle and fascicle length-angle curves according to a least-squares fit. Personalised tendon slack lengths were significantly longer and optimal fibre lengths significantly shorter in CP than model defaults and than in TD. Personalised tendon compliance was substantially higher in both groups compared to the model default. The presented method to personalise musculotendon parameters will likely yield more accurate simulations of subject-specific muscle mechanics, to help us understand the effects of altered musculotendon properties in CP.
Collapse
|
15
|
Brand A, Kröger I, Klöpfer-Krämer I, Wackerle H, Müßig JA, Dietrich A, Böttger M, Gaul L, Gabel J, Augat P. Recovery of the medial gastrocnemius muscle after calcaneus fracture differs between contractile and elastic components. Clin Biomech (Bristol, Avon) 2022; 96:105664. [PMID: 35569257 DOI: 10.1016/j.clinbiomech.2022.105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Calcaneal fractures result in severe functional impairments and walking restrictions. Postoperative evaluation mainly focusses on the restoration of calcaneal anatomy while ankle plantar flexor insufficiency remains largely neglected. This study aims to investigate biomechanical and morphologic adaptions of elastic and contractile components of the gastrocnemius medialis after unilateral calcaneal fracture. METHODS 20 Patients (BMI: 27.6 ± 3.1 kgm-2, Age: 50 ± 12 years) were measured using gait analysis and portable ultrasound over a follow-up of three, six and twelve months after surgery. Data comparison was performed using 20 matched healthy controls (BMI: 26.2 ± 2.9 kgm-2, Age: 48 ± 11 years). Static and dynamic behavior of the gastrocnemius muscle tendon unit, muscle fascicle and the serial-elastic element as well ankle joint kinematics and kinetics were analyzed. FINDINGS Within patients, a significant (p < 0.05) increase in fascicle length (by 67%) during single support and a decrease of serial elastic element shortening (by 20%) during push off was found between three and twelve months follow-up comparisons. Patients showed differences for fascicle lengthening and pennation angle increase during single support after three and six months compared to healthy controls. A smaller shortening of the serial-elastic element (by 29%) and muscle-tendon unit (by 16%) persisted even for the twelve month comparisons. INTERPRETATION Patients with calcaneal fracture showed an incomplete restoration of the medial gastrocnemius dynamic morphological behavior. While muscle fascicle contraction almost recovered, the serial elastic component still showed restrictions regarding its shortening behavior. Limited foot mobility and plantarflexor strength as well as lowered responsiveness of elastic tissues to mechanical loading are regarded as key mechanisms.
Collapse
Affiliation(s)
- Andreas Brand
- Institute for Biomechanics, BG Klinikum Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria.
| | - Inga Kröger
- Institute for Biomechanics, BG Klinikum Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Isabella Klöpfer-Krämer
- Institute for Biomechanics, BG Klinikum Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Hannes Wackerle
- Institute for Biomechanics, BG Klinikum Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Janina Anna Müßig
- Institute for Biomechanics, BG Klinikum Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Andrea Dietrich
- Department of Foot and Ankle Surgery, BG Klinikum Murnau, Murnau, Germany
| | - Moritz Böttger
- Department of Foot and Ankle Surgery, BG Klinikum Murnau, Murnau, Germany
| | - Leander Gaul
- Department of Foot and Ankle Surgery, BG Klinikum Murnau, Murnau, Germany
| | - Johannes Gabel
- Department of Foot and Ankle Surgery, BG Klinikum Murnau, Murnau, Germany
| | - Peter Augat
- Institute for Biomechanics, BG Klinikum Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| |
Collapse
|
16
|
Pincheira PA, Riveros-Matthey C, Lichtwark GA. Isometric fascicle behaviour of the biceps femoris long head muscle during Nordic Hamstring Exercise variations. J Sci Med Sport 2022; 25:684-689. [DOI: 10.1016/j.jsams.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
17
|
Hamard R, Hug F, Kelp NY, Feigean R, Aeles J, J. M. Dick T. Inclusion of image-based in-vivo experimental data into the Hill-type muscle model affects the estimation of individual force-sharing strategies during walking. J Biomech 2022; 135:111033. [DOI: 10.1016/j.jbiomech.2022.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
18
|
Monte A, Tecchio P, Nardello F, Bachero-Mena B, Ardigò LP, Zamparo P. The influence of muscle-belly and tendon gearing on the energy cost of human walking. Scand J Med Sci Sports 2022; 32:844-855. [PMID: 35138687 PMCID: PMC9304283 DOI: 10.1111/sms.14142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
This study combines metabolic and kinematic measurements at the whole‐body level, with EMG and ultrasound measurements to investigate the influence of muscle‐tendon mechanical behavior on the energy cost (Cnet) of walking (from 2 to 8 km·h−1). Belly gearing (Gb = Δmuscle‐belly length/Δfascicles length) and tendon gearing (Gt = ∆muscle‐tendon unit length/∆muscle‐belly length) of vastus lateralis (VL) and gastrocnemius medialis (GM) were calculated based on ultrasound data. Pendular energy recovery (%R) was calculated based on kinematic data, whereas the cumulative activity per distance travelled (CMAPD) was calculated for the VL, GM, tibialis anterior, and biceps femoris as the ratio between their EMG activity and walking speed. Finally, total CAMPD (CMAPDTOT) was calculated as the sum of the CMAPD of all the investigate muscles. Cnet and CMAPDTOT showed a U‐shaped behavior with a minimum at 4.2 and 4.1 km·h−1, respectively; while %R, VL, and GM belly gearing showed an opposite trend, reaching a maximum (60% ± 5%, 1.1 ± 0.1 and 1.5 ± 0.1, respectively), between 4.7 and 5 km·h−1. Gt was unaffected by speed in GM (3.5 ± 0.1) and decreased as a function of it in VL. A multiple stepwise linear regression indicated that %R has the greatest influence on Cnet, followed by CMAPDTOT and GM belly gearing. The role of Gb on Cnet could be attributed to its role in determining muscle work: when Gb increases, fascicles shortening decreases compared with that of the muscle‐belly, thereby reducing the energy cost of contraction.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Paolo Tecchio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.,Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Luca Paolo Ardigò
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
19
|
May S, Locke S, Kingsley M. Gastrocnemius Muscle Architecture in Elite Basketballers and Cyclists: A Cross-Sectional Cohort Study. Front Sports Act Living 2021; 3:768846. [PMID: 34950871 PMCID: PMC8688802 DOI: 10.3389/fspor.2021.768846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022] Open
Abstract
Eccentric and concentric actions produce distinct mechanical stimuli and result in different adaptations in skeletal muscle architecture. Cycling predominantly involves concentric activity of the gastrocnemius muscles, while playing basketball requires both concentric and eccentric actions to support running, jumping, and landing. The aim of this study was to examine differences in the architecture of gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) between elite basketballers and cyclists. A trained sonographer obtained three B-mode ultrasound images from GM and GL muscles in 44 athletes (25 basketballers and 19 cyclists; 24 ± 5 years of age). The images were digitized and average fascicle length (FL), pennation angle (θ), and muscle thickness were calculated from three images per muscle. The ratio of FL to tibial length (FL/TL) and muscle thickness to tibial length (MT/TL) was also calculated to account for the potential scaling effect of stature. In males, no significant differences were identified between the athletic groups in all parameters in the GM, but a significant difference existed in muscle thickness in the GL. In basketballers, GL was 2.5 mm thicker (95% CI: 0.7-4.3 mm, p = 0.011) on the left side and 2.6 mm thicker (95% CI: 0.6-5.7 mm, p = 0.012) on the right side; however, these differences were not significant when stature was accounted for (MT/TL). In females, significant differences existed in the GM for all parameters including FL/TL and MT/TL. Female cyclists had longer FL in both limbs (MD: 11.2 and 11.3 mm), narrower θ (MD: 2.1 and 1.8°), and thicker muscles (MD: 2.1 and 2.5 mm). For the GL, female cyclists had significantly longer FL (MD: 5.2 and 5.8 mm) and narrower θ (MD: 1.7 and 2.3°) in both limbs; no differences were observed in absolute muscle thickness or MT/TL ratio. Differences in gastrocnemius muscle architecture were observed between female cyclists and basketballers, but not between males. These findings suggest that participation in sport-specific training might influence gastrocnemius muscle architecture in elite female athletes; however, it remains unclear as to whether gastrocnemius architecture is systematically influenced by the different modes of muscle activation between these respective sports.
Collapse
Affiliation(s)
- Samantha May
- La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Simon Locke
- La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Michael Kingsley
- Holsworth Research Initiative, La Trobe University, Bendigo, VIC, Australia.,Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Bell M, Al Masruri G, Fernandez J, Williams SA, Agur AM, Stott NS, Hajarizadeh B, Mirjalili A. Typical m. triceps surae morphology and architecture measurement from 0 to 18 years: A narrative review. J Anat 2021; 240:746-760. [PMID: 34750816 PMCID: PMC8930835 DOI: 10.1111/joa.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of this review was to report on the imaging modalities used to assess morphological and architectural properties of the m. triceps surae muscle in typically developing children, and the available reliability analyses. Scopus and MEDLINE (Pubmed) were searched systematically for all original articles published up to September 2020 measuring morphological and architectural properties of the m. triceps surae in typically developing children (18 years or under). Thirty eligible studies were included in this analysis, measuring fibre bundle length (FBL) (n = 11), pennation angle (PA) (n = 10), muscle volume (MV) (n = 16) and physiological cross‐sectional area (PCSA) (n = 4). Three primary imaging modalities were utilised to assess these architectural parameters in vivo: two‐dimensional ultrasound (2DUS; n = 12), three‐dimensional ultrasound (3DUS; n = 9) and magnetic resonance imaging (MRI; n = 6). The mean age of participants ranged from 1.4 years to 18 years old. There was an apparent increase in m. gastrocnemius medialis MV and pCSA with age; however, no trend was evident with FBL or PA. Analysis of correlations of muscle variables with age was limited by a lack of longitudinal data and methodological variations between studies affecting outcomes. Only five studies evaluated the reliability of the methods. Imaging methodologies such as MRI and US may provide valuable insight into the development of skeletal muscle from childhood to adulthood; however, variations in methodological approaches can significantly influence outcomes. Researchers wishing to develop a model of typical muscle development should carry out longitudinal architectural assessment of all muscles comprising the m. triceps surae utilising a consistent approach that minimises confounding errors.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ghaliya Al Masruri
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Sîan A Williams
- Faculty of Health Sciences, Curtin School of Allied Health, Curtin University, Perth, Australia.,Faculty of Medical and Health Sciences, Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anne M Agur
- Division of Anatomy, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ngaire S Stott
- Faculty of Medical and Health Sciences, Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Walker J, Bissas A, Wainwright B, Hanley B, Cronin NJ. Repeatability and sensitivity of passive mechanical stiffness measurements in the triceps surae muscle-tendon complex. Scand J Med Sci Sports 2021; 32:83-93. [PMID: 34606650 DOI: 10.1111/sms.14070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Measurements of muscle-tendon unit passive mechanical properties are often used to illustrate acute and chronic responses to a training stimulus. The purpose of this study was to quantify the inter-session repeatability of triceps surae passive stiffness measurements in athletic and non-athletic populations, with the view to discussing its usefulness both as a muscle-tendon profiling tool and a control measure for studies with multiple data collection sessions. The study also aimed to observe the effects of quiet standing on passive stiffness parameters. Twenty-nine men (10 cyclists, nine triathletes, 10 controls) visited the laboratory on three separate occasions, where passive stiffness tests were carried out using an isokinetic dynamometer and B-mode ultrasound. Participants were fully rested on two of the sessions and subjected to 20 min of quiet standing in the other. The passive stiffness assessment generally showed only moderate inter-session repeatability but was still able to detect inter-group differences, with triathletes showing higher passive stiffness than cyclists (p < 0.05). Furthermore, quiet standing impacted passive stiffness by causing a reduction in ankle joint range of motion, although mechanical resistance to stretch in the muscle-tendon unit at a given joint angle was relatively unaffected. These findings show that passive stiffness assessment is appropriate for detecting inter-group differences in the triceps surae and even the effects of a low-intensity task such as quiet standing, despite showing some inter-session variation. However, the inter-session variation suggests that passive stiffness testing might not be suitable as a control measure when testing participants on multiple sessions.
Collapse
Affiliation(s)
- Josh Walker
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Athanassios Bissas
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | | | - Brian Hanley
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Neil J Cronin
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK.,Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
22
|
May S, Locke S, Kingsley M. Reliability of ultrasonographic measurement of muscle architecture of the gastrocnemius medialis and gastrocnemius lateralis. PLoS One 2021; 16:e0258014. [PMID: 34587209 PMCID: PMC8480904 DOI: 10.1371/journal.pone.0258014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Ultrasonography is widely used to measure gastrocnemius muscle architecture; however, it is unclear if values obtained from digitised images are sensitive enough to track architectural responses to clinical interventions. The purpose of this study was to explore the reliability and determine the minimal detectable change (MDC) of gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle architecture using ultrasound in a clinical setting. A trained sonographer obtained three B-mode images from each of the GM and GL muscles in 87 volunteers (44 males, 43 females; 22±9 years of age) on two separate occasions. Three independent investigators received training, then digitised the images to determine intra-rater, inter-rater, and test-retest reliability for fascicle length (FL), pennation angle (θ) and muscle thickness. Median FL, θ, and muscle thickness for GM and GL were 53.6–55.7 mm and 65.8–69.3 mm, 18.7–19.5° and 11.9–12.5°, and 12.8–13.2 mm and 15.9–16.9 mm, respectively. Intra- and inter-rater reliability of manual digitisation was excellent for all parameters. Test-retest reliability was moderate to excellent with intraclass correlation coefficient (ICC) values ≥0.80 for FL, ≥0.61 for θ, and ≥0.81 for muscle thickness, in both GM and GL. The respective MDC for GM and GL FL, θ, and muscle thickness was ≤12.1 mm and ≤18.00 mm, ≤6.4° and ≤4.2°, and ≤3.2 mm and ≤3.1 mm. Although reliable, the relatively large MDC suggest that clinically derived ultrasound measurements of muscle architecture in GM and GL are more likely to be useful to detect differences between populations than to detect changes in muscle architecture following interventions.
Collapse
Affiliation(s)
- Samantha May
- La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Simon Locke
- La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Michael Kingsley
- Holsworth Research Initiative, La Trobe University, Bendigo, Victoria, Australia.,Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Monte A, Bertucco M, Magris R, Zamparo P. Muscle Belly Gearing Positively Affects the Force-Velocity and Power-Velocity Relationships During Explosive Dynamic Contractions. Front Physiol 2021; 12:683931. [PMID: 34456744 PMCID: PMC8387943 DOI: 10.3389/fphys.2021.683931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Changes in muscle shape could play an important role during contraction allowing to circumvent some limits imposed by the fascicle force–velocity (F–V) and power–velocity (P–V) relationships. Indeed, during low-force high-velocity contractions, muscle belly shortening velocity could exceed muscle fascicles shortening velocity, allowing the muscles to operate at higher F–V and P–V potentials (i.e., at a higher fraction of maximal force/power in accordance to the F–V and P–V relationships). By using an ultrafast ultrasound, we investigated the role of muscle shape changes (vastus lateralis) in determining belly gearing (muscle belly velocity/fascicle velocity) and the explosive torque during explosive dynamic contractions (EDC) at angular accelerations ranging from 1000 to 4000°.s–2. By means of ultrasound and dynamometric data, the F–V and P–V relationships both for fascicles and for the muscle belly were assessed. During EDC, fascicle velocity, belly velocity, belly gearing, and knee extensors torque data were analysed from 0 to 150 ms after torque onset; the fascicles and belly F–V and P–V potentials were thus calculated for each EDC. Absolute torque decreased as a function of angular acceleration (from 80 to 71 Nm, for EDC at 1000 and 4000°.s–1, respectively), whereas fascicle velocity and belly velocity increased with angular acceleration (P < 0.001). Belly gearing increased from 1.11 to 1.23 (or EDC at 1000 and 4000°.s–1, respectively) and was positively corelated with the changes in muscle thickness and pennation angle (the changes in latter two equally contributing to belly gearing changes). For the same amount of muscle’s mechanical output (force or power), the fascicles operated at higher F–V and P–V potential than the muscle belly (e.g., P–V potential from 0.70 to 0.56 for fascicles and from 0.65 to 0.41 for the muscle belly, respectively). The present results experimentally demonstrate that belly gearing could play an important role during explosive contractions, accommodating the largest part of changes in contraction velocity and allowing the fascicle to operate at higher F–V and P–V potentials.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Riccardo Magris
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Zhang Q, Iyer A, Sun Z, Kim K, Sharma N. A Dual-Modal Approach Using Electromyography and Sonomyography Improves Prediction of Dynamic Ankle Movement: A Case Study. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1944-1954. [PMID: 34428143 DOI: 10.1109/tnsre.2021.3106900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For decades, surface electromyography (sEMG) has been a popular non-invasive bio-sensing technology for predicting human joint motion. However, cross-talk, interference from adjacent muscles, and its inability to measure deeply located muscles limit its performance in predicting joint motion. Recently, ultrasound (US) imaging has been proposed as an alternative non-invasive technology to predict joint movement due to its high signal-to-noise ratio, direct visualization of targeted tissue, and ability to access deep-seated muscles. This paper proposes a dual-modal approach that combines US imaging and sEMG for predicting volitional dynamic ankle dorsiflexion movement. Three feature sets: 1) a uni-modal set with four sEMG features, 2) a uni-modal set with four US imaging features, and 3) a dual-modal set with four dominant sEMG and US imaging features, together with measured ankle dorsiflexion angles, were used to train multiple machine learning regression models. The experimental results from a seated posture and five walking trials at different speeds, ranging from 0.50 m/s to 1.50 m/s, showed that the dual-modal set significantly reduced the prediction root mean square errors (RMSEs). Compared to the uni-modal sEMG feature set, the dual-modal set reduced RMSEs by up to 47.84% for the seated posture and up to 77.72% for the walking trials. Similarly, when compared to the US imaging feature set, the dual-modal set reduced RMSEs by up to 53.95% for the seated posture and up to 58.39% for the walking trials. The findings show that potentially the dual-modal sensing approach can be used as a superior sensing modality to predict human intent of a continuous motion and implemented for volitional control of clinical rehabilitative and assistive devices.
Collapse
|
25
|
Sosnowska AJ, Vuckovic A, Gollee H. Automated semi-real-time detection of muscle activity with ultrasound imaging. Med Biol Eng Comput 2021; 59:1961-1971. [PMID: 34398417 PMCID: PMC8382610 DOI: 10.1007/s11517-021-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/03/2021] [Indexed: 11/22/2022]
Abstract
Ultrasound imaging (USI) biofeedback is a useful therapeutic tool; however, it relies on qualitative assessment by a trained therapist, while existing automatic analysis techniques are computationally demanding. This study aims to present a computationally inexpensive algorithm based on the difference in pixel intensity between USI frames. During an offline experiment, where data was analyzed after the study, participants performed isometric contractions of the gastrocnemius medialis (GM) muscle, as executed (30% of maximum contraction) or attempted (low force contraction up to a point when the participant is aware of exerting force or contracting the muscle) movements, while USI, EMG, and force data were recorded. The algorithm achieved 99% agreement with EMG and force measurements for executed movements and 93% for attempted movements, with USI detecting 1.9% more contractions than the other methods. In the online study, participants performed GM muscle contractions at 10% and 30% of maximum contraction, while the algorithm provided visual feedback proportional to the muscle activity (based on USI recordings during the maximum contraction) in less than 3 s following each contraction. We show that the participants reached the target consistently, learning to perform precise contractions. The algorithm is reliable and computationally very efficient, allowing real-time applications on standard computing hardware. It is a suitable method for automated detection, quantification of muscle contraction, and to provide biofeedback which can be used for training of targeted muscles, making it suitable for rehabilitation.
Collapse
Affiliation(s)
- Anna J Sosnowska
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | - Henrik Gollee
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
26
|
Hamard R, Aeles J, Kelp NY, Feigean R, Hug F, Dick TJM. Does different activation between the medial and the lateral gastrocnemius during walking translate into different fascicle behavior? J Exp Biol 2021; 224:269039. [PMID: 34096594 DOI: 10.1242/jeb.242626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than in the LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than in the LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared with the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level, as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.
Collapse
Affiliation(s)
- Raphaël Hamard
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France
| | - Jeroen Aeles
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France
| | - Nicole Y Kelp
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Romain Feigean
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France.,Laboratoire de Physiologie et Evaluation Neuromusculaire, Institut de Myologie, 75013 Paris, France
| | - François Hug
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France.,The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Taylor J M Dick
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| |
Collapse
|
27
|
Raiteri BJ, Beller R, Hahn D. Biceps Femoris Long Head Muscle Fascicles Actively Lengthen During the Nordic Hamstring Exercise. Front Sports Act Living 2021; 3:669813. [PMID: 34179775 PMCID: PMC8219857 DOI: 10.3389/fspor.2021.669813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Current debate exists around whether a presumed eccentric exercise, the Nordic hamstring exercise (NHE), actually causes active hamstring muscle lengthening. This is because of the decoupling that can occur between the muscle fascicle and muscle-tendon unit (MTU) length changes in relatively compliant human lower-limb MTUs, which results in MTU lengthening not necessarily causing muscle fascicle lengthening. This missing knowledge complicates the interpretation of why the NHE is effective at reducing running-related hamstring muscle injury risk in athletes previously unfamiliar with performing this exercise. The purpose of the study was therefore to investigate if the most-commonly injured hamstring muscle, the biceps femoris long head (BF), exhibits active muscle lengthening (i.e. an eccentric muscle action) during the NHE up until peak force in Nordic novices. External reaction force at the ankle, knee flexion angle, and BF and semitendinosus muscle activities were recorded from the left leg of 14 participants during the NHE. Simultaneously, BF muscle architecture was imaged using B-mode ultrasound imaging, and muscle architecture changes were tracked using two different tracking algorithms. From ~85 to 100% of peak NHE force, both tracking algorithms detected that BF muscle fascicles (n = 10) significantly lengthened (p < 0.01) and had a mean positive lengthening velocity (p ≤ 0.02), while knee extension velocity remained positive (17°·s−1) over knee flexion angles from 53 to 37° and a duration of 1.6 s. Despite some individual cases of brief isometric fascicle behavior and brief fascicle shortening during BF MTU lengthening, the predominant muscle action was eccentric under a relatively high muscle activity level (59% of maximum). Eccentric hamstring muscle action therefore does occur during the NHE in relatively strong (429 N) Nordic novices, which might contribute to the increase in resting BF muscle fascicle length and reduction in running-related injury risk, which have previously been reported following NHE training. Whether an eccentric BF muscle action occurs in individuals accustomed to the NHE remains to be tested.
Collapse
Affiliation(s)
- Brent J Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Ronja Beller
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany.,Department of Pediatric Hematology/Oncology, Center for Child and Adolescent Medicine, Essen University Hospital, Essen, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Rosa LG, Zia JS, Inan OT, Sawicki GS. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time. PLoS One 2021; 16:e0246611. [PMID: 34038426 PMCID: PMC8153491 DOI: 10.1371/journal.pone.0246611] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Dynamic muscle fascicle length measurements through B-mode ultrasound have become popular for the non-invasive physiological insights they provide regarding musculoskeletal structure-function. However, current practices typically require time consuming post-processing to track muscle length changes from B-mode images. A real-time measurement tool would not only save processing time but would also help pave the way toward closed-loop applications based on feedback signals driven by in vivo muscle length change patterns. In this paper, we benchmark an approach that combines traditional machine learning (ML) models with B-mode ultrasound recordings to obtain muscle fascicle length changes in real-time. To gauge the utility of this framework for 'in-the-loop' applications, we evaluate accuracy of the extracted muscle length change signals against time-series' derived from a standard, post-hoc automated tracking algorithm. METHODS We collected B-mode ultrasound data from the soleus muscle of six participants performing five defined ankle motion tasks: (a) seated, constrained ankle plantarflexion, (b) seated, free ankle dorsi/plantarflexion, (c) weight-bearing, calf raises (d) walking, and then a (e) mix. We trained machine learning (ML) models by pairing muscle fascicle lengths obtained from standardized automated tracking software (UltraTrack) with the respective B-mode ultrasound image input to the tracker, frame-by-frame. Then we conducted hyperparameter optimizations for five different ML models using a grid search to find the best performing parameters for a combination of high correlation and low RMSE between ML and UltraTrack processed muscle fascicle length trajectories. Finally, using the global best model/hyperparameter settings, we comprehensively evaluated training-testing outcomes within subject (i.e., train and test on same subject), cross subject (i.e., train on one subject, test on another) and within/direct cross task (i.e., train and test on same subject, but different task). RESULTS Support vector machine (SVM) was the best performing model with an average r = 0.70 ±0.34 and average RMSE = 2.86 ±2.55 mm across all direct training conditions and average r = 0.65 ±0.35 and average RMSE = 3.28 ±2.64 mm when optimized for all cross-participant conditions. Comparisons between ML vs. UltraTrack (i.e., ground truth) tracked muscle fascicle length versus time data indicated that ML tracked images reliably capture the salient qualitative features in ground truth length change data, even when correlation values are on the lower end. Furthermore, in the direct training, calf raises condition, which is most comparable to previous studies validating automated tracking performance during isolated contractions on a dynamometer, our ML approach yielded 0.90 average correlation, in line with other accepted tracking methods in the field. CONCLUSIONS By combining B-mode ultrasound and classical ML models, we demonstrate it is possible to achieve real-time tracking of human soleus muscle fascicles across a number of functionally relevant contractile conditions. This novel sensing modality paves the way for muscle physiology in-the-loop applications that could be used to modify gait via biofeedback or unlock novel wearable device control techniques that could enable restored or augmented locomotion performance.
Collapse
Affiliation(s)
- Luis G. Rosa
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jonathan S. Zia
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Gregory S. Sawicki
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
29
|
Lorentzen J, Frisk RF, Nielsen JB, Barber L. Increased Ankle Plantar Flexor Stiffness Is Associated With Reduced Mechanical Response to Stretch in Adults With CP. Front Bioeng Biotechnol 2021; 9:604071. [PMID: 33842442 PMCID: PMC8026870 DOI: 10.3389/fbioe.2021.604071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Hyperexcitable stretch reflexes are often not present despite of other signs of spasticity in people with brain lesion. Here we looked for evidence that increased resistance to length change of the plantar flexor muscle-fascicles may contribute to a reduction in the stretch reflex response in adults with cerebral palsy (CP). A total of 17 neurologically intact (NI) adults (mean age 36.1; 12 female) and 13 ambulant adults with CP (7 unilateral; mean age 33.1; 5 female) participated in the study. Subjects were seated in a chair with the examined foot attached to a foot plate, which could be moved by a computer-controlled electromotor. An ultrasound probe was placed over the medial aspect of the leg to measure the length of medial gastrocnemius muscle fascicles. Slow (7 deg/s) and fast (200 deg/s) stretches with amplitude 6 deg of the plantar flexors were applied over an ankle range of 70 deg at 10 deg intervals between 60 and 130 deg plantarflexion. It was checked by EMG electrodes that the slow stretches were sufficiently slow not to elicit any activity and that the fast stretches were sufficiently quick to elicit a maximal stretch reflex in both groups. The torque elicited by the stretches was measured together with changes in the length of medial gastrocnemius muscle fascicles. Muscle fascicles increased significantly in length with increasing dorsiflexion position in both populations (p < 0.001), but the fascicles were shorter in the CP population at all positions. Slow stretches elicited significantly larger torque and significantly smaller length change of muscle fascicles as the ankle joint position was moved more towards dorsiflexion in CP than in NI (p < 0.001). Fast stretches elicited larger torque responses at ankle joint positions of 80–100 deg in the NI than in the CP group (p < 0.01). A significant negative correlation was observed between the torque response and muscle fascicle length change to slow stretch in CP (p < 0.05), but not in NI. These findings support that increased passive resistance of the ankle plantar flexor muscle-tendon unit and development of contractures may conceal stretch reflex response in adults with CP. We argue that this should be taken into account in the neurological examination of spasticity.
Collapse
Affiliation(s)
- Jakob Lorentzen
- Department for Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Rasmus Feld Frisk
- Department for Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Department for Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Lee Barber
- School of Applied Health Sciences, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Clark WH, Pimentel RE, Franz JR. Imaging and Simulation of Inter-muscular Differences in Triceps Surae Contributions to Forward Propulsion During Walking. Ann Biomed Eng 2021; 49:703-715. [PMID: 32897456 PMCID: PMC8020010 DOI: 10.1007/s10439-020-02594-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 01/23/2023]
Abstract
Forward propulsion during the push-off phase of walking is largely governed at the ankle by differential neuromechanical contributions from the biarticular medial (MG) and lateral gastrocnemii (LG) and the uniarticular soleus (SOL). However, the relative contribution of these individual muscles to forward propulsion is equivocal, with important implications for the design and control of wearable assistive devices and for targeted therapeutics. The aim of this study was to evaluate the agreement between empirical and model-predicted triceps surae (i.e., MG, LG, and SOL) contributions to forward propulsion during walking using conditions that systematically manipulated both walking speed and the mechanical demand for forward propulsion at a fixed speed-through the use of aiding and impeding forces. Ten young adults (age: 24.1 ± 3.6 years, 6M/4F) participated. We found that muscle-specific responses derived from experimental measurements (i.e., activation and fascicle behavior) were consistent with those derived from musculoskeletal simulations (i.e., muscle force and positive mechanical work) within the same subjects. In vivo, compared to walking normally, only LG muscle activation was affected by both aiding and impeding forces. Similarly, increased propulsive demand elicited greater relative fascicle shortening in the MG but not the SOL. In silico, only MG and LG force and positive mechanical work increased significantly to meet the increased demands for forward propulsion. By combining electromyography, ultrasound imaging, and musculoskeletal modeling in the same subjects, our cumulative findings suggest that the biarticular gastrocnemius muscles play a more significant role than the uniarticular soleus in governing changes in forward propulsion during the mid to late stance phase of walking.
Collapse
Affiliation(s)
- William H Clark
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones, Chapel Hill, NC, 27599, USA
| | - Richard E Pimentel
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones, Chapel Hill, NC, 27599, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
31
|
Hessel AL, Raiteri BJ, Marsh MJ, Hahn D. Rightward shift of optimal fascicle length with decreasing voluntary activity level in the soleus and lateral gastrocnemius muscles. J Exp Biol 2021; 224:jeb235614. [PMID: 33257433 DOI: 10.1242/jeb.235614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Much of our understanding of in vivo skeletal muscle properties is based on studies performed under maximal activation, which is problematic because muscles are rarely activated maximally during movements such as walking. Currently, force-length properties of the human triceps surae at submaximal voluntary muscle activity levels are not characterized. We therefore evaluated plantar flexor torque- and force-ankle angle, and torque- and force-fascicle length properties of the soleus and lateral gastrocnemius muscles during voluntary contractions at three activity levels: 100, 30 and 22% of maximal voluntary contraction. Soleus activity levels were controlled by participants via real-time electromyography feedback and contractions were performed at ankle angles ranging from 10 deg plantar flexion to 35 deg dorsiflexion. Using dynamometry and ultrasound imaging, torque-fascicle length curves of the soleus and lateral gastrocnemius muscles were constructed. The results indicate that small muscle activity reductions shift the torque- and force-angle, and torque- and force-fascicle length curves of these muscles to more dorsiflexed ankle angles and longer fascicle lengths (from 3 to 20% optimal fascicle length, depending on ankle angle). The shift in the torque- and force-fascicle length curves during submaximal voluntary contraction have potential implications for human locomotion (e.g. walking) as the operating range of fascicles shifts to the ascending limb, where muscle force capacity is reduced by at least 15%. These data demonstrate the need to match activity levels during construction of the torque- and force-fascicle length curves to activity levels achieved during movement to better characterize the lengths that muscles operate at relative to their optimum during a specific task.
Collapse
Affiliation(s)
- Anthony L Hessel
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, 44801 Bochum, Germany
- Institute for Physiology II, University of Muenster, 48149 Muenster, Germany
| | - Brent J Raiteri
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, 44801 Bochum, Germany
| | - Michael J Marsh
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, 44801 Bochum, Germany
| | - Daniel Hahn
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, 44801 Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, 4072 Australia
| |
Collapse
|
32
|
Carbonaro M, Seynnes O, Maffiuletti NA, Busso C, Minetto MA, Botter A. Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior During Electrical Stimulation Over Different Sites. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2557-2565. [PMID: 32986557 DOI: 10.1109/tnsre.2020.3027037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrical stimulation is widely used in rehabilitation to prevent muscle weakness and to assist the functional recovery of neural deficits. Its application is however limited by the rapid development of muscle fatigue due to the non-physiological motor unit (MU) recruitment. This issue can be mitigated by interleaving muscle belly (mStim) and nerve stimulation (nStim) to distribute the temporal recruitment among different MU groups. To be effective, this approach requires the two stimulation modalities to activate minimally-overlapped groups of MUs. In this manuscript, we investigated spatial differences between mStim and nStim MU recruitment through the study of architectural changes of superficial and deep compartments of tibialis anterior (TA). We used ultrasound imaging to measure variations in muscle thickness, pennation angle, and fiber length during mStim, nStim, and voluntary (Vol) contractions at 15% and 25% of the maximal force. For both contraction levels, architectural changes induced by nStim in the deep and superficial compartments were similar to those observed during Vol. Instead, during mStim superficial fascicles underwent a greater change compared to those observed during nStim and Vol, both in absolute magnitude and in their relative differences between compartments. These observations suggest that nStim results in a distributed MU recruitment over the entire muscle volume, similarly to Vol, whereas mStim preferentially activates the superficial muscle layer. The diversity between spatial recruitment of nStim and mStim suggests the involvement of different MU populations, which justifies strategies based on interleaved nerve/muscle stimulation to reduce muscle fatigue during electrically-induced contractions of TA.
Collapse
|
33
|
Li P, Yang X, Yin G, Guo J. Skeletal Muscle Fatigue State Evaluation with Ultrasound Image Entropy. ULTRASONIC IMAGING 2020; 42:235-244. [PMID: 32859140 DOI: 10.1177/0161734620952683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Muscle fatigue often occurs over a long period of exercise, and it can increase the risk of muscle injury. Evaluating the state of muscle fatigue can avoid unnecessary overtraining and injury of the muscle. Ultrasound imaging can non-invasively visualize muscle tissue in real-time. Image entropy is commonly used to characterize the texture of an image. In this study, we evaluated changes in the ultrasound image entropy (USIE) during the fatigue process. Twelve volunteers performed static sustained contractions of biceps brachii at four different intensities (20%, 30%, 40%, and 50% of maximal voluntary contraction torque). The ultrasound images and surface electromyography (sEMG) signals were acquired during exercise to fatigue. We found that (1) the root-mean-square of the sEMG signal increased, the USIE decreased significantly with time during the sustained contractions; (2) the maximum endurance time (MET) and the decline percentage of USIE were significantly different (p < .05) among the four contraction intensities; (3) the decline slope of USIE of the same volunteer was basically the same at different contraction intensities. The USIE could be a new method for the evaluation of skeletal muscle fatigue state.
Collapse
Affiliation(s)
- Pan Li
- Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Xuebing Yang
- Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Guanjun Yin
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
34
|
Son J, Rymer WZ. Loss of variable fascicle gearing during voluntary isometric contractions of paretic medial gastrocnemius muscles in male chronic stroke survivors. J Physiol 2020; 598:5183-5194. [PMID: 32818308 DOI: 10.1113/jp280126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 07/31/2023] Open
Abstract
KEY POINTS Maximum fascicle shortening/rotation was significantly decreased in paretic medial gastrocnemius (MG) muscles compared to non-paretic MG muscles. The fascicle gear ratio on both sides decreased as the ankle became dorsiflexed, but the slope of the fascicle gear ratio over ankle joint angle was significantly lower on the paretic side. The side-to-side slope difference was strongly correlated with the relative maximum joint torque and with the relative shear wave speed, suggesting that variable gearing may explain muscle weakness after stroke. ABSTRACT The present study aimed to understand variable fascicle gearing during voluntary isometric contractions of the medial gastrocnemius (MG) muscle in chronic stroke survivors. Using ultrasonography, we characterized fascicle behaviour on both paretic and non-paretic sides during plantarflexion contractions at different intensities and at different ankle joint angles. Shear wave speed was also recorded from the MG muscle belly under passive conditions. Fascicle gear ratios were then calculated as the ratio of muscle belly shortening velocity to fascicle shortening velocity, and variable fascicle gearing was quantified from the slope of gear ratio vs. joint angle relations. This slope was used to establish associations with maximum joint torques and with shear wave speeds. At all measured angles, we found a significant reduction in both maximum fascicle shortening and maximum fascicle rotation on the paretic side compared to the non-paretic side on our stroke survivor cohort. The fascicle rotation per fascicle shortening on the paretic side was also significantly smaller than on the non-paretic side, especially at plantarflexed positions. Furthermore, the fascicle gear ratio on both sides decreased as the ankle became dorsiflexed, but the change in the fascicle gear ratio was significantly lower on the paretic side. The side-to-side difference in the gear ratio slope was also strongly correlated with the relative maximum joint torque and with the relative shear wave speed, suggesting that variable gearing may explain muscle weakness after stroke. Further studies are needed to investigate how muscular changes after stroke may impede variable gearing and adversely impact muscle performance.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
35
|
Zheng E, Wan J, Xu D, Wang Q, Qiao H. Identification of muscle morphology with noncontact capacitive sensing: Preliminary study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4109-4113. [PMID: 33018902 DOI: 10.1109/embc44109.2020.9175438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human-machine interface with muscle signals serves as an important role in the field of wearable robotics. To compensate for the limitations of the existing surface Electromyography (sEMG) based technologies, we previously proposed a noncontact capacitive sensing approach that could record the limb shape changes. The sensing approach frees the human skin from contacting to the metal electrodes, thus enabling the measurement of muscle signals by dressing the sensing front-ends outside of the clothes. We validated the capacitive sensing in human motion intent recognition tasks with the wearable robots and produced comparable results to existing studies. However, the biological significance of the capacitance signals is still unrevealed, which is an indispensable issue for robot intuitive control. In this study, we address the problems of identifying the relationships between the muscle morphological parameters and the capacitance signals. We constructed a measurement system that recorded the noncon-tact capacitive sensing signals and the muscle ultrasound (US) images simultaneously. With the designed device, five subjects were employed and the US images from the gastrocnemius muscle (GM) and the tibialis anterior (TA) muscle during level walking were sampled. We fitted the calculated muscle morphological parameters (the pinnation angles and the muscle fascicle length) and the capacitance signals of the same gait phases. The results demonstrated that at least one-channel capacitance signal strongly correlated to the muscle morphological parameters (R2 > 0.5, quadratic regression). The average R2s of the most correlated channels were up to 0.86 for pinnation angles and 0.83 for the muscle fascicle length changes. The interesting findings in this preliminary study suggest the biological physical significance of the capacitance signals during human locomotion. Future efforts are worth being paid in this new research direction for more promising results.
Collapse
|
36
|
Hösl M, Kruse A, Tilp M, Svehlik M, Böhm H, Zehentbauer A, Arampatzis A. Impact of Altered Gastrocnemius Morphometrics and Fascicle Behavior on Walking Patterns in Children With Spastic Cerebral Palsy. Front Physiol 2020; 11:518134. [PMID: 33178029 PMCID: PMC7597072 DOI: 10.3389/fphys.2020.518134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Spastic cerebral palsy (SCP) affects neural control, deteriorates muscle morphometrics, and may progressively impair functional walking ability. Upon passive testing, gastrocnemius medialis (GM) muscle bellies or fascicles are typically shorter, thinner, and less extensible. Relationships between muscle and gait parameters might help to understand gait pathology and pathogenesis of spastic muscles. The current aim was to link resting and dynamic GM morphometrics and contractile fascicle behavior (both excursion and velocity) during walking to determinants of gait. We explored the associations between gait variables and ultrasonography of the GM muscle belly captured during rest and during gait in children with SCP [n = 15, gross motor function classification system (GMFCS) levels I and II, age: 7–16 years] and age-matched healthy peers (n = 17). The SCP children’s plantar flexors were 27% weaker. They walked 12% slower with more knee flexion produced 42% less peak ankle push-off power (all p < 0.05) and 7/15 landed on their forefoot. During the stance phase, fascicles in SCP on average operated on 9% shorter length (normalized to rest length) and displayed less and slower fascicle shortening (37 and 30.6%, respectively) during push-off (all p ≤ 0.024). Correlation analyses in SCP patients revealed that (1) longer-resting fascicles and thicker muscle bellies are positively correlated with walking speed and negatively to knee flexion (r = 0.60–0.69, p < 0.0127) but not to better ankle kinematics; (2) reduced muscle strength was associated with the extent of eccentric fascicle excursion (r = −0.57, p = 0.015); and (3) a shorter operating length of the fascicles was correlated with push-off power (r = −0.58, p = 0.013). Only in controls, a correlation (r = 0.61, p = 0.0054) between slower fascicle shortening velocity and push-off power was found. Our results indicate that a thicker gastrocnemius muscle belly and longer gastrocnemius muscle fascicles may be reasonable morphometric properties that should be targeted in interventions for individuals with SCP, since GM muscle atrophy may be related to decreases in walking speed and undesired knee flexion during gait. Furthermore, children with SCP and weaker gastrocnemius muscle may be more susceptible to chronic eccentric muscle overloading. The relationship between shorter operating length of the fascicles and push-off power may further support the idea of a compensation mechanism for the longer sarcomeres found in children with SCP. Nevertheless, more studies are needed to support our explorative findings.
Collapse
Affiliation(s)
- Matthias Hösl
- Gait and Motion Analysis Laboratory, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Annika Kruse
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Martin Svehlik
- Paediatric Orthopaedics Unit, Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Harald Böhm
- Gait Laboratory, Orthopedic Children's Hospital Aschau, Aschau im Chiemgau, Germany
| | - Antonia Zehentbauer
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt University of Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
37
|
Hollville E, Rabita G, Guilhem G, Lecompte J, Nordez A. Effects of Surface Properties on Gastrocnemius Medialis and Vastus Lateralis Fascicle Mechanics During Maximal Countermovement Jumping. Front Physiol 2020; 11:917. [PMID: 32982767 PMCID: PMC7488207 DOI: 10.3389/fphys.2020.00917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/09/2020] [Indexed: 11/14/2022] Open
Abstract
Interactions between human movement and surfaces have previously been studied to understand the influence of surface properties on the mechanics and energetics of jumping. However, little is known about the muscle-tendon unit (MTU) mechanics associated with muscle activity and leg adjustments induced by different surfaces during this movement. This study aimed to examine the effects of three surfaces with different properties (artificial turf, hybrid turf, and athletic track) on the muscle mechanics and muscle excitation of the gastrocnemius medialis (GM) and vastus lateralis (VL) during maximal countermovement jumping (CMJ). Twelve participants performed maximal CMJs on the three sport surfaces. GM and VL muscle fascicles were simultaneously imaged using two ultrafast ultrasound systems (500 Hz). MTUs lengths were determined based on anthropometric models and two-dimensional joint kinematics. Surface electromyography (EMG) was used to record GM and VL muscle activity. Surface mechanical testing revealed systematic differences in surface mechanical properties (P = 0.006, η2: 0.26–0.32, large). Specifically, the highest force reduction and vertical deformation values have been observed on artificial turf (65 ± 2% and 9.0 ± 0.3 mm, respectively), while athletic track exhibited the lowest force reduction and vertical deformation values (28 ± 1% and 2.1 ± 0.1 mm, respectively) and the highest energy restitution (65 ± 1%). We observed no significant difference in CMJ performance between the three surfaces (∼35–36 cm, P = 0.66). GM and VL fascicle shortening (P = 0.90 and P = 0.94, respectively) and shortening velocity (P = 0.13 and P = 0.65, respectively) were also unaffected by the type of surface. However, when jumping from greater deformable surface, both GM muscle activity (P = 0.022, η2 = 0.18, large) and peak shortening velocity of GM MTU (P = 0.042, η2 = 0.10, medium) increased during the push-off phase. This resulted in a greater peak plantar flexion velocity late in the jump (P = 0.027, η2 = 0.13, medium). Our findings suggest that maximal vertical jumping tasks in humans is not affected by common sport surfaces with different mechanical properties. However, internal regulatory mechanisms exist to compensate for differences in surface properties.
Collapse
Affiliation(s)
- Enzo Hollville
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.,NG Lab, Natural Grass, Paris, France.,Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Giuseppe Rabita
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Jennyfer Lecompte
- NG Lab, Natural Grass, Paris, France.,Arts et Métiers ParisTech, LBM/Institut de Biomécanique Humaine Georges Charpak, Paris, France
| | - Antoine Nordez
- Movement - Interactions - Performance, MIP, EA 4334, Université de Nantes, Nantes, France.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
38
|
Bakenecker P, Raiteri BJ, Hahn D. Force enhancement in the human vastus lateralis is muscle-length-dependent following stretch but not during stretch. Eur J Appl Physiol 2020; 120:2597-2610. [PMID: 32892321 PMCID: PMC7674334 DOI: 10.1007/s00421-020-04488-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/29/2020] [Indexed: 01/27/2023]
Abstract
Purpose Force enhancement is the phenomenon of increased forces during (transient force enhancement; tFE) and after (residual force enhancement; rFE) eccentric muscle actions compared with fixed-end contractions. Although tFE and rFE have been observed at short and long muscle lengths, whether both are length-dependent remains unclear in vivo. Methods We determined maximal-effort vastus lateralis (VL) force-angle relationships of eleven healthy males and selected one knee joint angle at a short and long muscle lengths where VL produced approximately the same force (85% of maximum). We then examined tFE and rFE at these two lengths during and following the same amount of knee joint rotation. Results We found tFE at both short (11.7%, P = 0.017) and long (15.2%, P = 0.001) muscle lengths. rFE was only observed at the long (10.6%, P < 0.001; short: 1.3%, P = 0.439) muscle length. Ultrasound imaging revealed that VL muscle fascicle stretch magnitude was greater at long compared with short muscle lengths (mean difference: (tFE) 1.7 mm, (rFE) 1.9 mm, P ≤ 0.046), despite similar isometric VL forces across lengths (P ≥ 0.923). Greater fascicle stretch magnitude was likely to be due to greater preload forces at the long compared with short muscle length (P ≤ 0.001). Conclusion At a similar isometric VL force capacity, tFE was not muscle-length-dependent at the lengths we tested, whereas rFE was greater at longer muscle length. We speculate that the in vivo mechanical factors affecting tFE and rFE are different and that greater stretch of a passive component is likely contributing more to rFE at longer muscle lengths. Electronic supplementary material The online version of this article (10.1007/s00421-020-04488-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Bakenecker
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Gesundheitscampus Nord 10, 44801, Bochum, Germany.
| | - Brent J Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Gesundheitscampus Nord 10, 44801, Bochum, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Gesundheitscampus Nord 10, 44801, Bochum, Germany.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
39
|
Monte A, Maganaris C, Baltzopoulos V, Zamparo P. The influence of Achilles tendon mechanical behaviour on "apparent" efficiency during running at different speeds. Eur J Appl Physiol 2020; 120:2495-2505. [PMID: 32840697 PMCID: PMC7557501 DOI: 10.1007/s00421-020-04472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Purpose We investigated the role of elastic strain energy on the “apparent” efficiency of locomotion (AE), a parameter that is known to increase as a function of running speed (up to 0.5–0.7) well above the values of “pure” muscle efficiency (about 0.25–0.30). Methods In vivo ultrasound measurements of the gastrocnemius medialis (GM) muscle–tendon unit (MTU) were combined with kinematic, kinetic and metabolic measurements to investigate the possible influence of the Achilles tendon mechanical behaviour on the mechanics (total mechanical work, WTOT) and energetics (net energy cost, Cnet) of running at different speeds (10, 13 and 16 km h−1); AE was calculated as WTOT/Cnet. Results GM fascicles shortened during the entire stance phase, the more so the higher the speed, but the majority of the MTU displacement was accommodated by the Achilles tendon. Tendon strain and recoil increased as a function of running speed (P < 0.01 and P < 0.001, respectively). The contribution of elastic energy to the positive work generated by the MTU also increased with speed (from 0.09 to 0.16 J kg−1 m−1). Significant negative correlations (P < 0.01) were observed between tendon work and metabolic energy at each running speed (the higher the tendon work the lower the metabolic demand) and significant positive correlations were observed between tendon work and AE (P < 0.001) at each running speed (the higher the tendon work the higher the efficiency). Conclusion These results support the notion that the dynamic function of tendons is integral in reducing energy expenditure and increasing the “apparent” efficiency of running.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, via Felice Casorati, 43, 37131, Verona, Italy
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Constantinos Maganaris
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, via Felice Casorati, 43, 37131, Verona, Italy.
| |
Collapse
|
40
|
Zhang Q, Iyer A, Kim K, Sharma N. Evaluation of Non-Invasive Ankle Joint Effort Prediction Methods for Use in Neurorehabilitation Using Electromyography and Ultrasound Imaging. IEEE Trans Biomed Eng 2020; 68:1044-1055. [PMID: 32759078 DOI: 10.1109/tbme.2020.3014861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Reliable measurement of voluntary human effort is essential for effective and safe interaction between the wearer and an assistive robot. Existing voluntary effort prediction methods that use surface electromyography (sEMG) are susceptible to prediction inaccuracies due to non-selectivity in measuring muscle responses. This technical challenge motivates an investigation into alternative non-invasive effort prediction methods that directly visualize the muscle response and improve effort prediction accuracy. The paper is a comparative study of ultrasound imaging (US)-derived neuromuscular signals and sEMG signals for their use in predicting isometric ankle dorsiflexion moment. Furthermore, the study evaluates the prediction accuracy of model-based and model-free voluntary effort prediction approaches that use these signals. METHODS The study evaluates sEMG signals and three US imaging-derived signals: pennation angle, muscle fascicle length, and echogenicity and three voluntary effort prediction methods: linear regression (LR), feedforward neural network (FFNN), and Hill-type neuromuscular model (HNM). RESULTS In all the prediction methods, pennation angle and fascicle length significantly improve the prediction accuracy of dorsiflexion moment, when compared to echogenicity. Also, compared to LR, both FFNN and HNM improve dorsiflexion moment prediction accuracy. CONCLUSION The findings indicate FFNN or HNM approach and using pennation angle or fascicle length predict human ankle movement intent with higher accuracy. SIGNIFICANCE The accurate ankle effort prediction will pave the path to safe and reliable robotic assistance in patients with drop foot.
Collapse
|
41
|
Monte A, Baltzopoulos V, Maganaris CN, Zamparo P. Gastrocnemius Medialis and Vastus Lateralis in vivo muscle‐tendon behavior during running at increasing speeds. Scand J Med Sci Sports 2020; 30:1163-1176. [DOI: 10.1111/sms.13662] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
- Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Constantinos N. Maganaris
- Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| |
Collapse
|
42
|
Van Hooren B, Teratsias P, Hodson-Tole EF. Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges. J Appl Physiol (1985) 2020; 128:978-999. [PMID: 32163334 DOI: 10.1152/japplphysiol.00835.2019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
B-mode ultrasound is often used to quantify muscle architecture during movements. Our objectives were to 1) systematically review the reliability of fascicle length (FL) and pennation angles (PA) measured using ultrasound during movements involving voluntary contractions; 2) systematically review the methods used in studies reporting reliability, discuss associated challenges, and provide recommendations to improve the reliability and validity of dynamic ultrasound measurements; and 3) provide an overview of computational approaches for quantifying fascicle architecture, their validity, agreement with manual quantification of fascicle architecture, and advantages and drawbacks. Three databases were searched until June 2019. Studies among healthy human individuals aged 17-85 yr that investigated the reliability of FL or PA in lower-extremity muscles during isoinertial movements and that were written in English were included. Thirty studies (n = 340 participants) were included for reliability analyses. Between-session reliability as measured by coefficient of multiple correlations (CMC), and coefficient of variation (CV) was FL CMC: 0.89-0.96; CV: 8.3% and PA CMC: 0.87-0.90; CV: 4.5-9.6%. Within-session reliability was FL CMC: 0.82-0.99; CV: 0.0-6.7% and PA CMC: 0.91; CV: 0.0-15.0%. Manual analysis reliability was FL CMC: 0.89-0.96; CV: 0.0-15.9%; PA CMC: 0.84-0.90; and CV: 2.0-9.8%. Computational analysis FL CMC was 0.82-0.99, and PA CV was 14.0-15.0%. Eighteen computational approaches were identified, and these generally showed high agreement with manual analysis and high validity compared with phantoms or synthetic images. B-mode ultrasound is a reliable method to quantify fascicle architecture during movement. Additionally, computational approaches can provide a reliable and valid estimation of fascicle architecture.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Panayiotis Teratsias
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Emma F Hodson-Tole
- Musculoskeletal Sciences and Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
43
|
Nuckols RW, Dick TJM, Beck ON, Sawicki GS. Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons. Sci Rep 2020; 10:3604. [PMID: 32109239 PMCID: PMC7046782 DOI: 10.1038/s41598-020-60360-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/07/2020] [Indexed: 11/16/2022] Open
Abstract
Unpowered exoskeletons with springs in parallel to human plantar flexor muscle-tendons can reduce the metabolic cost of walking. We used ultrasound imaging to look 'under the skin' and measure how exoskeleton stiffness alters soleus muscle contractile dynamics and shapes the user's metabolic rate during walking. Eleven participants (4F, 7M; age: 27.7 ± 3.3 years) walked on a treadmill at 1.25 m s-1 and 0% grade with elastic ankle exoskeletons (rotational stiffness: 0-250 Nm rad-1) in one training and two testing days. Metabolic savings were maximized (4.2%) at a stiffness of 50 Nm rad-1. As exoskeleton stiffness increased, the soleus muscle operated at longer lengths and improved economy (force/activation) during early stance, but this benefit was offset by faster shortening velocity and poorer economy in late stance. Changes in soleus activation rate correlated with changes in users' metabolic rate (p = 0.038, R2 = 0.44), highlighting a crucial link between muscle neuromechanics and exoskeleton performance; perhaps informing future 'muscle-in-the loop' exoskeleton controllers designed to steer contractile dynamics toward more economical force production.
Collapse
Affiliation(s)
- R W Nuckols
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, 27607, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA.
| | - T J M Dick
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, 27607, USA
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - O N Beck
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - G S Sawicki
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, 27607, USA.
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
44
|
Zhang Q, Kim K, Sharma N. Prediction of Ankle Dorsiflexion Moment by Combined Ultrasound Sonography and Electromyography. IEEE Trans Neural Syst Rehabil Eng 2020; 28:318-327. [DOI: 10.1109/tnsre.2019.2953588] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Hollville E, Nordez A, Guilhem G, Lecompte J, Rabita G. Surface properties affect the interplay between fascicles and tendinous tissues during landing. Eur J Appl Physiol 2019; 120:203-217. [PMID: 31776693 DOI: 10.1007/s00421-019-04265-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Muscle-tendon units are forcefully stretched during rapid deceleration events such as landing. Consequently, tendons act as shock absorbers by buffering the negative work produced by muscle fascicles likely to prevent muscle damage. Landing surface properties can also modulate the amount of energy dissipated by the body, potentially effecting injury risk. This study aimed to evaluate the influence of three different surfaces on the muscle-tendon interactions of gastrocnemius medialis (GM), and vastus lateralis (VL) during single- and double-leg landings from 50 cm. METHODS Ultrasound images, muscle activity and joint kinematics were collected for 12 participants. Surface testing was also performed, revealing large differences in mechanical behavior. RESULTS During single-leg landing, stiffer surfaces increased VL fascicle lengthening and velocity, and muscle activity independent of joint kinematics while GM length changes showed no difference between surfaces. Double-leg landing resulted in similar fascicle and tendon behavior despite greater knee flexion angles on stiffer surfaces. CONCLUSION This demonstrates that VL fascicle lengthening is greater when the surface stiffness increases, when performing single-leg landing. This is due to the combination of limited knee joint flexion and lower surface absorption ability which resulted in greater mechanical demand mainly withstood by fascicles. GM muscle-tendon interactions remain similar between landing surfaces and types. Together, this suggests that surface damping properties primarily affect the VL muscle-tendon unit with a potentially higher risk of injury as a result of increased surface stiffness when performing single-leg landing tasks.
Collapse
Affiliation(s)
- Enzo Hollville
- Research Department, Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France.,NG Lab, Natural Grass, Paris, France
| | - Antoine Nordez
- Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Gaël Guilhem
- Research Department, Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Jennyfer Lecompte
- NG Lab, Natural Grass, Paris, France.,LBM-Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France
| | - Giuseppe Rabita
- Research Department, Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France.
| |
Collapse
|
46
|
Drazan JF, Hullfish TJ, Baxter JR. An automatic fascicle tracking algorithm quantifying gastrocnemius architecture during maximal effort contractions. PeerJ 2019; 7:e7120. [PMID: 31304054 PMCID: PMC6611451 DOI: 10.7717/peerj.7120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
Background Ultrasound has become a commonly used imaging modality for making dynamic measurements of muscle structure during functional movements in biomechanical studies. Manual measurements of fascicle length and pennation angle are time intensive which limits the clinical utility of this approach while also limiting sample sizes in research. The purpose of this study was to develop an automatic fascicle tracking program to quantify the length and pennation angle of a muscle fascicle during maximal effort voluntary contractions and to evaluate its repeatability between days and reproducibility between different examiners. Methods Five healthy adults performed maximal effort isometric and isokinetic contractions at 30, 120, 210, and 500 degrees per second about their ankle on an isokinetic dynamometer while their medial gastrocnemius muscle was observed using ultrasound. Individual muscle fascicles and the two aponeuroses were identified by the user in the first frame and automatically tracked by the algorithm by three observers on three separate days. Users also made manual measurements of the candidate fascicle for validation. Repeatability within examiners across days and reproducibility across examiners and days were evaluated using intra-class correlation coefficients (ICC). Agreement between manual and automatic tracking was evaluated using the coefficient of multiple correlations (CMC) and root-mean-square error. Supervised automatic tracking, where the program could be reinitialized if poor tracking was observed, was performed on all videos by one examiner to evaluate the performance of automatic tracking in a typical use case. We also compared the performance our program to a preexisting automatic tracking program. Results We found both manual and automatic measurements of fascicle length and pennation angle to be strongly repeatable within examiners and strongly reproducible across examiners and days (ICCs > 0.74). There was greater agreement between manual and automatic measurements of fascicle length than pennation angle, however the mean CMC value was found to be strong in both cases (CMC > 0.8). Supervision of automatic tracking showed very strong agreement between manual and automatic measurements of fascicle length and pennation angle (CMC > 0.94). It also had considerably less error relative to the preexisting automatic tracking program. Conclusions We have developed a novel automatic fascicle tracking algorithm that quantifies fascicle length and pennation angle of individual muscle fascicles during dynamic contractions during isometric and across a range of isokinetic velocities. We demonstrated that this fascicle tracking algorithm is strongly repeatable and reproducible across different examiners and different days and showed strong agreement with manual measurements, especially when tracking is supervised by the user so that tracking can be reinitialized if poor tracking quality is observed.
Collapse
Affiliation(s)
- John F Drazan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Hullfish
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Josh R Baxter
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Werkhausen A, Cronin NJ, Albracht K, Bojsen-Møller J, Seynnes OR. Distinct muscle-tendon interaction during running at different speeds and in different loading conditions. J Appl Physiol (1985) 2019; 127:246-253. [PMID: 31070955 DOI: 10.1152/japplphysiol.00710.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interaction between the Achilles tendon and the triceps surae muscles seems to be modulated differently with various task configurations. Here we tested the hypothesis that the increased forces and ankle joint work during running under contrasting conditions (altered speed or load) would be met by different, time-dependent adjustments at the muscle-tendon level. Ultrasonography, electromyography, kinematics, and ground reaction force measurements were used to examine Achilles tendon, gastrocnemius, and soleus muscle mechanics in 16 runners in four different running conditions, consisting of a combination of two different speeds (preferred and +20% of preferred speed) and two loading conditions (unloaded and +20% of body mass). Positive ankle joint work increased similarly (+13%) with speed and load. Gastrocnemius and soleus muscle fascicle length and peak velocity were not altered by either condition, suggesting that contractile conditions are mostly preserved despite the constraints imposed in this experimental design. However, at higher running speed, tendon length changes were unaltered but mean muscle electromyographic activity increased in gastrocnemius (+10%, P < 0.01) and soleus (+14%, P < 0.01). Conversely, when loading was increased, mean muscle activity remained similar to unloaded conditions but the mean velocity of gastrocnemius fascicles was reduced and tendon recoil increased (+29%, P < 0.01). Collectively, these results suggest that the neuromuscular system meets increased mechanical demands by favoring economical force production when enough time is available. NEW & NOTEWORTHY We demonstrate that muscle-tendon mechanics are adjusted differently when running under constraints imposed by speed or load, despite comparable increases in work. The neuromuscular system likely modulates the way force is produced as a function of availability of time and potential energy.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| | - Kirsten Albracht
- Institute of Biomechanics and Orthopedics, German Sport University Cologne , Cologne , Germany.,Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences , Aachen , Germany
| | - Jens Bojsen-Møller
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| |
Collapse
|
48
|
Obst S, Heales L, Hrelja Z, Ishri P, Wesche J, Barber L. The effect of deloading tape on medial gastrocnemius muscle fascicle behaviour during dynamic exercise. J Sports Sci 2019; 37:1874-1883. [PMID: 30935296 DOI: 10.1080/02640414.2019.1600225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study examined the effect of diamond deloading tape on medial gastrocnemius (MG) muscle behaviour during exercise in healthy adults (n = 27). A randomised cross-over trial assessed the effect of tape (no-tape, sham-tape and deload-tape) on ankle and MG fascicle kinematics during three heel raise-lower exercises [double leg (DL), single leg (SL) and loaded single leg (LSL)]. There was no effect of tape on standing fascicle length (FL) or pennation angle (PA), or ankle or knee joint angle. There was a significant effect of tape on ankle kinematics for all exercises. Both the deload-tape and sham-tape resulted in less ankle plantar flexion but had no effect on dorsiflexion. There was a significant effect of tape on FL change for the SL and LSL exercise. Compared to no-tape, the deload-tape resulted in less fascicle shortening during ankle plantar flexion, and more fascicle lengthening during ankle dorsiflexion. For the LSL exercise, deload-tape caused MG fascicles to operate at longer lengths, for a given joint angle. Diamond taping, with or without added tension, has only a small effect on ankle and MG fascicle kinematics during the heel raise-lower exercise. With the exception of the LSL exercise, both tape conditions resulted in similar changes in the FL-angle relations.
Collapse
Affiliation(s)
- Steven Obst
- a School of Health, Medical and Applied Sciences , Central Queensland University , Bundaberg , Australia
| | - Luke Heales
- b School of Health, Medical and Applied Sciences , Central Queensland University , Rockhampton , Australia
| | - Zachary Hrelja
- a School of Health, Medical and Applied Sciences , Central Queensland University , Bundaberg , Australia
| | - Prashneveet Ishri
- a School of Health, Medical and Applied Sciences , Central Queensland University , Bundaberg , Australia
| | - Johanna Wesche
- a School of Health, Medical and Applied Sciences , Central Queensland University , Bundaberg , Australia
| | - Lee Barber
- a School of Health, Medical and Applied Sciences , Central Queensland University , Bundaberg , Australia
| |
Collapse
|
49
|
Raiteri BJ, Hahn D. A reduction in compliance or activation level reduces residual force depression in human tibialis anterior. Acta Physiol (Oxf) 2019; 225:e13198. [PMID: 30300958 DOI: 10.1111/apha.13198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
AIM We investigated if residual force depression (rFD) is present during voluntary fixed-end contractions of human tibialis anterior (TA) and whether reducing TA's activation level after active shortening could reduce rFD. METHODS Ten participants performed fixed-end dorsiflexion contractions to a low, moderate or high level while electromyography (EMG), dorsiflexion force and TA ultrasound images were recorded. Contractions were force- or EMG-matched and after the low or high contraction level was attained, participants respectively increased or decreased their force/EMG to a moderate level. Participants also performed moderate level contractions while the TA muscle-tendon unit (MTU) was lengthened during the force/EMG rise to the reference MTU length. RESULTS Equivalent fascicle shortening over moderate and low to moderate level contractions did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.47) at the moderate level. Greater initial fascicle shortening magnitudes (1.7 mm; P ≤ 0.01) to the high contraction level did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.30) at the subsequent moderate level compared with moderate level contractions. TA MTU lengthening during the initial force/EMG rise reduced TA fascicle shortening (-2.5 mm; P ≤ 0.01), which reduced EMG (-3.9% MVC; P < 0.01) and increased dorsiflexion force (3.7% MVC; P < 0.01) at the moderate level compared with fixed-end moderate level contractions. CONCLUSION rFD is present during fixed-end dorsiflexion contractions because fascicles actively shorten as force/EMG increases and rFD can be reduced by reducing the effective MTU compliance. A reduction in muscle activation level also reduces rFD by potentially triggering residual force enhancement-related mechanisms as force drops and some fascicles actively lengthen.
Collapse
Affiliation(s)
- Brent J. Raiteri
- Human Movement Science, Faculty of Sport Science Ruhr University Bochum Bochum Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science Ruhr University Bochum Bochum Germany
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane QueenslandAustralia
| |
Collapse
|
50
|
Frisk RF, Lorentzen J, Barber L, Nielsen JB. Characterization of torque generating properties of ankle plantar flexor muscles in ambulant adults with cerebral palsy. Eur J Appl Physiol 2019; 119:1127-1136. [PMID: 30778762 DOI: 10.1007/s00421-019-04102-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/12/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Weakness of plantar flexor muscles is related to reduced push-off and forward propulsion during gait in persons with cerebral palsy (CP). It has not been clarified to what an extent altered muscle contractile properties contribute to this muscle weakness. Here, we investigated the torque generating capacity and muscle fascicle length in the triceps surae muscle throughout ankle range of motion (ROM) in adults with CP using maximal single muscle twitches elicited by electrical nerve stimulation and ultrasonography. METHODS Fourteen adults with CP (age 36, SD 10.6, GMFCS I-III) and 17 neurological intact (NI) adults (age 36, SD 4.5) participated. Plantar flexor torque during supramaximal stimulation of the tibial nerve was recorded in a dynamometer at 8 ankle angles throughout ROM. Medial gastrocnemius (MG) fascicle length was tracked using ultrasonography. RESULTS Adults with CP showed reduced plantar flexor torque and fascicle shortening during supramaximal stimulation throughout ROM. The largest torque generation was observed at the ankle joint position where the largest shortening of MG fascicles was observed in both groups. This was at a more plantarflexed position in the CP group. CONCLUSION Reduced torque and fascicle shortening during supramaximal stimulation of the tibial nerve indicate impaired contractile properties of plantar flexor muscles in adults with CP. Maximal torque was observed at a more plantarflexed position in adults with CP indicating an altered torque-fascicle length/ankle angle relation. The findings suggest that gait rehabilitation in adults with CP may require special focus on improvement of muscle contractility.
Collapse
Affiliation(s)
- Rasmus Feld Frisk
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark. .,Professionshøjskolen Absalon, Roskilde, Denmark. .,Elsass Institute, Charlottenlund, Denmark.
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Lee Barber
- School of Health, Medical and Allied Sciences, Central Queensland University, Bundaberg, Australia.,Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|