1
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Celen MC, Akkoca A, Tuncer S, Dalkilic N, Ilhan B. Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Biomedicines 2023; 11:3306. [PMID: 38137528 PMCID: PMC10741406 DOI: 10.3390/biomedicines11123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Peripheral nerve injuries often result in long-lasting functional deficits, prompting the need for effective interventions. MitoTEMPO (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride) is a mitochondria-targeted antioxidant that has shown protective and therapeutic effects against pathologies associated with reactive oxygen species. This study explores the utilization of MitoTEMPO as a therapeutic and protective agent for sciatic nerve crush injuries. By employing advanced mathematical approaches, the study seeks to comprehensively analyze nerve conduction parameters, nerve excitability, and the distribution of nerve conduction velocities to gauge the potential. Forty Wistar-Albino rats were randomly divided into following groups: (I) SHAM-animals subjected to sham operation and treated intraperitoneally (i.p.) with vehicle (bidistilled water) for 14 days; (II) CI (crush injury)-animals subjected to CI and treated with vehicle 14 days; (III) MiP-animals subjected to 7 days i.p. MitoTEMPO treatment before CI (0.7 mg/kg/day dissolved in vehicle) and, only vehicle for 7 days after CI, protective MitoTEMPO; and (IV) MiT-animals i.p. treated with only vehicle for 7 days before CI and 7 days with MitoTEMPO (0.7 mg/kg/day dissolved in vehicle) after CI, therapeutic MitoTEMPO. Nerve excitability parameters were measured, including rheobase and chronaxie, along with compound action potential (CAP) recordings. Advanced mathematical analyses were applied to CAP recordings to determine nerve conduction velocities and distribution patterns. The study revealed significant differences in nerve excitability parameters between groups. Nerve conduction velocity was notably reduced in the MiP and CI groups, whereas CAP area values were diminished in the MiP and CI groups compared to the MiT group. Furthermore, CAP velocity was lower in the MiP and CI groups, and maximum depolarization values were markedly lower in the MiP and CI groups compared to the SHAM group. The distribution of nerve conduction velocities indicated alterations in the composition of nerve fiber groups following crush injuries. In conclusion, postoperative MitoTEMPO administration demonstrated promising results in mitigating the detrimental effects of nerve crush injuries.
Collapse
Affiliation(s)
- Murat Cenk Celen
- Department of Biophysics, Faculty of Medicine, Ankara Medipol University, 06570 Ankara, Türkiye
| | - Ahmet Akkoca
- Department of Occupational Health and Safety, Taskent Vocational School, Selcuk University, 42960 Konya, Türkiye
| | - Seckin Tuncer
- Department of Biophysics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye
| | - Nizamettin Dalkilic
- Department of Biophysics, Faculty of Medicine, Baskent University, 06490 Ankara, Türkiye
| | - Barkin Ilhan
- Department of Biophysics, Meram School of Medicine, Necmettin Erbakan University, 42090 Konya, Türkiye
| |
Collapse
|
3
|
Shayea AMF, Renno WM, Qabazard B, Masocha W. Neuroprotective Effects of a Hydrogen Sulfide Donor in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 24:16650. [PMID: 38068971 PMCID: PMC10706751 DOI: 10.3390/ijms242316650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic neuropathy is an important long-term complication of diabetes. This study explored the hypothesis that hydrogen sulfide (H2S) ameliorates neuropathic pain by controlling antiapoptotic and pro-apoptotic processes. The effects of a slow-releasing H2S donor, GYY4137, on the expression of antiapoptotic and pro-apoptotic genes and proteins, such as B-cell lymphoma 2 (Bcl2) and Bcl-2-like protein 4 (Bax), as well as caspases, cyclooxygenase (COX)-1 and COX-2, monocytes/macrophages, and endothelial cells, in the spinal cord of male Sprague-Dawley rats with streptozotocin-induced peripheral diabetic neuropathy, were investigated using reverse transcription-PCR, western blot and immunohistochemistry. The antihypoalgesic activities of GYY4137 on diabetic rats were evaluated using the tail flick test. Treatment of diabetic rats with GYY4137 attenuated thermal hypoalgesia and prevented both the diabetes-induced increase in Bax mRNA expression (p = 0.0032) and the diabetes-induced decrease in Bcl2 mRNA expression (p = 0.028). The GYY4137-treated diabetic group had increased COX-1 (p = 0.015), decreased COX-2 (p = 0.002), reduced caspase-7 and caspase-9 protein expression (p < 0.05), and lower numbers of endothelial and monocyte/macrophage cells (p < 0.05) compared to the non-treated diabetic group. In summary, the current study demonstrated the protective properties of H2S, which prevented the development of neuropathy related behavior, and suppressed apoptosis activation pathways and inflammation in the spinal cord. H2S-releasing drugs could be considered as possible treatment options of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Abdulaziz M. F. Shayea
- Department of Occupational Therapy, College of Allied Health Science, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
- Molecular Biology Program, College of Graduate Studies, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Waleed M. Renno
- Department of Anatomy, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Bedoor Qabazard
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| |
Collapse
|
4
|
Lepić S, Lepić M, Banjanin N, Mandić-Rajčević S, Rasulić L. A review of the diet, nutrients, and supplementation potential for the outcome augmentation in surgical treatment of peripheral nerve injuries. Front Surg 2022; 9:942739. [PMID: 36439529 PMCID: PMC9683533 DOI: 10.3389/fsurg.2022.942739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVE Although the studies have shown the beneficial effects of diet, nutrition, and supplementation as an independent treatment modality, their roles are underestimated in the treatment of peripheral nerve injuries. This is in great part due to the development of efficient nerve repair techniques, combined with physical treatment and stimulation. To achieve the best possible functional recovery diet, nutrition, and supplementation should be implemented within a multidisciplinary approach. The aim of the study is to provide insight into the potentially beneficial effects of diet, nutrients, and supplementation, in the limitation of nerve damage and augmentation of the functional recovery after surgery in a review of human and animal studies. METHODS The data relating to the diet, nutrients, and supplementation effects on peripheral nerve injuries and their treatment was extracted from the previously published literature. RESULTS General balanced diet as well as obesity influence the initial nerve features prior to the injury. In the period following the injury, neuroprotective agents demonstrated beneficial effects prior to surgery, and immediately after the injury, while those potentiating nerve regeneration may be used after the surgical repair to complement the physical treatment and stimulation for improved functional recovery. CONCLUSIONS Standardized diet, nutrition, and supplementation recommendations and protocols may be of great importance for better nerve regeneration and functional recovery as a part of the multidisciplinary approach to achieve the best possible results in surgically treated patients with peripheral nerve injuries in the future.
Collapse
Affiliation(s)
- Sanja Lepić
- Institute of Hygiene, Military Medical Academy, Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milan Lepić
- Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Neurosurgery, Military Medical Academy, Belgrade, Serbia
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Stefan Mandić-Rajčević
- School of Public Health and Health Management and Institute of Social Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lukas Rasulić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department for Peripheral Nerve Surgery, Functional Neurosurgery and Pain Management Surgery, Clinic for Neurosurgery, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
5
|
Shen CL, Castro L, Fang CY, Castro M, Sherali S, White S, Wang R, Neugebauer V. Bioactive compounds for neuropathic pain: An update on preclinical studies and future perspectives. J Nutr Biochem 2022; 104:108979. [PMID: 35245654 DOI: 10.1016/j.jnutbio.2022.108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Among different types of chronic pain, neuropathic pain (NP), arising from damage to the nervous system, including peripheral fibers and central neurons, is notoriously difficult to treat and affects 7-10% of the general population. Currently available treatment options for NP are limited and opioid analgesics have severe side effects and can result in opioid use disorder. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of NP. Here, we assessed the effects of commonly consumed bioactive compounds (ginger, curcumin, omega-3 polyunsaturated fatty acids, epigallocatechin gallate, resveratrol, soy isoflavones, lycopene, and naringin) on NP and NP-related neuroinflammation. Cellular studies demonstrated that these bioactive compounds reduce inflammation via suppression of NF-κB and MAPK signaling pathways that regulate apoptosis/cell survival, antioxidant, and anti-inflammatory responses. Animal studies strongly suggest that these regularly consumed bioactive compounds have a pronounced anti-NP effect as shown by decreased mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia, and cold hyperalgesia. The proposed molecular mechanisms include (1) the enhancement of neuron survival, (2) the reduction of neuronal hyperexcitability by activation of antinociceptive cannabinoid 1 receptors and opioid receptors, (3) the suppression of sodium channel current, and (4) enhancing a potassium outward current in NP-affected animals, triggering a cascade of chemical changes within, and between neurons for pain relief. Human studies administered in this area have been limited. Future randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in patients with NP.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | - Luis Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Chih-Yu Fang
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Maribel Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Samir Sherali
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Steely White
- Department of Microbiology, Texas Tech University, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
6
|
Abushukur Y, Knackstedt R. The Impact of Supplements on Recovery After Peripheral Nerve Injury: A Review of the Literature. Cureus 2022; 14:e25135. [PMID: 35733475 PMCID: PMC9205410 DOI: 10.7759/cureus.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve injury (PNI) can result from trauma, surgical resection, iatrogenic injury, and/or local anesthetic toxicity. Damage to peripheral nerves may result in debilitating weakness, numbness, paresthesia, pain, and/or autonomic instability. As PNI is associated with inflammation and nerve degeneration, means to mitigate this response could result in improved outcomes. Numerous nutrients have been investigated to prevent the negative sequelae of PNI. Alpha-lipoic acid, cytidine diphosphate-choline (CDP Choline), curcumin, melatonin, vitamin B12, and vitamin E have demonstrated notable success in improving recovery following PNI within animal models. While animal studies show ample evidence that various supplements may improve recovery after PNI, similar evidence in human patients is limited. The goal of this review is to analyze supplements that have been used successfully in animal models of PNI to serve as a reference for future studies on human patients. By analyzing supplements that have shown efficacy in animal studies, healthcare providers will have a resource from which to guide decision-making regarding future human studies investigating the role that supplements could play in PNI recovery. Ultimately, establishing a comprehensive understanding of these supplements in human patients following PNI may significantly improve post-surgical outcomes, quality of life, and peripheral nerve regeneration.
Collapse
|
7
|
Shayea AMF, Mousa AMA, Renno WM, Nadar MS, Qabazard B, Yousif MHM. Chronic Treatment With Hydrogen Sulfide Donor GYY4137 Mitigates Microglial and Astrocyte Activation in the Spinal Cord of Streptozotocin-Induced Diabetic Rats. J Neuropathol Exp Neurol 2020; 79:1320-1343. [DOI: 10.1093/jnen/nlaa127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Long-term diabetic patients suffer immensely from diabetic neuropathy. This study was designed to investigate the effects of hydrogen sulfide (H2S) on peripheral neuropathy, activation of microglia, astrocytes, and the cascade secretion of proinflammatory cytokines in the streptozotocin (STZ)-induced peripheral diabetic neuropathy rat model. STZ-induced diabetic rats were treated with the water-soluble, slow-releasing H2S donor GYY4137 (50 mg/kg; i.p.) daily for 4 weeks. Antiallodynic/antihyperalgesic activities were evaluated using different tests and histopathological changes and the expression of proinflammatory cytokines in the spinal cord were examined. GYY4137 treatment produced neuroprotective effects in the spinal cord of diabetic animals and modulated their sensory deficits. The treatment decreased allodynia (p < 0.05) and mechanical hyperalgesia (p < 0.01) and restored thermal hyperalgesia (p < 0.001) compared with diabetic rats. The treatment decreased the microglial response and increased astrocyte counts in spinal cord gray and white matter compared with untreated diabetic rats. Proinflammatory cytokines were reduced in the treated group compared with diabetic rats. These results suggest that H2S has a potentially ameliorative effect on the neuropathic pain through the control of astrocyte activation and microglia-mediated inflammation, which may be considered as a possible treatment of peripheral nerve hypersensitivity in diabetic patients.
Collapse
Affiliation(s)
- Abdulaziz M F Shayea
- Departments of Anatomy, Faculty of Medicine Health Science Center
- Occupational Therapy Faculty of Allied Health
| | - Alyaa M A Mousa
- Departments of Anatomy, Faculty of Medicine Health Science Center
| | - Waleed M Renno
- Departments of Anatomy, Faculty of Medicine Health Science Center
| | | | | | - Mariam H M Yousif
- Pharmacology & Toxicology Department, Faculty of Medicine (MHMY), Kuwait University, Kuwait
| |
Collapse
|
8
|
Arazi H, Taati B, Kheirkhah J, Ramezanpour S. Changes in pain following an interaction period of resistance training and green tea extract consumption in sedentary hypertensive women: impact of blood pressure swings. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2019; 38:30. [PMID: 31672172 PMCID: PMC6824015 DOI: 10.1186/s41043-019-0188-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Changes in blood pressure (BP) may affect pain. However, the interaction effect of resistance training and green tea on BP and pain has not been studied. The primary aim of this study was to evaluate the impact of resistance training and green tea extract (GTE) on pain variables in hypertensive patients. Secondary aim included determining the effects of BP alterations on pain responses. METHODS In a randomized, double-blind, placebo-controlled study, 30 middle-aged sedentary women were randomly divided into resistance training and green tea extract (GR, n = 8), resistance training (R, n = 8), green tea (G, n = 7), and control groups (C, n = 7). The study period consisted of 3 weeks of GTE (~ 245 mg total polyphenols) consumption twice a day followed by 6 weeks of interaction with resistance training. GR and R groups performed two circuits of training with ten repetitions at 50% of 1RM 2 days a week while other two groups had no any regular exercise training. R and C groups also received placebo capsules (maltodextrin) with the same timing. Pain threshold and perception, BP, and heart rate were recorded following the first and last session of training at rest and 5th and 15th minute. RESULTS Pain perception of training groups after the last session was significantly higher than control conditions, and at this time, the magnitude of BP responses was lower in training groups. In proportion to pain threshold, there were no significant differences between groups. CONCLUSION It seems that training-induced hypotension can alter pain perception in hypertensive women through changes in baroreceptor activation.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O.Box: 1438, Rasht, Iran.
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O.Box: 1438, Rasht, Iran
| | - Jalal Kheirkhah
- Department of Cardiology, Healthy Heart Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samaneh Ramezanpour
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O.Box: 1438, Rasht, Iran
| |
Collapse
|
9
|
Hussain ASM, Renno WM, Sadek HL, Kayali NM, Al-Salem A, Rao MS, Khan KM. Monoamine oxidase-B inhibitor protects degenerating spinal neurons, enhances nerve regeneration and functional recovery in sciatic nerve crush injury model. Neuropharmacology 2017; 128:231-243. [PMID: 29054367 DOI: 10.1016/j.neuropharm.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase-B (MAOB), a flavin adenine dinucleotide (FAD), is an enzyme which catalyzes the oxidation of amines. MAOB is proposed to play a major role in the pathogenesis of neurodegeneration through the production of reactive oxygen species (ROS) and neurotoxins. The present study was designed to outline the effects of the MAOB inhibitor (MAOB-I) on neuroprotection of spinal neurons, regeneration of sciatic nerve fibers, and recovery of sensory-motor functions in the sciatic nerve crush injury model. Male Wistar rats (4-months-old) were assigned to i) Naïve (N), ii) Sham (S), iii) Sciatic nerve crush and treated with saline (CRUSH + SALINE) and iv) Sciatic nerve crush and treated with MAOB inhibitor (CRUSH + MAOB-I) groups (n = 10/group). In groups iii and iv, the crush injury was produced by crushing the sciatic nerve followed by treatment with saline or MAOB-I (Selegiline® 2.5 mg/kg) intraperitoneally for 10 days. Behavioral tests were conducted from week 1 to week 6. At the end of the study, sciatic nerve and lumbar spinal cord were examined by immunohistochemistry, light and electron microscopy. MAOB-I treatment showed significant improvement in sensory and motor functions compared to saline treatment (p < 0.05-0.001) in injured nerves. The morphological study showed a significantly increased number of nerve fibers in sciatic nerve distal to the site of injury (p < 0.05), with better myelination pattern in CRUSH + MAOB-I treated group compared to CRUSH + SALINE group. Spinal cord ventral horns showed a significant increase in the number of NeuN-immunoreactive neurons in the MAOB-I treated group compared to Saline treated group (p < 0.01). MAOB-I has a significant potential for protecting the degenerating spinal cord neurons and enhancing the regeneration of injured sciatic nerve fibers following crush injury.
Collapse
Affiliation(s)
| | - Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | - Hanaa L Sadek
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Noura M Kayali
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Aseel Al-Salem
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
10
|
Renno WM, Benov L, Khan KM. Possible role of antioxidative capacity of (-)-epigallocatechin-3-gallate treatment in morphological and neurobehavioral recovery after sciatic nerve crush injury. J Neurosurg Spine 2017; 27:593-613. [PMID: 28777065 DOI: 10.3171/2016.10.spine16218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study examined the capacity of the major polyphenolic green tea extract (-)-epigallocatechin-3-gallate (EGCG) to suppress oxidative stress and stimulate the recovery and prompt the regeneration of sciatic nerve after crush injury. METHODS Adult male Wistar rats were randomly assigned to one of 4 groups: 1) Naïve, 2) Sham (sham injury, surgical control group), 3) Crush (sciatic nerve crush injury treated with saline), and 4) Crush+EGCG (sciatic nerve crush injury treated with intraperitoneally administered EGCG, 50 mg/kg). All animals were tested for motor and sensory neurobehavioral parameters throughout the study. Sciatic nerve and spinal cord tissues were harvested and processed for morphometric and stereological analysis. For the biochemical assays, the time points were Day 1, Day 7, Day 14, and Day 28 after nerve injury. RESULTS After sciatic nerve crush injury, the EGCG-treated animals (Crush+EGCG group) showed significantly better recovery of foot position and toe spread and 50% greater improvement in motor recovery than the saline-treated animals (Crush group). The Crush+EGCG group displayed an early hopping response at the beginning of the 3rd week postinjury. Animals in the Crush+EGCG group also showed a significant reduction in mechanical allodynia and hyperalgesia latencies and significant improvement in recovery from nociception deficits in both heat withdrawal and tail flick withdrawal latencies compared with the Crush group. In both the Crush+EGCG and Crush groups, quantitative evaluation revealed significant morphological evidence of neuroregeneration according to the following parameters: mean cross-sectional area of axons, myelin thickness in the sciatic nerve (from Week 4 to Week 8), increase of myelin basic protein concentration and gene expression in both the injured sciatic nerve and spinal cord, and fiber diameter to axon diameter ratio and myelin thickness to axon diameter ratio at Week 2 after sciatic nerve injury. However, the axon area remained much smaller in both the Crush+EGCG and Crush groups compared with the Sham and Naïve groups. The number of axons per unit area was significantly decreased in the Crush+EGCG and Crush groups compared with controls. Sciatic nerve injury produced generalized oxidative stress manifested as a significant increase of isoprostanes in the urine and decrease of the total antioxidant capacity (TAC) of the blood from Day 7 until Day 14. EGCG-treated rats showed significantly less increase of isoprostanes than saline-treated animals and also showed full recovery of TAC levels by Day 14 after nerve injury. In spinal cord tissue analysis, EGCG-treated animals showed induced glutathione reductase and suppressed induction of heme oxygenase 1 gene expression compared with nontreated animals. CONCLUSIONS EGCG treatment suppressed the crush-induced production of isoprostanes and stimulated the recovery of the TAC and was associated with remarkable alleviation of motor and sensory impairment and significant histomorphological evidence of neuronal regeneration following sciatic nerve crush injury in rats. The findings of this study suggest that EGCG can be used as an adjunctive therapeutic remedy for nerve injury. However, further investigations are needed to establish the antioxidative mechanism involved in the regenerative process after nerve injury. Only upregulation of glutathione reductase supports the idea that EGCG is acting indirectly via induction of enzymes or transcription factors.
Collapse
Affiliation(s)
| | - Ludmil Benov
- Biochemistry, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
11
|
Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull 2014; 110:68-75. [PMID: 25522867 DOI: 10.1016/j.brainresbull.2014.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord neurons located in laminae I-III respond to nociceptive stimuli and participate in the transmission of painful information to the brain. In the present study we evaluated if nociceptive laminae I-III neurons are affected by oxidative stress damage in a model of diabetic neuropathic pain (DNP), the streptozotocin-induced diabetic rat (STZ rat). Additionally, we evaluated the effects of a preventive antioxidant treatment with epigallocatechin-gallate (EGCG) in nociceptive neuronal activation and behavioural signs of DNP. Three days after diabetes induction, a treatment protocol of STZ rats with an aqueous solution of EGCG in the drinking water was initiated. Ten weeks after the onset of treatment, the spinal cords were immunoreacted against validated markers of oxidative stress damage (8-hydroxy-2'-deoxyguanosine; 8-OHdG) and of nociceptive neuronal activation (Fos). Mechanical hypersensitivity was assessed before and after EGCG treatment. Untreated STZ rats presented increased levels of 8-OHdG immunoreaction, higher numbers of Fos-immunoreacted neurons and high levels of co-localization of 8-OHdG and Fos in laminae I-III. Treatment with EGCG normalized the increase of the above mentioned parameters and ameliorated mechanical hypersensitivity. The present study shows that nociceptive neurons in spinal cord laminae I-III exhibit oxidative stress damage during diabetic neuropathy, which probably affects ascending pain transmission during DNP. The neurobiological mechanisms and translational perspectives of the beneficial effects of a preventive and sustained EGCG treatment in DNP need to be evaluated in the future.
Collapse
Affiliation(s)
- D Raposo
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - C Morgado
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - P Pereira-Terra
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - I Tavares
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal.
| |
Collapse
|
12
|
Renno WM, Al-Maghrebi M, Rao MS, Khraishah H. (-)-Epigallocatechin-3-gallate modulates spinal cord neuronal degeneration by enhancing growth-associated protein 43, B-cell lymphoma 2, and decreasing B-cell lymphoma 2-associated x protein expression after sciatic nerve crush injury. J Neurotrauma 2014; 32:170-84. [PMID: 25025489 DOI: 10.1089/neu.2014.3491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Our previous studies have established that (-)-epigallocatechin-3-gallate (EGCG) has both neuroprotective and -regenerative capacity after sciatic nerve injury. Moreover, this improvement was evident on the behavioral level. The aim of this study was to investigate the central effects of ECGC on spinal cord motor neurons after sciatic nerve injury. Our study showed that administering 50 mg/kg intraperitoneally i.p. of EGCG to sciatic nerve-injured rats improved their performance on different motor functions and mechanical hyperesthesia neurobehavioral tests. Histological analysis of spinal cords of EGCG-treated sciatic nerve-injured (CRUSH+ECGC) animals showed an increase in the number of neurons in the anterior horn, when compared to the naïve, sham, and saline-treated sciatic nerve-injured (CRUSH) control groups. Additionally, immunohistochemical study of spinal cord sections revealed that EGCG reduced the expression of glial fibrillary acidic protein and increased the expression of growth-associated protein 43, a marker of regenerating axons. Finally, EGCG reduced the ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 and increased the expression of survivin gene. This study may shed some light on the future clinical use of EGCG and its constituents in the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Waleed M Renno
- 1 Department of Anatomy, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | | | | | | |
Collapse
|
13
|
An SS, Kim YO, Park CH, Lin H, Yoon MH. Antiallodynic effect of intrathecal epigallocatechin-3-gallate due to suppression of reactive oxygen species. Korean J Anesthesiol 2014; 67:123-8. [PMID: 25237449 PMCID: PMC4166384 DOI: 10.4097/kjae.2014.67.2.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
Background Green tea modulates neuropathic pain. Reactive oxygen species (ROS) are suggested as a key molecule in the underlying mechanism of neuropathic pain in the spinal cord. We examined the effect of epigallocatechin-3-gallate (EGCG), the major catechin in green tea, in neuropathic pain and clarified the involvement of ROS on the activity of EGCG. Methods Neuropathic pain was induced in male Sprague-Dawley rats by spinal nerve ligation (SNL). A polyethylene tube was intrathecally located. Nociceptive degree was estimated by a von Frey filament and expressed as a paw withdrawal threshold (PWT). To determine the role of ROS on the effect of EGCG, a free radical donor (tert-BuOOH) was pretreated before administration of EGCG. ROS activity was assayed by xanthine oxidase (XO) and malondialdehyde (MDA). Results SNL decreased the PWT compared to sham rats. The decrease remained during the entire observation period. Intrathecal EGCG increased the PWT at the SNL site. Intrathecal tert-BuOOH significantly decreased the effect of EGCG. The levels of both XO and MDA in the spinal cord were increased in SNL rats compared to sham. Intrathecal EGCG decreased the level of XO and MDA. Conclusions EGCG may reduce neuropathic pain by SNL due to the suppression of ROS in the spinal cord.
Collapse
Affiliation(s)
- Sang Soon An
- Department of Anesthesiology and Pain Medicine, Gwangju Christian Hospital, Gwangju, Korea
| | - Yeo Ok Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Korea
| | - Cheon Hee Park
- Department of Anesthesiology and Pain Medicine, Gwangju Christian Hospital, Gwangju, Korea
| | - Hai Lin
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Korea. ; Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Korea. ; Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
| |
Collapse
|
14
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|
15
|
Zhang Y, Jia YY, Guo JL, Liu PQ, Jiang JM. Effects of (-)-gallocatechin-3-gallate on tetrodotoxin-resistant voltage-gated sodium channels in rat dorsal root ganglion neurons. Int J Mol Sci 2013; 14:9779-89. [PMID: 23652835 PMCID: PMC3676812 DOI: 10.3390/ijms14059779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/10/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022] Open
Abstract
The (−)-gallocatechin-3-gallate (GCG) concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM) on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
16
|
Renno WM, Al-Maghrebi M, Alshammari A, George P. (-)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int 2013; 62:221-31. [PMID: 23313191 DOI: 10.1016/j.neuint.2012.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/28/2012] [Accepted: 12/22/2012] [Indexed: 01/08/2023]
Abstract
Recently, we have shown that green tea (GT) consumption improves both reflexes and sensation in unilateral chronic constriction injury to the sciatic nerve. Considering the substantial neuroprotective properties of GT polyphenols, we sought to investigate whether (-)-epigallocatechin-3-gallate (EGCG) could protect the sciatic nerve and improve functional impairments induced by a crushing injury. We also examined whether neuronal cell apoptosis induced by the crushing injury is affected by EGCG treatment. Histological examination of sciatic nerves from EGCG-treated (50mg/kg; i.p.) showed that axonotmized rats had a remarkable axonal and myelin regeneration with significant decrease in the number of myelinated axonal fibers compared to vehicle-treated crush group. Similarly, ultrastructural evaluation of EGCG-treated nerves displayed normal unmyelinated and myelinated axons with regular myelin sheath thickness and normalized appearance of Schmidt-Lantermann clefts. Extracellular matrix displayed normal collagen fibers appearance with distinctively organized distribution similar to sham animals. Analysis of foot position and extensor postural thrust test showed a progressive and faster recovery in the EGCG-treated group compared to vehicle-treated animals. EGCG-treated rats showed significant increase in paw withdrawal thresholds to mechanical stimulation compared to vehicle-treated crush group. EGCG treatment also restored the mRNA expression of Bax, Bcl-2 and survivin but not that of p53 to sham levels on days 3 and 7 post-injury. Our results demonstrate that EGCG treatment enhanced functional recovery, advanced morphological nerve rescue and accelerated nerve regeneration following crush injury partly due to the down regulation of apoptosis related genes.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | | | |
Collapse
|
17
|
Renno WM, Al-Maghrebi M, Al-Banaw A. (−)-Epigallocatechin-3-gallate (EGCG) attenuates functional deficits and morphological alterations by diminishing apoptotic gene overexpression in skeletal muscles after sciatic nerve crush injury. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:807-22. [DOI: 10.1007/s00210-012-0758-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2012] [Indexed: 01/09/2023]
|
18
|
Choi JI, Kim WM, Lee HG, Kim YO, Yoon MH. Role of neuronal nitric oxide synthase in the antiallodynic effects of intrathecal EGCG in a neuropathic pain rat model. Neurosci Lett 2012; 510:53-7. [PMID: 22249118 DOI: 10.1016/j.neulet.2011.12.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 12/17/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), the major catechin in green tea, is known to have antioxidant activity against nitric oxide (NO) by scavenging free radicals, chelating metal ions, and inducing endogenous antioxidant enzymes. NO and NO synthase (NOS) play an important role in nociceptive processing. In this study, we examined the effects of intrathecal EGCG in neuropathic pain induced by spinal nerve ligation and the possible involvement of NO. Intrathecal EGCG attenuated mechanical allodynia in spinal nerve ligated-rats, compared to sham-operated rats, with a maximal possible effect of 69.2%. This antinociceptive effect was reversed by intrathecal pretreatment with l-arginine, a precursor of NO. Intrathecal EGCG also blocked the increase in nNOS expression in the spinal cord of spinal nerve-ligated rats, but iNOS expression was not significantly suppressed. These findings suggest that intrathecal EGCG could produce an antiallodynic effect against spinal nerve ligation-induced neuropathic pain, mediated by blockade of nNOS protein expression and inhibition of the pronociceptive effects of NO.
Collapse
Affiliation(s)
- Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Renno WM, Alkhalaf M, Afsari Z, Abd-El-Basset E, Mousa A. Consumption of green tea alters glial fibriliary acidic protein immunoreactivity in the spinal cord astrocytes of STZ-diabetic rats. Nutr Neurosci 2009; 11:32-40. [PMID: 18510801 DOI: 10.1179/147683008x301405] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We examined the effect of green tea consumption on glial fibriliary acidic protein (GFAP) expression in spinal cord of streptozotocin (STZ) treated rats. Three groups (n = 10) were used in this study: (i) controls; (ii) STZ-induced diabetic rats given tap water; and (iii) an STZ-induced diabetic group given green tea. Immunohistochemistry showed a significant (P < 0.001) decrease in the number of GFAP immunoreactive astrocytes in spinal cord sections of diabetic rats compared to non-diabetic controls. Diabetic rats treated with green tea showed a significant (P < 0.01) increase in the number GFAP-immunoreactive astrocytes in all the spinal cord gray areas as compared to water-drinking diabetic rats. Immunoblotting confirmed that the diabetic spinal cord tissue expressed 71.0 +/- 7.0% less GFAP compared to non-diabetic controls and that the GFAP content in diabetic rats increased up to 86.34 +/- 18.74% compared to non-diabetic controls after 12 weeks of green tea consumption. In conclusion, consumption of green tea may represent an achievable adjunct therapy for improving changes seen in diabetic spinal cord.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Health Sciences Center, University of Kuwait, Kuwait.
| | | | | | | | | |
Collapse
|
20
|
Kim WM, Bae HB, Choi JI. The Effect of Intrathecal Epigallocatechin Gallate on the Development of Antinociceptive Tolerance to Morphine. Korean J Pain 2009. [DOI: 10.3344/kjp.2009.22.3.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chonnam National University, Gwangju, Korea
| | - Hong Beom Bae
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chonnam National University, Gwangju, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
21
|
Šedý J, Urdzíková L, Jendelová P, Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 2008; 32:550-80. [DOI: 10.1016/j.neubiorev.2007.10.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/09/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
|