1
|
Guedes RCA, Monteiro JS, de Biase S, de Melo APR, Borba JMC, Diniz CWP, de Carvalho Noya AGAF, Prieto SCG. Effects of early monocular enucleation on cortical spreading depression in well-nourished and malnourished adult rats. Exp Brain Res 2024; 242:2241-2247. [PMID: 39034328 DOI: 10.1007/s00221-024-06893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Sensory development is a complex process that can influence physiological and pathological factors. In laterally-eyed mammals, monocular enucleation (ME) during development and the subsequent lack of external sensory stimuli can result in permanent morphological and physiological changes. Malnutrition, especially in early life, also can cause permanent morphofunctional changes due to inadequate nutrient intake in both hemispheres. This study investigated the effects of early (postnatal day 7) ME and malnutrition during the suckling period on cortical excitability in adulthood (110-140 days of life). For this, we compared the speed propagation of cortical spreading depression in the occipital and parietal cortex of malnourished and well-nourished adult rats, previously suckled small-sized litters with three pups (L3/dam) medium-sized litters with six pups (L6/dam), and large-sized litters with twelve pups (L12/dam). The CSD velocity was augmented by the ME in the contralateral side of the removed eye in the parietal and occipital cortex. These findings suggest that visual sensory input deprivation is associated with permanent functional changes in the visual pathways, which can alter cortical excitability and lead to modifications in CSD propagation.
Collapse
Affiliation(s)
- Rubem Carlos Araujo Guedes
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | - Jailma Santos Monteiro
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | - Silvio de Biase
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | - Ana Paula Rocha de Melo
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | | | | | | | | |
Collapse
|
2
|
Vitor-de-Lima SM, Figueira de Oliveira ML, Tavares IDS, Leandro CVG, Guedes RCA. Maternal voluntary physical exercise in the adult rat: evidence of exercise-associated differences in maternal food intake, and in brain effects on the progeny. Nutr Neurosci 2024; 27:120-131. [PMID: 36633889 DOI: 10.1080/1028415x.2023.2166415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Maternal physical activity may impact behavioral and electrophysiological aspects of brain function, with short- and long-term effects on pre- and postnatal neurodevelopment of the offspring. This study evaluated in the rat the effects of maternal voluntary physical activity (MVPA) on food intake and weight gain in the dams, as well as anxiety-like behavior, short-term memory and the brain excitability-related phenomenon known as cortical spreading depression (CSD) on the mother-pup dyad.Methods: Female Wistar rats (n=33) were individually housed in cages containing a running wheel for a 30-days adaptation period before mating. Rats were classified as inactive (I); active (A) or very active (VA) according to the distance spontaneously travelled daily. During gestation, the dams continued to have access to the running wheel. Mothers and their respective pups (1 pup per mother) were evaluated in the open field test (OFT), object recognition test (ORT), elevated plus maze test (EPMT) and the CSD propagation features.Results: MVPA was directly associated with increased food intake and weight gain during gestation, and maternal anxiolytic-like behavioral responses in the OFT. Pups from VA mothers showed a high discrimination index for shape recognition memory (ORT) and decreased propagation velocities of CSD, when compared with the inactive group.Discussion: The data suggest that MVPA during the gestational period induces neuroplasticity and may modulate the brain functions in the mother-infant dyad in the rat.
Collapse
Affiliation(s)
| | | | | | - Carol Virgínia Góis Leandro
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Department of Nutrition, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | |
Collapse
|
3
|
Prescott SL, D’Adamo CR, Holton KF, Ortiz S, Overby N, Logan AC. Beyond Plants: The Ultra-Processing of Global Diets Is Harming the Health of People, Places, and Planet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6461. [PMID: 37569002 PMCID: PMC10419141 DOI: 10.3390/ijerph20156461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Global food systems are a central issue for personal and planetary health in the Anthropocene. One aspect of major concern is the dramatic global spread of ultra-processed convenience foods in the last 75 years, which is linked with the rising human burden of disease and growing sustainability and environmental health challenges. However, there are also calls to radically transform global food systems, from animal to plant-derived protein sources, which may have unintended consequences. Commercial entities have moved toward this "great plant transition" with vigor. Whether motivated by profit or genuine environmental concern, this effort has facilitated the emergence of novel ultra-processed "plant-based" commercial products devoid of nutrients and fiber, and sometimes inclusive of high sugar, industrial fats, and synthetic additives. These and other ingredients combined into "plant-based" foods are often assumed to be healthy and lower in calorie content. However, the available evidence indicates that many of these products can potentially compromise health at all scales-of people, places, and planet. In this viewpoint, we summarize and reflect on the evidence and discussions presented at the Nova Network planetary health meeting on the "Future of Food", which had a particular focus on the encroachment of ultra-processed foods into the global food supply, including the plant-sourced animal protein alternatives (and the collective of ingredients therein) that are finding their way into global fast-food chains. We contend that while there has been much uncritical media attention given to the environmental impact of protein and macronutrient sources-meat vs. novel soy/pea protein burgers, etc.-the impact of the heavy industrial processing on both human and environmental health is significant but often overlooked, including effects on cognition and mental health. This calls for a more nuanced discourse that considers these complexities and refocuses priorities and value systems towards mutualistic solutions, with co-benefits for individuals, local communities, and global ecology.
Collapse
Affiliation(s)
- Susan L. Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA; (C.R.D.); (A.C.L.)
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- The ORIGINS Project, Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Christopher R. D’Adamo
- Nova Institute for Health, Baltimore, MD 21231, USA; (C.R.D.); (A.C.L.)
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen F. Holton
- Departments of Health Studies and Neuroscience, Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA;
| | - Selena Ortiz
- Department of Health Policy and Administration, The Pennsylvania State University, State College, PA 16802, USA;
| | - Nina Overby
- Department of Nutrition and Public Health, Centre for Lifecourse Nutrition, University of Agder, 4630 Kristiansand, Norway;
| | - Alan C. Logan
- Nova Institute for Health, Baltimore, MD 21231, USA; (C.R.D.); (A.C.L.)
| |
Collapse
|
4
|
Zhu W, Zhang W, Yang F, Cai M, Li X, Xiang Y, Xiang J, Yang Y, Cai D. Role of PGC-1α mediated synaptic plasticity, mitochondrial function, and neuroinflammation in the antidepressant effect of Zi-Shui-Qing-Gan-Yin. Front Neurol 2023; 14:1108494. [PMID: 37251232 PMCID: PMC10213669 DOI: 10.3389/fneur.2023.1108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/15/2023] [Indexed: 05/31/2023] Open
Abstract
Depression is the most prevalent psychiatric disorder, which needs deeper mechanism research studies and effective therapy. Zi-Shui-Qing-Gan-Yin (ZSQGY) is a traditional Chinese medicine decoction that has been widely used in China in the treatment of depressive symptoms. The aim of the study was to examine the anti-depressive effects of ZSQGY and the possible mechanism of action in the monosodium glutamate (MSG)-induced depressive model and the corticosterone (CORT)-induced PC12 cell model. Liquid chromatography-mass spectrometry (LC-MS) was performed to determine the major compounds in the water extract of ZSQGY. The depressive behaviors were evaluated by the field swimming test (FST), the sucrose preference test (SPT), and the open field test (OFT). Golgi staining and transmission electron microscopy (TEM) were performed to display the alterations of synaptic ultrastructure. The mitochondrion function and inflammatory factors were also quantified. The changes in peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) expression were evaluated. The results of this study demonstrated that ZSQGY significantly improved depressive behaviors. ZSQGY also reversed the changes in synaptic plasticity, improved mitochondrion function, and reduced the levels of inflammatory factors. The neuroprotective effects were accompanied by the increased expression of PGC-1α. However, the beneficial changes were reversed after the inhibition of PGC-1α. These results indicated that ZSQGY effectively could improve depressive behaviors via the mechanisms that regulate synaptic structural plasticity, improve mitochondrion function, and alleviate neuroinflammation, which could, or partly, attribute to the regulation of PGC-1α.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yijin Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yunke Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Dantas DMM, Cahú TB, Oliveira CYB, Abadie-Guedes R, Roberto NA, Santana WM, Gálvez AO, Guedes RCA, Bezerra RS. Chlorella vulgaris functional alcoholic beverage: Effect on propagation of cortical spreading depression and functional properties. PLoS One 2021; 16:e0255996. [PMID: 34370788 PMCID: PMC8351948 DOI: 10.1371/journal.pone.0255996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Recent advances in microalgae biotechnology have proven that these microorganisms contain a number of bioactive molecules, that can be used as food additives that help prevent disease. The green microalga Chlorella vulgaris presents several biomolecules, such as lutein and astaxanthin, with antioxidant capacity, which can play a protective role in tissues. In this study, we produced and analyzed a C. vulgaris functional alcoholic beverage (produced using a traditional Brazilian alcoholic beverage, cachaça, and C. vulgaris biomass). Assays were conducted in vitro by radical scavenging tests, and in vivo, by modeling cortical spreading depression in rat brains. Scavenging radical assays showed that consumption of the C. vulgaris alcoholic beverage had a DPPH inhibition of 77.2%. This functional alcoholic beverage at a concentration of 12.5 g L-1 significantly improved cortical spreading depression velocity in the rat brains (2.89 mm min-1), when compared with cachaça alone (3.68 mm min-1) and control (distilled water; 3.25 mm min-1). Moreover, animals that consumed the functional beverage gained less weight than those that consumed just alcohol and the control groups. These findings suggest that the C. vulgaris functional alcoholic beverage plays a protective physiologic role in protecting brain cells from the effects of drinking ethanol.
Collapse
Affiliation(s)
- Danielli M M Dantas
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Carlos Yure B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | | | - Nathalia A Roberto
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Werlayne M Santana
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | - Rubem C A Guedes
- Departamento de Nutrição, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Ranilson S Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
6
|
Farhat F, Nofal S, Raafat EM, Eissa Ahmed AA. Akt / GSK3β / Nrf2 / HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity. Neuropharmacology 2021; 196:108654. [PMID: 34119518 DOI: 10.1016/j.neuropharm.2021.108654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates redox homeostasis of the cell through regulation of the antioxidant response element genes transcription. Nrf2 also regulates the antiapoptotic Bcl-2 gene. Nrf2 degradation and nuclear translocation is regulated by upstream kinases Akt and GSK3β. Glutamate excitotoxicity is a process of neuronal cells death due to excessive activation of glutamate receptors. Glutamate excitotoxicity participates in the pathophysiology of several acute and chronic neurological conditions. In addition, glutamate excitotoxicity interrupts the PI3K/Akt prosurvival pathway so GSK3β remains active. Active GSK3β increases Nrf2 degradation, decreases Nrf2 nuclear translocation and increases Nrf2 nuclear export which decreases the ARE genes transcription such as, SOD, GSH synthesis enzyme and HO-1. Also, Bcl-2 transcription decreases. Flurbiprofen is a COX inhibitor. Previous studies showed that it has a neuroprotective effect in neurodegeneration and in focal cerebral ischemia/reperfusion model. In our research we aimed to test the hypothesis that flurbiprofen may have a neuroprotective effect in a rat model of glutamate-induced excitotoxicity and this neuroprotection may occur through modulation of (Akt/GSK3β/Nrf2/HO-1) pathway. Rats were divided into 4 groups; control, MSG (2.5 g/Kg, i.p), low dose FB (5 mg/kg, i.p) and high dose FB (10 mg/kg, i.p). We found that low and high doses FB decreased COX-2, PGE2, NO and MDA and increased SOD and GSH in brain compared to MSG group. High dose was more effective than low dose. Western blotting analysis in hippocampus tissue showed that high dose FB increased p-Akt, p-GSK3β, nuclear Nrf2 and HO-1 and decreased cytosolic Nrf2 level in comparison with MSG group. Immunohistochemical analysis in hippocampus and cerebral cortex showed that high dose FB increased Bcl-2 and decreased Bax compared to MSG group. In addition, FB increased the number of intact neurons in hippocampus areas and cerebral cortex neurons and showed an anxiolytic-like action in OF and EPM tests. These findings suggest that FB has a neuroprotective effect in glutamate-induced excitotoxicity model through reduction of the glutamate excitotoxicity damage and activation of the survival pathway. These may occur due to modulation the survival pathway (Akt/GSK3β/Nrf2/HO-1) and inhibition of COX-2.
Collapse
Affiliation(s)
- Fatma Farhat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Eman M Raafat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Amany Ali Eissa Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| |
Collapse
|
7
|
Kumar P, Kraal AZ, Prawdzik AM, Ringold AE, Ellingrod V. Dietary Glutamic Acid, Obesity, and Depressive Symptoms in Patients With Schizophrenia. Front Psychiatry 2021; 11:620097. [PMID: 33551881 PMCID: PMC7859478 DOI: 10.3389/fpsyt.2020.620097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Schizophrenia is a lifelong condition associated with several comorbid conditions such as physical illnesses like obesity, as well as co-occurring psychiatric symptoms such as depression. Research regarding susceptibility to some of these comorbidities has primary focused on genetic risks or neurotransmitters and very little work has been done to understand environmental factors such as diet. In particular, understanding the role of dietary glutamic acid consumption on co-morbidities in patients with schizophrenia is important, as evidence suggests that glutamic acid consumption may directly influence glutamatergic neurotransmission; a key neurotransmitter related to schizophrenia, its associated co-morbidities, and depression. Therefore, the aim of this study was to examine the potential relationship between dietary glutamic acid and depressive symptomatology in patients with schizophrenia, stratified by obesity status, due to its relationship with inflammation, antipsychotic use, and depressive symptoms. Methods: Subjects included in this analysis, were part of a parent cross-sectional study in which included three dietary recalls analyzed using protocols outlined as part of the National Health and Nutrition Examination Surveys (NHANES) standardized criteria. Additionally, body mass index (BMI), and Beck Depression Inventory were obtained at this visit. Subjects with a BMI ≥ 30 kg/m2 were included in the obesity group, and the relationship between glutamic acid consumption and BDI scores was analyzed after controlling for age, race, sex, antidepressant and antipsychotic use, and animal and vegetable protein intake which provide natural forms of dietary glutamic acid. Results: A total of 168 participants were included in this study, of which 42.5% were female and 52.9% were White. The mean BMI for the group as a whole was 33.5 ± 8.7 (kg/m2) and the mean BDI was 14.5 ± 10.2 (range 2-50). No differences were found between obesity groups, other than a greater hyperlipidemia, hypertension, and lower waist to hip ratio. Overall, no relationship was found between dietary glutamic acid and BDI scores, However, for non-obese participants, diets higher levels of glutamic acid were associated with greater depression symptomatology (p = 0.021). Conclusion: These preliminary results indicate a possible correlation between dietary glutamic acid a depressive symptoms in non-obese patients with schizophrenia, although further research is needed to specifically examine this relationship.
Collapse
Affiliation(s)
- Pooja Kumar
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - A. Zarina Kraal
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, School of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Andreas M. Prawdzik
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Department of Mathematics, Central Michigan University, Mount Pleasant, MI, United States
| | | | - Vicki Ellingrod
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Yousof SM, Awad YM, Mostafa EMA, Hosny MM, Anwar MM, Eldesouki RE, Badawy AE. The potential neuroprotective role of Amphora coffeaeformis algae against monosodium glutamate-induced neurotoxicity in adult albino rats. Food Funct 2021; 12:706-716. [PMID: 33337454 DOI: 10.1039/d0fo01957g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monosodium glutamate (MSG) is a neurotoxin found in most processed and infant formulas. Amphora coffeaeformis (AC) has neuroprotective properties. We investigated, for the first time, the potential neuroprotective role of AC on MSG-induced neurotoxicity in brain using a unique procedural approach. The AC extract was characterized via high performance liquid chromatography (HPLC). Animals were assigned into six groups; a control group, low dose MSG (LD-MSG), high dose MSG (HD-MSG), combined groups (LD-MSG + AC) (HD-MSG + AC) and AC only group for eight weeks. Assessment of the cognitive and mood domains was done via Barnes maze and an open field. Gene expression of Bdnf, TrkB, NMDA-B2 and mGlur5 in the hippocampus was obtained via real-time PCR. The hippocampi of the animals were assessed for structural changes. Oxidative stress was assessed in the cerebrum. The results revealed that omega-6 and β-coumaric acid represented the highest percentage among the constituents in the AC extract. The NO level was decreased in the LD-MSG + AC compared to LD-MSG. SOD was diminished in both treated groups compared to the untreated group. HD-MSG + AC exhibited an increase in the number of wrongly visited quadrants compared to the HD-MSG group. HD-MSG + AC showed decreased anxiety-like behavior compared to HD-MSG. LD-MSG + AC and AC groups revealed enhanced anxiety-like behavior. HD-MSG + AC showed under expressed NMDA-B2 and over expressed Bdnf and TrkB genes, compared to HD-MSG. LD-MSG + AC revealed under expression of Bdnf gene compared to LD-MSG. The AC group revealed under expressed TrkB gene compared to the control group. Overall, the results refer to the potential neuroprotective properties of AC alga against MSG neurotoxicity.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhu W, Yang F, Cai X, Zhang W, Zhang J, Cai M, Li X, Xiang J, Cai D. Role of glucocorticoid receptor phosphorylation-mediated synaptic plasticity in anxiogenic and depressive behaviors induced by monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:151-164. [PMID: 32444989 DOI: 10.1007/s00210-020-01845-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Psychiatric diseases and metabolic disorders frequently cooccur, yet the mechanisms underlying this interaction remain unknown. The aim of this study was to determine the role of glucocorticoid receptor (GR) phosphorylation in the comorbidity of metabolic and psychiatric disorders. Neonatal Sprague-Dawley rats were subcutaneously injected with monosodium glutamate (MSG) every 2 days for 10 days after birth. Metabolic and behavioral tests were performed 12 weeks later. Golgi staining and transmission electron microscopy (TEM) were performed to evaluate synaptic structural plasticity. Changes in GR phosphorylation and the BDNF/TrkB pathway were evaluated by western blotting and immunofluorescence. We found that MSG-treated rats displayed significant metabolic abnormalities accompanied by anxiogenic and depressive behaviors, an altered synaptic ultrastructure and the loss of dendritic spines. The expression of phosphorylated GR was reduced in the brain. Furthermore, a specific agonist of BDNF/TrkB significantly reversed the reduction in GR phosphorylation, as well as the metabolic and behavioral outcomes. These findings indicate that a decrease in BDNF/TrkB pathway-dependent GR phosphorylation is a long-term effect of MSG treatment that may contribute to metabolic and behavioral disturbances.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaofang Cai
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
A L Othman S, Suliman R. How Pectin Play a Role in Histological Changes by Monosodium Glutamate (MSG) in the Ovary of Mice? Pak J Biol Sci 2020; 23:1146-1153. [PMID: 32981245 DOI: 10.3923/pjbs.2020.1146.1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The effects of pectin from the natural vitamins and herbs on the ovary of mice induced by monosodium glutamate (MSG) leads to over accumulations in living cells and finally produces cellular toxicity and damage, pectin helps to rapidly reduce this changes. MATERIALS AND METHODS Cytotoxicity of monosodium glutamate was investigated histologically by using hematoxylin and eosin (H and E) stains. The animals received (MSG) in drinking water at a dose of 3 g kg-1 b.wt., in drinking water for three weeks. The ovary tissues were subjected to histological and morphological analysis. RESULTS In female rats treated with a dose of MSG of 3 g kg-1 daily in drinking water clear toxicological effects on the ovary tissue were significantly obtained. The mice were then anesthetized, dissected the ovary samples were taken from female mice and kept in a 10% neutral formalin solution to make tissue slides after that examined under the microscope to see the differences. Sections showed the occurrence of several histopathological changes in the ovary. CONCLUSION This study concluded that the effectiveness of pectin therapy on ovarian cells destroyed by the effect of monosodium glutamate, which has proven to be very effective in treating all affected and restoring tissue to normal.
Collapse
|
11
|
Onaolapo AY, Onaolapo OJ. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology 2020; 80:93-104. [PMID: 32687843 DOI: 10.1016/j.neuro.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Glutamate is a crucial neurotransmitter of the mammalian central nervous system, a molecular component of our diet, and a popular food-additive. However, for decades, concerns have been raised about the issue of glutamate's safety as a food additive; especially, with regards to its ability (or otherwise) to cross the blood-brain barrier, cause excitotoxicity, or lead to neuron death. Results of animal studies following glutamate administration via different routes suggest that an array of effects can be observed. While some of the changes appear deleterious, some are not fully-understood, and the impact of others might even be beneficial. These observations suggest that with regards to the mammalian brain, exogenous glutamate might exert a double-sided effect, and in essence be a two-faced molecule whose effects may be dependent on several factors. This review draws from the research experiences of the authors and other researchers regarding the effects of exogenous glutamate on the brain of rodents. We also highlight the possible implications of such effects on the brain, in health and disease. Finally, we deduce that beyond the culinary effects of exogenous glutamate, there is the possibility of a beneficial role in the understanding and management of brain disorders.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
12
|
Raut S, Singh U, Sarmah D, Datta A, Baidya F, Shah B, Bohra M, Jagtap P, Sarkar A, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chem Neurosci 2020; 11:1525-1538. [PMID: 32348103 DOI: 10.1021/acschemneuro.0c00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Migraine and stroke are common, disabling neurological conditions with several theories being proposed to explain this bidirectional relationship. Migraine is considered as a benign neurological disorder, but research has revealed a connection between migraine and stroke, predominantly those having migraine with aura (MA). Among migraineurs, females with MA are more susceptible to ischemic stroke and may have a migrainous infarction. Migrainous infarction mostly occurs in the posterior circulation of young women. Although there are several theories about the potential relationship between MA and stroke, the precise pathological process of migrainous infarction is not clear. It is assumed that cortical spreading depression (CSD) might be one of the essential factors for migrainous infarction. Other factors that may contribute to migrainous infarction may be genetic, hormonal fluctuation, hypercoagulation, and right to left cardiac shunts. Antimigraine drugs, such as ergot alkaloids and triptans, are widely used in migraine care. Still, they have been found to cause severe vasoconstriction, which may result in the development of ischemia. It is reported that patients with stroke develop migraines during the recovery phase. Both experimental and clinical data suggest that cerebral microembolism can act as a potential trigger for MA. Further studies are warranted for the treatment of migraine, which may lead to a decline in migraine-related stroke. In this present article, we have outlined various potential pathways that link migraine and stroke.
Collapse
Affiliation(s)
- Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
13
|
E Silva-Gondim MB, de Souza TKM, Rodrigues MCA, Guedes RCA. Suckling in litters with different sizes, and early and late swimming exercise differentially modulates anxiety-like behavior, memory and electrocorticogram potentiation after spreading depression in rats. Nutr Neurosci 2017; 22:464-473. [PMID: 29183255 DOI: 10.1080/1028415x.2017.1407472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Analyze the hypothesis that swimming exercise, in rats suckled under distinct litter sizes, alters behavioral parameters suggestive of anxiety and recognition memory, and the electrocorticogram potentiation that occurs after the excitability-related phenomenon that is known as cortical spreading depression (CSD). METHODS Male Wistar rats were suckled in litters with six or 12 pups (L6 and L12 groups). Animals swam at postnatal days (P) 8-23, or P60-P75 (early-exercised or late-exercised groups, respectively), or remained no-exercised. Behavioral tests (open field - OF and object recognition - OR) were conducted between P77 and P80. Between P90 and P120, ECoG was recorded for 2 hours. After this 'baseline' recording, CSD was elicited every 30 minutes over the course of 2 hours. RESULTS Early swimming enhanced the number of entries and the percentage of time in the OF-center (P < 0.05). In animals that swam later, this effect occurred in the L6 group only. Compared to the corresponding sedentary groups, OR-test showed a better memory in the L6 early exercised rats, and a worse memory in all other groups (P < 0.05). In comparison to baseline values, ECoG amplitudes after CSD increased 14-43% for all groups (P < 0.05). In the L6 condition, early swimming and late swimming, respectively, reduced and enhanced the magnitude of the post-CSD ECoG potentiation in comparison with the corresponding L6 no-exercised groups (P < 0.05). DISCUSSION Our data suggest a differential effect of early- and late-exercise on the behavioral and electrophysiological parameters, suggesting an interaction between the age of exercise and the nutritional status during lactation.
Collapse
Affiliation(s)
- Mariana Barros E Silva-Gondim
- a Laboratory of Nutrition Physiology, Departamento de Nutrição , Universidade Federal de Pernambuco , CEP 50670-901 Recife , PE , Brazil
| | - Thays Kallyne Marinho de Souza
- a Laboratory of Nutrition Physiology, Departamento de Nutrição , Universidade Federal de Pernambuco , CEP 50670-901 Recife , PE , Brazil.,b Colegiado de Nutrição , Universidade de Pernambuco , CEP 56328-903 Petrolina , Pernambuco , Brazil
| | | | - Rubem Carlos Araújo Guedes
- a Laboratory of Nutrition Physiology, Departamento de Nutrição , Universidade Federal de Pernambuco , CEP 50670-901 Recife , PE , Brazil
| |
Collapse
|