1
|
Li X, Zhang X, Kang Y, Cai M, Yan J, Zang C, Gao Y, Qi Y. Scutellarein Suppresses the Production of ROS and Inflammatory Mediators of LPS-Activated Bronchial Epithelial Cells and Attenuates Acute Lung Injury in Mice. Antioxidants (Basel) 2024; 13:710. [PMID: 38929149 PMCID: PMC11200809 DOI: 10.3390/antiox13060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Scutellarein is a key active constituent present in many plants, especially in Scutellaria baicalensis Georgi and Erigeron breviscapus (vant.) Hand-Mazz which possesses both anti-inflammatory and anti-oxidative activities. It also is the metabolite of scutellarin, with the ability to relieve LPS-induced acute lung injury (ALI), strongly suggesting that scutellarein could suppress respiratory inflammation. The present study aimed to investigate the effects of scutellarein on lung inflammation by using LPS-activated BEAS-2B cells (a human bronchial epithelial cell line) and LPS-induced ALI mice. The results showed that scutellarein could reduce intracellular reactive oxygen species (ROS) accumulation through inhibiting the activation of NADPH oxidases, markedly downregulating the transcription and translation of pro-inflammatory cytokines, including interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand (CXCL) 8 in LPS-activated BEAS-2B cells. The mechanism study revealed that it suppressed the phosphorylation and degradation of IκBα, consequently hindering the translocation of p65 from the cytoplasm to the nucleus and its subsequent binding to DNA, thereby decreasing NF-κB-regulated gene transcription. Notably, scutellarein had no impact on the activation of AP-1 signaling. In LPS-induced ALI mice, scutellarein significantly decreased IL-6, CCL2, and tumor necrosis factor-α (TNF-α) levels in the bronchoalveolar lavage fluid, attenuated lung injury, and inhibited neutrophil infiltration. Our findings suggest that scutellarein may be a beneficial agent for the treatment of infectious pneumonia by virtue of its anti-oxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (X.L.); (X.Z.); (Y.K.); (M.C.); (J.Y.); (C.Z.)
| | - Yun Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (X.L.); (X.Z.); (Y.K.); (M.C.); (J.Y.); (C.Z.)
| |
Collapse
|
2
|
Chen HL, Yang L, Zhang XLN, Jia QY, Duan ZD, Li JJ, Zheng LY, Liu TT, Qi Z, Yuan Y, Wu CY. Scutellarin Acts via MAPKs Pathway to Promote M2 Polarization of Microglial Cells. Mol Neurobiol 2023:10.1007/s12035-023-03338-3. [PMID: 37086342 DOI: 10.1007/s12035-023-03338-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Scutellarin, an herbal agent, is known to possess anti-oxidant and anti-inflammatory properties. In activated microglia, it has been reported that this is achieved through acting on the MAPKs, a key pathway that regulates microglia activation. This study sought to determine if scutellarin would affect the commonly described microglia phenotypes, namely, M1 and M2, thought to contribute to pro- and anti-inflammatory roles, respectively. This is in consideration of its potential effect on the polarization of microglia phenotypes that are featured prominently in cerebral ischemia. For this purpose, we have used an experimentally induced cerebral ischemia rat model and LPS-stimulated BV-2 cell model. Thus, by Western blot and immunofluorescence, we show here a noticeable increase in expression of M2 microglia markers, namely, CD206, Arg1, YM1/2, IL-4 and IL-10 in activated microglia both in vivo and in vitro. Besides, we have confirmed that Scutellarin upregulated expression of Arg1, IL-10 and IL-4 in medium supernatants of BV-2 microglia. Remarkably, scutellarin treatment markedly augmented the increased expression of the respective markers in activated microglia. It is therefore suggested scutellarin can exert the polarization of activated microglia from M1 to M2 phenotype. Because M1 microglia are commonly known to be proinflammatory, while M2 microglia are anti-inflammatory and neuroprotective effect, it stands to reason therefore that with the increase of M2 microglia which became predominant by scutellarin, the local inflammatory response is ameliorated. More importantly, we have found that scutellarin promotes the M2 polarization through inhibiting the JNK and p38 signaling pathways, and concomitantly augmenting the ERK1/2 signaling pathway. This lends its strong support from observations in LPS activated BV-2 microglia treated with p38 and JNK inhibitors in which expression of M2 markers was increased; on the other hand, in cells subjected to ERK1/2 inhibitor treatment, the expression was suppressed. In light of the above, MAPKs pathway is deemed to be a potential therapeutic target of scutellarin in mitigating microglia mediated neuroinflammation in activated microglia.
Collapse
Affiliation(s)
- Hao-Lun Chen
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
- Department of Pain Management, No.1 Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, 650101, People's Republic of China
| | - Qiu-Ye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Zhao-Da Duan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Li-Yang Zheng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Teng-Teng Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Zhi Qi
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
- School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China.
| |
Collapse
|
3
|
Zhang L, Yan Q, Zhang W, Li X, Zhang X, Du S, Hua X, Lin J, Shu G, Peng G, Tan Z, Fu H. Enhancement of the functionality of attenuating acute lung injury by a microemulsion formulation with volatile oil of Angelicae Sinensis Radix and Ligusticum Chuanxiong Rhizoma encapsulated. Biomed Pharmacother 2022; 156:113888. [DOI: 10.1016/j.biopha.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022] Open
|
4
|
Study on the mechanism of anti-acute lung injury of Shuanghuanglian oral liquid based on identification of transitional components in blood and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123498. [DOI: 10.1016/j.jchromb.2022.123498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/21/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
5
|
Zhu J, Sainulabdeen A, Akers K, Adi V, Sims JR, Yarsky E, Yan Y, Yu Y, Ishikawa H, Leung CK, Wollstein G, Schuman JS, Wei W, Chan KC. Oral Scutellarin Treatment Ameliorates Retinal Thinning and Visual Deficits in Experimental Glaucoma. Front Med (Lausanne) 2021; 8:681169. [PMID: 34414202 PMCID: PMC8369066 DOI: 10.3389/fmed.2021.681169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/07/2021] [Indexed: 01/29/2023] Open
Abstract
Purpose: Intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma, yet glaucoma can continue to progress despite controlled IOP. Thus, development of glaucoma neurotherapeutics remains an unmet need. Scutellarin is a flavonoid that can exert neuroprotective effects in the eye and brain. Here, we investigated the neurobehavioral effects of scutellarin treatment in a chronic IOP elevation model. Methods: Ten adult C57BL/6J mice were unilaterally injected with an optically clear hydrogel into the anterior chamber to obstruct aqueous outflow and induce chronic IOP elevation. Eight other mice received unilateral intracameral injection of phosphate-buffered saline only. Another eight mice with hydrogel-induced unilateral chronic IOP elevation also received daily oral gavage of 300 mg/kg scutellarin. Tonometry, optical coherence tomography, and optokinetics were performed longitudinally for 4 weeks to monitor the IOP, retinal nerve fiber layer thickness, total retinal thickness, visual acuity, and contrast sensitivity of both eyes in all three groups. Results: Intracameral hydrogel injection resulted in unilateral chronic IOP elevation with no significant inter-eye IOP difference between scutellarin treatment and untreated groups. Upon scutellarin treatment, the hydrogel-injected eyes showed less retinal thinning and reduced visual behavioral deficits when compared to the untreated, hydrogel-injected eyes. No significant difference in retinal thickness or optokinetic measures was found in the contralateral, non-treated eyes over time or between all groups. Conclusion: Using the non-invasive measuring platform, oral scutellarin treatment appeared to preserve retinal structure and visual function upon chronic IOP elevation in mice. Scutellarin may be a novel neurotherapeutic agent for glaucoma treatment.
Collapse
Affiliation(s)
- Jingyuan Zhu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Anoop Sainulabdeen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Krystal Akers
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R. Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Eva Yarsky
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Yi Yan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Yu Yu
- Pleryon Therapeutics Limited, Shenzhen, China
| | - Hiroshi Ishikawa
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Christopher K. Leung
- Hong Kong Eye Hospital, University Eye Center, Hong Kong, China,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China,Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States,Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Wenbin Wei
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States,Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,*Correspondence: Kevin C. Chan
| |
Collapse
|
6
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
7
|
Ye J, Zeng B, Zhong M, Li H, Xu L, Shu J, Wang Y, Yang F, Zhong C, Ye X, He X, Ouyang D. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm Sin B 2021; 11:112-126. [PMID: 33532184 PMCID: PMC7838020 DOI: 10.1016/j.apsb.2020.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory caspase-11 senses and is activated by intracellular lipopolysaccharide (LPS) leading to pyroptosis that has critical role in defensing against bacterial infection, whereas its excess activation under pathogenic circumstances may cause various inflammatory diseases. However, there are few known drugs that can control caspase-11 activation. We report here that scutellarin, a flavonoid from Erigeron breviscapus, acted as an inhibitor for caspase-11 activation in macrophages. Scutellarin dose-dependently inhibited intracellular LPS-induced release of caspase-11p26 (indicative of caspase-11 activation) and generation of N-terminal fragment of gasdermin D (GSDMD-NT), leading to reduced pyroptosis. It also suppressed the activation of non-canonical nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as evidenced by reduced apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and decreased interleukin-1 beta (IL-1β) and caspase-1p10 secretion, whereas the NLRP3-specific inhibitor MCC950 only inhibited IL-1β and caspase-1p10 release and ASC speck formation but not pyroptosis. Scutellarin also suppressed LPS-induced caspase-11 activation and pyroptosis in RAW 264.7 cells lacking ASC expression. Moreover, scutellarin treatment increased Ser/Thr phosphorylation of caspase-11 at protein kinase A (PKA)-specific sites, and its inhibitory action on caspase-11 activation was largely abrogated by PKA inhibitor H89 or by adenylyl cyclase inhibitor MDL12330A. Collectively, our data indicate that scutellarin inhibited caspase-11 activation and pyroptosis in macrophages at least partly via regulating the PKA signaling pathway.
Collapse
|
8
|
Scutellarin Exerts Anti-Inflammatory Effects in Activated Microglia/Brain Macrophage in Cerebral Ischemia and in Activated BV-2 Microglia Through Regulation of MAPKs Signaling Pathway. Neuromolecular Med 2019; 22:264-277. [DOI: 10.1007/s12017-019-08582-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023]
|
9
|
Kaya S, Albayrak Kaya S, Polat E, Fidanol Erboğa Z, Duran Y, Polat FR, Okuyan HM, Karaboğa İ. Protective effects of hesperetin on lipopolysaccharide-induced acute lung injury in a rat model. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2019; 28:359-368. [PMID: 32551168 PMCID: PMC7298383 DOI: 10.5606/tgkdc.dergisi.2020.18816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND In this experimental study, we aimed to investigate the effects of hesperetin, a natural flavonoid, on a lipopolysaccharideinduced acute lung injury model in rats. METHODS Between March 2019 and May 2019, a total of 18 adult male Wistar albino rats, weighing approximately 250 to 300 g, were randomly divided into three groups as control, lipopolysaccharide, and lipopolysaccharide + hesperetin groups (n=6 in each group). The wet/dry weight ratio of lung tissue was determined. Histopathological changes were examined using light and scanning electron microscopy. Pulmonary nuclear factor-kappa beta, inducible nitric oxide synthase, and alpha-smooth muscle antigen activity were determined with indirect immunohistochemical methods. Pulmonary apoptosis was detected with the terminal deoxynucleotidyl transferase dUTP nick-end labeling method. Tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, and interleukin-10 concentrations were measured with enzyme-linked immunosorbent assay. RESULTS Treatment with hesperetin significantly improved the architecture of lung tissue and reduced the wet/dry weight ratio, nuclear factor-kappa beta, inducible nitric oxide synthase, and alphasmooth muscle antigen expression, pulmonary apoptosis, and levels of proinflammatory cytokines. CONCLUSION Our study results suggest that hesperetin has a potent protective effect against lipopolysaccharide-induced acute lung injury in rats via suppression of the proinflammatory cytokine cascade, nuclear factor-kappa beta, signaling pathway activation, and apoptosis.
Collapse
Affiliation(s)
- Serkan Kaya
- Department of Thoracic Surgery, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
| | - Sinem Albayrak Kaya
- Department of Midwifery, Biruni University, Faculty of Health Sciences, Istanbul, Turkey
| | - Elif Polat
- Department of Histology and Embriology, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
| | - Zeynep Fidanol Erboğa
- Department of Histology and Embriology, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
| | - Yasin Duran
- Department of General Surgery, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
| | - Fatin Rüştü Polat
- Department of General Surgery, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
| | - Hamza Malik Okuyan
- Department of Medical Services and Techniquies, Mustafa Kemal University, Hatay Vocational School of Health Sciences, Hatay, Turkey
| | - İhsan Karaboğa
- Department of Emergency and Disaster Medicine, Tekirdağ Namık Kemal University, School of Health, Tekirdağ, Turkey
| |
Collapse
|
10
|
Nie J, Yang HM, Sun CY, Liu YL, Zhuo JY, Zhang ZB, Lai XP, Su ZR, Li YC. Scutellarin Enhances Antitumor Effects and Attenuates the Toxicity of Bleomycin in H22 Ascites Tumor-Bearing Mice. Front Pharmacol 2018; 9:615. [PMID: 29962947 PMCID: PMC6011816 DOI: 10.3389/fphar.2018.00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
Bleomycin (BLM) is a broad spectrum anti-tumor drug and inducing pulmonary fibrosis. As an anti-tumor drug without immunosuppression, it is urgent to find a drug that reduces the side effects of BLM. Scutellarin (SCU), a flavone extracted from Erigeron breviscapus (Vant.) Hand-Mazz, has anti-inflammatory activity and ability to inhibit tumor cell growth, migration, and invasion. However, the combined role of SCU and BLM treatment in tumor is unclear. This study aimed to investigate the possible effect and related mechanisms of BLM combined with SCU in the treatment of tumor through in vivo and in vitro experiments. In vivo experiments showed that BLM combined with SCU in the treatment of mice bearing H22 ascites tumor prolonged the survival time, alleviated BLM-induced pulmonary fibrosis, reduced the production of TNF-α; IL-6, and the levels of MDA and MPO. BLM combined with SCU increased the apoptotic rate of H22 ascites cells and the levels of cleaved-caspases-3 and -8. Furthermore, BLM combined with SCU increased the protein expression of p53 and gene expression of miR-29b, and decreased the expression of TGF-β1. In vitro experiment results showed that BLM combined with SCU inhibited the viability of H22 cells and MRC-5 cells, promoted H22 cell apoptosis, up-regulated the protein expression of p53 and down-regulated the protein expression of α-SMA and collagen-I in MRC-5 cells. These experimental results suggested that SCU could enhance the anti-tumor effect of BLM and reduce BLM-induced pulmonary fibrosis, indicating SCU as a potential adjuvant for BLM in the future.
Collapse
Affiliation(s)
- Juan Nie
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Mei Yang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao-Yue Sun
- Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, China
| | - Yan-Lu Liu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Yi Zhuo
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen-Biao Zhang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ping Lai
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-Ren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Cui Li
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Zhang X, Ji R, Sun H, Peng J, Ma X, Wang C, Fu Y, Bao L, Jin Y. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Free Radic Res 2018; 52:198-211. [PMID: 29400110 DOI: 10.1080/10715762.2017.1422602] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterised by excessive accumulation of hepatic lipids and oxidative injury of hepatocytes. Scutellarin is a flavonoid glycoside having antioxidative stress activity. Our current study aims to investigate the molecular mechanism of scutellarin ameliorating NAFLD. Scutellarin treatment was applied to male C57BL/6 mice maintained on a high-fat diet (HFD) and HepG2 cells challenged with oleic acid. The antioxidation biochemical indicators and lipid levels in the liver and cells were detected by kits. Liver pathology was observed by light microscope, Oil Red O staining, and transmission electron microscope (TEM). In addition, quantitative real-time polymerase chain reactions (qRT-PCR) and western blot assays were employed to detect the mRNA and protein levels of various antioxidative-related genes in the presence or absence of peroxisome proliferator-activated receptor gamma (PPARγ); inhibitor GW9662. Our results showed that scutellarin could significantly reduce blood lipid levels and enhance antioxidative capacities in both the models. In addition, scutellarin treatment conspicuously activated PPARγ, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear factor erythroid-2-related factor (Nrf2), haem oxygenase-1 (HO-1), glutathione S-transferase (GST), and NAD(P)H quinone dehydrogenase one (NQO1), while it significantly inhibited nuclear factor kappa B (NF-κB), Kelch-like ECH-associated protein 1 (Keap1) at both the mRNA and protein levels. However, after interfered by GW9662, scutellarin effect was significantly decreased. The experimental data demonstrated that scutellarin showed strong hypolipidaemic, antioxidative, and liver protective activity which could be attributed to its regulating activity in the PPARγ/PGC-1α-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Renpeng Ji
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Huijun Sun
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Jinyong Peng
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Xiaodong Ma
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - ChangYuan Wang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yufeng Fu
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Liuchi Bao
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yue Jin
- a College of Pharmacy , Dalian Medical University , Dalian , China
| |
Collapse
|
12
|
Liu Y, Jing YY, Zeng CY, Li CG, Xu LH, Yan L, Bai WJ, Zha QB, Ouyang DY, He XH. Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis. Front Pharmacol 2018; 8:975. [PMID: 29375379 PMCID: PMC5767189 DOI: 10.3389/fphar.2017.00975] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023] Open
Abstract
The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz. and has been reported to exhibit potent anti-inflammatory activities, but the underlying mechanism is only partly understood. In this study, we aimed to investigate whether scutellarin could affect the activation of NLRP3 inflammasome in macrophages. The results showed that scutellarin dose-dependently reduced caspase-1 activation and decreased mature interleukin-1β (IL-1β) release in lipopolysaccharide (LPS)-primed macrophages upon ATP or nigericin stimulation, indicating that scutellarin inhibited NLRP3 inflammasome activation in macrophages. Consistent with this, scutellarin also suppressed pyroptotic cell death in LPS-primed macrophages treated with ATP or nigericin. ATP or nigericin-induced ASC speck formation and its oligomerization were blocked by scutellarin pre-treatment. Intriguingly, scutellarin augmented PKA-specific phosphorylation of NLRP3 in LPS-primed macrophages, which was completely blocked by selective PKA inhibitor H89, suggesting that PKA signaling had been involved in the action of scutellarin to suppress NLRP3 inflammasome activation. Supporting this, the inhibitory effect of scutellarin on NLRP3 inflammasome activation was completely counteracted by H89 or adenyl cyclase inhibitor MDL12330A. As NLRP3-dependent release of IL-1β has a critical role in sepsis, the in vivo activity of scutellarin was assayed in a mouse model of bacterial sepsis, which was established by intraperitoneally injection of a lethal dose of viable Escherichia coli. Oral administration of scutellarin significantly improved the survival of mice with bacterial sepsis. In line with this, scutellarin treatment significantly reduced serum IL-1β levels and attenuated the infiltration of inflammatory cells in the liver of E. coli-infected mice. These data indicated that scutellarin suppressed NLRP3 inflammasome activation in macrophages by augmenting PKA signaling, highlighting its potential therapeutic application for treating NLRP3-related inflammatory diseases.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yan-Yun Jing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Ying Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wen-Jing Bai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Li J, Zhang S, Zhou R, Zhang J, Li ZF. Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis. World J Gastroenterol 2017; 23:3615-3623. [PMID: 28611514 PMCID: PMC5449418 DOI: 10.3748/wjg.v23.i20.3615] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/13/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common diseases. AP is associated with significant morbidity and mortality, but it lacks specific and effective therapies. Traditional Chinese medicine (TCM) is one of the most popular complementary and alternative medicine modalities worldwide for the treatment of AP. The current evidence from basic research and clinical studies has shown that TCM has good therapeutic effects on AP. This review summarizes the widely used formulas, single herbs and monomers that are used to treat AP and the potential underlying mechanisms of TCM. Because of the abundance, low cost, and safety of TCM as well as its ability to target various aspects of the pathogenesis, TCM provides potential clinical benefits and a new avenue with tremendous potential for the future treatment of AP.
Collapse
|
14
|
Zhao S, Sun Y, Li X, Wang J, Yan L, Zhang Z, Wang D, Dai J, He J, Wang S. Scutellarin inhibits RANKL-mediated osteoclastogenesis and titanium particle-induced osteolysis via suppression of NF-κB and MAPK signaling pathway. Int Immunopharmacol 2016; 40:458-465. [PMID: 27728897 DOI: 10.1016/j.intimp.2016.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/24/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
Aseptic prosthetic loosening is a major complication after hip joint replacement. Wear particle-induced periprosthetic osteolysis plays a key role in aseptic prosthetic loosening. Attempting to modulate receptor activator of nuclear factor-κB (RANKL) mediated signaling pathways is a promising strategy to prevent aseptic prosthetic loosening. In the present study, we determined the effect of scutellarin (SCU) on titanium (Ti) particle-induced osteolysis in a mouse calvarial model and RANKL-mediated osteoclastogenesis. We determined that SCU, the major effective constituent of breviscapine isolated from a Chinese herb, has potential effects on preventing Ti particle-caused osteolysis in calvarial model of mouse. In vitro, SCU could suppress RANKL-mediated osteoclastogenesis, the function of osteoclast bone resorption, and the expression levels of osteoclast-specific genes (tartrate-resistant acid phosphatase (TRAP), cathepsin K, c-Fos, NFATc1). Further investigation indicated that SCU could inhibit RANKL-mediated MAPK and NF-κB signaling pathway, including JNK1/2, p38, ERK1/2, and IκBα phosphorylation. Taken together, these results indicate that SCU could inhibit osteoclastogenesis and prevent Ti particle-induced osteolysis by suppressing RANKL-mediated MAPK and NF-κB signaling pathway. These results suggest that SCU is a promising therapeutic agent for preventing wear particle-induced periprosthetic osteolysis.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan 410012, China.
| | - Yu Sun
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Xiaolei Li
- Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan 410012, China; Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan 410012, China; Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China.
| | - Lianqi Yan
- Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan 410012, China; Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China.
| | - Zhen Zhang
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Daxin Wang
- Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan 410012, China; Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China
| | - Jihang Dai
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Jun He
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Shuguang Wang
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu 225001, China; Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
15
|
Inactivation of jack bean urease by scutellarin: Elucidation of inhibitory efficacy, kinetics and mechanism. Fitoterapia 2013; 91:60-67. [DOI: 10.1016/j.fitote.2013.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/11/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022]
|
16
|
Chen X, Shi X, Zhang X, Lei H, Long S, Su H, Pei Z, Huang R. Scutellarin attenuates hypertension-induced expression of brain Toll-like receptor 4/nuclear factor kappa B. Mediators Inflamm 2013; 2013:432623. [PMID: 24223475 PMCID: PMC3800634 DOI: 10.1155/2013/432623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
Hypertension is associated with low-grade inflammation, and Toll-like receptor 4 (TLR4) has been shown to be linked to the development and maintenance of hypertension. This study aimed to investigate the effects of scutellarin (administered by oral gavage daily for 2 weeks) on brain TLR4/nuclear factor kappa B-(NF- κ B-) mediated inflammation and blood pressure in renovascular hypertensive (using the 2-kidney, 2-clip method) rats. Immunofluorescence and western immunoblot analyses revealed that hypertension contributed to the activation of TLR4 and NF- κ B, accompanied by significantly enhanced expression of proinflammatory mediators, such as tumor necrosis factor- α (TNF- α ), interleukin-1 β (IL-1 β ), and interleukin-18 (IL-18). Furthermore, expression of the antiapoptotic protein, myeloid cell leukemia-1 (Mcl1), was decreased, and the pro-apoptotic proteins, Bax and cleavedcaspase-3 p17 were increased in combined cerebral cortical/striatal soluble lysates. Scutellarin significantly lowered blood pressure and attenuated the number of activated microglia and macrophages in brains of hypertensive rats. Furthermore, scutellarin significantly reduced the expression of TLR4, NF- κ B p65, TNF- α , IL-1 β , IL-18, Bax and cleaved-caspase-3 p17, and increased the expression of Mcl1. Overall, these results revealed that scutellarin exhibits anti-inflammatory and anti-apoptotic properties and decreases blood pressure in hypertensive rats. Therefore, scutellarin may be a potential therapeutic agent in hypertension-associated diseases.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaogeng Shi
- Department of Neurology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Huixin Lei
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruxun Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
17
|
Lu K, Han M, Ting HL, Liu Z, Zhang D. Scutellarin from Scutellaria baicalensis suppresses adipogenesis by upregulating PPARα in 3T3-L1 cells. JOURNAL OF NATURAL PRODUCTS 2013; 76:672-678. [PMID: 23521110 DOI: 10.1021/np300889y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Adipocyte dysfunction is a major cause of obesity, which is associated strongly with many disorders including psychological and medical morbidities, metabolic abnormalities, and cardiovascular diseases as well as a series of cancers. This study investigated the antiadipogenic activity of scutellarin (1) in 3T3-L1 preadipocytes as well as the underlying molecular mechanisms. It was observed that 1 reduced adipocyte differentiation of 3T3-L1 cells potently, as evidenced by a decrease in cellular lipid accumulation. At the molecular level, mRNA expression of the master adipogenic transcription factors, PPARγ and C/EBPα, was decreased markedly. However, mRNA levels of C/EBPβ, the upstream regulator of PPARγ and C/EBPα, were not decreased by 1. Moreover, a dose-dependent upregulation of PPARα was observed for 1. Computational modeling indicated that 1 can bind to PPARα, γ, and δ each in a distinct manner, while it can activate PPARα only by forming a hydrogen bond with Y464, thus stabilizing the AF-2 helix and activating PPARα. Therefore, these results suggest that 1, a major component of Scutellaria baicalensis, attenuates fat cell differentiation by upregulating PPARα as well as downregulating the expression of PPARγ and C/EBPα, thus showing therapeutic potential for obesity-related diseases.
Collapse
Affiliation(s)
- Kaihui Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | | | | | |
Collapse
|
18
|
Hanqing C, Xiping Z, Jingmin O, Jun J, Dijiong W. Research on scutellarin parenteral solution's protective effects in rats with severe acute pancreatitis and multiple organ injuries. Inflammation 2012; 35:1005-14. [PMID: 22105928 DOI: 10.1007/s10753-011-9404-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to observe scutellarin parenteral solution's therapeutic effects and mechanisms in rats with severe acute pancreatitis (SAP). We divided SD rats into four groups randomly: (1) sham-operated group, (2) model control group, (3) scutellarin-treated group, and (4) Salvia miltiorrhiza-treated group. All of those rats in the abovementioned groups are randomly subdivided into 6 and 12 h subgroups, respectively, according to the postoperative time. Rats have been mercifully killed at different time after operation, and then detected their serum amylase, contents of ALT, AST, BUN, and Cr and observed the pathologic changes of multiple organs (pancreas, liver, kidneys, and lungs). We found that the survival rates have no marked differences (P < 0.05) between model control group and two treated groups at any time points. AST and BUN serum contents have no marked difference (P > 0.05). ALT serum contents in S. miltiorrhiza-treated group (6 and 12 h) and scutellarin-treated group (12 h) are obviously less than those in model control group (P < 0.05). The serum contents of Cr and amylase in scutellarin-treated group (6 h) are obviously less than those in model control group (P < 0.05). There is a different degree of relief on the pathologic changes of multiple organs in the two treated groups compared with those in model control group, of which pancreas and liver's pathologic severity scores in scutellarin-treated group (6 and 12 h) have reduced (P < 0.01) significantly compared with those in the model control group. However, there are no significant differences between scutellarin-treated group and S. miltiorrhiza-treated group (P > 0.05). We think the scutellarin parenteral solution has a certain protective effect on SAP rats' multiple organ injuries.
Collapse
Affiliation(s)
- Chen Hanqing
- Department of Gastroenterology, Ningbo Yinzhou Second Hospital, No.1 Qian He Road Yinzhou District, Ningbo, 315100 Zhejiang, China
| | | | | | | | | |
Collapse
|
19
|
Pan Z, Zhao W, Zhang X, Wang B, Wang J, Sun X, Liu X, Feng S, Yang B, Lu Y. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/2. Br J Pharmacol 2011; 162:688-700. [PMID: 20942814 DOI: 10.1111/j.1476-5381.2010.01070.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Interstitial fibrosis plays a causal role in the development of heart failure after chronic myocardial infarction (MI), and anti-fibrotic therapy represents a promising strategy to mitigate this pathological process. The purpose of this study was to investigate the effect of long-term administration of scutellarin (Scu) on cardiac interstitial fibrosis of myocardial infarct rats and the underlying mechanisms. EXPERIMENTAL APPROACH Scu was administered to rats that were subjected to coronary artery ligation. Eight weeks later, its effects on cardiac fibrosis were assessed by examining cardiac function and histology. The number and collagen content of cultured cardiac fibroblasts exposed to angiotensin II (Ang II) were determined after the administration of Scu in vitro. Protein expression was detected by Western blot technique, and mRNA levels by quantitative reverse transcription-PCR. KEY RESULTS The echocardiographic and haemodynamic measurements showed that Scu improved the impaired cardiac function of infarct rats and decreased interstitial fibrosis. Scu inhibited the expression of FN1 and TGFβ1, but produced no effects on inflammatory cytokines (TNFα, IL-1β and IL-6) in the 8 week infarct hearts. Scu inhibited the proliferation and collagen production of cardiac fibroblasts (CFs) and the up-regulation of FN1 and TGFβ1 induced by Ang II. The enhanced phosphorylation of p38-MAPK and ERK1/2 in both infarct cardiac tissue and cultured CFs challenged by Ang II were suppressed by Scu. CONCLUSIONS AND IMPLICATIONS Long-term administration of Scu improved the cardiac function of MI rats by inhibiting interstitial fibrosis, and the mechanisms may involve the suppression of pro-fibrotic cytokine TGFβ1 expression and inhibition of p38 MAPK and ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Zhenwei Pan
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou H, Bian D, Jiao X, Wei Z, Zhang H, Xia Y, He Y, Dai Y. Paeoniflorin protects against lipopolysaccharide-induced acute lung injury in mice by alleviating inflammatory cell infiltration and microvascular permeability. Inflamm Res 2011; 60:981-90. [PMID: 21744312 DOI: 10.1007/s00011-011-0359-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The present study aims to explore the effects of paeoniflorin (PF), a monoterpene glycoside isolated from the roots of Paeonia lactiflora Pallas, on acute lung injury (ALI) and the possible mechanisms. MATERIALS AND METHOD ALI was induced in mice by an intratracheal instillation of lipopolysaccharide (LPS, 1 mg/kg), and PF was injected intraperitoneally 30 min prior to LPS administration. After 24 h, lung water content, histology, microvascular permeability and proinflammatory cytokines in the bronchoaveolar lavage fluid were evaluated. RESULTS It was shown that PF (50, 100 mg/kg) could alleviate LPS-induced ALI, evidenced by reduced pulmonary edema, improved histological changes, and attenuated inflammatory cell accumulation in the interstitium and alveolar space as well as microvascular permeability. It also markedly down-regulated the expressions of proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α at both transcription and protein levels. Additionally, PF inhibited the phosphorylations of p38 MAP kinase (p38) and c-Jun NH2-terminal kinase (JNK) but not extracellular signal-regulated kinase (ERK), and prevented the activation of nuclear factor-kappa B (NF-κB) in the lung tissues. CONCLUSION The findings suggest that PF is able to alleviate ALI, and the underlying mechanisms are probably attributed to decreasing the production of proinflammatory cytokines through down-regulation of the activation of p38, JNK and NF-κB pathways in lung tissues.
Collapse
Affiliation(s)
- Haiqiang Zhou
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience 2011; 185:150-60. [DOI: 10.1016/j.neuroscience.2011.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/11/2011] [Accepted: 04/02/2011] [Indexed: 11/21/2022]
|