1
|
Nováková Z, Novák J, Kitanovski Z, Kukučka P, Smutná M, Wietzoreck M, Lammel G, Hilscherová K. Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. ENVIRONMENT INTERNATIONAL 2020; 139:105634. [PMID: 32446144 DOI: 10.1016/j.envint.2020.105634] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Air pollution, which represents a major environmental risk to human health, comprises a complex mixture of compounds where only little is known about its specific toxicities. OBJECTIVES This study examined the specific toxicities associated with ambient air pollutant mixtures with respect to gas/particle partitioning, particulate matter (PM) size, pollutant polarity and bioaccessibility from PM, and evaluated the contribution of PAHs and their oxygenated and nitrated derivatives (OPAHs, NPAHs). METHODS Air samples (gas phase, PM10 and size-segregated PM), were collected at urban (in winter and summer) and background (winter) sites in the Czech Republic. The total and bioaccessible concentrations were addressed using organic solvent extraction and simulated lung fluid extraction, respectively. Organic extracts were also further fractionated according to polarity. Aryl hydrocarbon receptor (AhR)-mediated activity, anti-/estrogenicity, anti-/androgenicity, thyroid receptor (TR)-mediated activity and cytotoxicity for bronchial cells were determined by human cell-based in vitro bioassays. The contribution of studied compounds to observed effects was assessed by both modelling and reconstructing the mixtures. RESULTS Significant effects were detected in the sub-micrometre size fraction of PM (estrogenicity, androgenicity, TR- and AhR-mediated activities) and in the gas phase (TR-mediated activity, antiandrogenicity). Compounds interacting with TR showed high bioaccessibility to simulated lung fluid. Relatively lower bioaccessibility was observed for estrogenicity and AhR-mediated activity. However, the toxicity testing of reconstructed mixtures revealed that the targeted pollutants are not the main contributors, except for urban PM air pollution in winter, where they accounted for 5-88% of several effects detected in the original complex environmental samples. DISCUSSION Studied toxicities were mostly driven by polar compounds largely attributed to the easily inhalable PM1, which is of high relevance for human health risk assessment. Except of parent PAHs in some cases, the targeted compounds contributed to the detected effects mostly to a relatively low extent implying huge data gaps in terms of endocrine disruptive potencies of targeted substances and the significance of other polar compounds present in ambient air.
Collapse
Affiliation(s)
- Zuzana Nováková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zoran Kitanovski
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Marco Wietzoreck
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Gerhard Lammel
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Oziol L, Alliot F, Botton J, Bimbot M, Huteau V, Levi Y, Chevreuil M. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3142-3152. [PMID: 27858277 DOI: 10.1007/s11356-016-8045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.
Collapse
Affiliation(s)
- Lucie Oziol
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Fabrice Alliot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| | - Jérémie Botton
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Team "Early Origin of the Child's Health and Development" (ORCHAD), Paris Descartes University, Paris, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Maya Bimbot
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Viviane Huteau
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Yves Levi
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Marc Chevreuil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
3
|
Érseková A, Hilscherová K, Klánová J, Giesy JP, Novák J. Effect-based assessment of passive air samples from four countries in Eastern Europe. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:3905-16. [PMID: 24532343 DOI: 10.1007/s10661-014-3667-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/28/2014] [Indexed: 05/07/2023]
Abstract
Although passive sampling has been previously used for the monitoring of volatile and semi-volatile contaminants in air, there are limited data on the use of this technique coupled with bioassays based on specific biological responses. Biological responses including those mediated by the aryl hydrocarbon (AhR) receptor as well as (anti-)estrogenicity and (anti-)androgenicity of samples from four Eastern European countries (Lithuania, Slovakia, Romania, and Serbia) were determined. To address the potential differences of specific toxic potencies of pollutant mixtures in ambient air in Eastern Europe, each country was characterized by a single more remote location that served to determine regional background conditions and one location in more urbanized and industrialized locations, which were defined as "impacted" areas. Besides samples from Lithuania, a significant gradient in concentrations of AhR-mediated potency from background and impacted localities was observed. Greatest potencies were measured in samples from impacted locations in Romania and Slovakia. Concentrations of polycyclic aromatic hydrocarbons (PAHs) that were quantified accounted for 3-33 % of the 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents determined by use of the bioassay. No significant estrogenic potency was detected but anti-estrogenic effects were produced by air from two background locations (Lithuania, Slovakia) and three impacted locations (Lithuania, Romania, and Serbia). Anti-androgenic potency was observed in all samples. The greatest anti-estrogenic potency was observed at the background location in Slovakia. Anti-estrogenic and anti-androgenic potencies of studied air samples were probably associated with compounds that are not routinely monitored. The study documents suitability of passive air sampling for the assessment of specific toxic potencies of ambient air pollutants.
Collapse
Affiliation(s)
- Anita Érseková
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
4
|
Novák J, Hilscherová K, Landlová L, Čupr P, Kohút L, Giesy JP, Klánová J. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part II. In vitro biological potencies. ENVIRONMENT INTERNATIONAL 2014; 63:64-70. [PMID: 24263139 DOI: 10.1016/j.envint.2013.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 05/20/2023]
Abstract
Exposure to particulate matter (PM) in ambient air has been shown to lead to adverse health consequences. Six size fractions of PM with aerodynamic diameter smaller than 10μm (PM10) and gas phase were collected at six localities with different major pollution sources. Extracts of samples were assessed for AhR-mediated toxicity, (anti-)estrogenicity, (anti-)androgenicity and genotoxicity. The biological responses were interpreted relative to chemical characterization. Historically, for regulatory purposes, evaluation of air pollution was based mainly on assessment of the sum of PM10. In the case of AhR-mediated activity, PM1 was responsible for more than 75% of the activity of the particulate fraction from all localities. The assessed effects were correlated with concentrations of polycyclic aromatic hydrocarbons (PAH), organic carbon content and specific surface area of the PM. A significant proportion of biologically active chemicals seems to be present in the gas phase of air. The results suggest that an average daily exposure based just on the concentrations of contaminants contained in PM10, as regulated in EU legislation so far, is not a sufficient indicator of contaminants in air particulates and adoption of standards more similar to other countries and inclusion of other parameters besides mass should be considered.
Collapse
Affiliation(s)
- Jiří Novák
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Klára Hilscherová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Linda Landlová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lukáš Kohút
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - John P Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, E. Lansing, MI 48823, United States; Biology and Chemistry Department, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jana Klánová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Mattingly KA, Klinge CM. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Arch Toxicol 2011; 86:633-42. [PMID: 22105178 DOI: 10.1007/s00204-011-0778-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 01/05/2023]
Abstract
Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17β-estradiol (E(2)), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E(2), 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E(2) increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects.
Collapse
Affiliation(s)
- Kathleen A Mattingly
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
6
|
Sources and Distributions of Polycyclic Aromatic Hydrocarbons and Toxicity of Polluted Atmosphere Aerosols. URBAN AIRBORNE PARTICULATE MATTER 2010. [DOI: 10.1007/978-3-642-12278-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Novák J, Jálová V, Giesy JP, Hilscherová K. Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro. ENVIRONMENT INTERNATIONAL 2009; 35:43-9. [PMID: 18678411 DOI: 10.1016/j.envint.2008.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 05/20/2023]
Abstract
Traditionally, contamination of air has been evaluated primarily by chemical analyses of indicator contaminants and these studies have focused mainly on compounds associated with particulates. Some reports have shown that air contaminants can produce specific biological effects such as toxicity mediated by the aryl hydrocarbon receptor (AhR) or modulation of the endocrine system. This study assessed the dioxin-like toxicity, anti-/estrogenicity, anti-/androgenicity and anti-/retinoic activity of both the particulate and gas phase fractions of air in two regions with different types of pollution sources and a background locality situated in an agricultural area of Central Europe. The first region (A) is known to be significantly contaminated by organochlorine pesticides and chemical industry. The other region (B) has been polluted by historical releases of PCBs, but the major current sources of contamination are probably combustion sources from local traffic and heating. Samples of both particle and gas fractions produced dioxin-like (AhR-mediated) activity, anti-estrogenic and antiandrogenic effects, but none had any effect on retinoid signaling. AhR-mediated activities were observed in all samples and the TEQ values were comparable in both fractions in region A, but significantly greater in the particulate fraction in region B. The greater AhR-mediated activity corresponded to a greater coincident antiestrogenicity of both phases in region B. Our study is the first report of antiestrogenicity and antiandrogenicity in ambient air. Anti-androgenicity was observed in the gas phase of all regions, while in the particulate phase only in one region due to the specific type of pollution in that area. Even though based on concentrations of individual compounds, except for the OCPs, the level of contamination of the two regions was similar, there were strong differences in responses in the bioassays between the two regions. Moreover, AhR-mediated activity and antiestrogenic potencies were greater in region B, where the pollution level according to the chemical analysis was similar or less than in the other region, which indicates the presence of other atmospheric pollutants with specific effects. The results document the advantage and utility of the simultaneous use of bioassays and chemical analysis in risk assessment of complex environmental samples.
Collapse
Affiliation(s)
- Jirí Novák
- Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
8
|
Noguchi K, Toriba A, Chung SW, Kizu R, Hayakawa K. Identification of estrogenic/anti-estrogenic compounds in diesel exhaust particulate extract. Biomed Chromatogr 2008; 21:1135-42. [PMID: 17583877 DOI: 10.1002/bmc.861] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diesel exhaust particulate extract (DEPE) was obtained from diesel exhaust particulates with Soxhlet extraction using dichloromethane. After separating DEPE into 11 fractions by liquid-liquid extraction, the neutral fraction (N) showed anti-estrogenic activity and the weak acid (phenol) fraction (WA(P)) showed estrogenic and anti-estrogenic activities by a yeast two-hybrid assay system expressing human estrogen receptor alpha. Both fractions were thoroughly fractionated by silica gel column chromatography and reversed-phase HPLC. In the WA(P) fraction, 3-methyl-4-nitrophenol and 2,6-dimethyl-4-nitrophenol were identified by LC-MS/MS as estrogenic compounds. This is the first study to identify 2,6-dimethyl-4-nitrophenol in DEPE and the first study to show that it is an estrogenic compound. In the N fraction, 1-hydroxypyrene was also identified by LC-MS/MS as an anti-estrogenic compound.
Collapse
Affiliation(s)
- Keiko Noguchi
- Graduate School of Natural Science and Technology/Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | |
Collapse
|