1
|
Yesuraj J, Senthamaraikannan TG, Lim DH, Kim K. Construction of Ternary Zn 0.5Cu 0.5Co 2O 4 Spinel Structure on Nickel Foam: A Comprehensive Theoretical and Experimental Study from Single to Ternary Metal Oxides for High-Energy-Density Asymmetric Supercapacitor Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407608. [PMID: 39498675 DOI: 10.1002/smll.202407608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Developing nanostructured multi-transition metal-based spinel architectures represents a strategic approach for boosting the energy density of supercapacitors while preserving high power density. Here, the influence of incorporating Zn and Cu into Co3O4 spinel systems on supercapacitor performance is investigated by synthesizing single (ZnO, CuO, Co3O4), binary (ZnCo2O4, CuCo2O4), and ternary (Zn0.5Cu0.5Co2O4) oxides on nickel foam substrates. Theoretical and experimental analyses highlight that the flower-like structures of Zn0.5Cu0.5Co2O4, comprising nanowires and nanoribbons, effectively reduced transport barriers and enhanced ion adsorption, thereby improving electron/ion reaction kinetics. Oxygen vacancies induced defect states in Zn0.5Cu0.5Co2O4, shifting the d- and p-band center values closer to the Fermi level and enhancing electrochemical performance. The Zn0.5Cu0.5Co2O4 exhibits a specific capacity of 271 mA h g-1 (1776 F g-1) at 1 A g-1 with 97% capacity retention after 5 000 charge/discharge cycles. In a Zn0.5Cu0.5Co2O4//activated carbon configuration, the device demonstrates superior energy and power densities of 122.2 Wh kg-1 and 800 W kg-1, respectively, maintaining 91% capacitance after 10 000 cycles at 30 A g-1 with high coulombic efficiency. This study presents an effective strategy to enhance ion/charge transfer and adsorption in multi-transition metal spinel architectures, advancing the development of supercapacitor electrodes.
Collapse
Affiliation(s)
- Johnbosco Yesuraj
- Department of Mechanical Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | | | - Dong-Hee Lim
- Department of Environmental Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kibum Kim
- Department of Mechanical Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| |
Collapse
|
2
|
Luo Z, Rong P, Yang Z, Zhang J, Zou X, Yu Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024; 29:3373. [PMID: 39064951 PMCID: PMC11279694 DOI: 10.3390/molecules29143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Due to a wide band gap and large exciton binding energy, zinc oxide (ZnO) is currently receiving much attention in various areas, and can be prepared in various forms including nanorods, nanowires, nanoflowers, and so on. The reliability of ZnO produced by a single dopant is unstable, which in turn promotes the development of co-doping techniques. Co-doping is a very promising technique to effectively modulate the optical, electrical, magnetic, and photocatalytic properties of ZnO, as well as the ability to form various structures. In this paper, the important advances in co-doped ZnO nanomaterials are summarized, as well as the preparation of co-doped ZnO nanomaterials by using different methods, including hydrothermal, solvothermal, sol-gel, and acoustic chemistry. In addition, the wide range of applications of co-doped ZnO nanomaterials in photocatalysis, solar cells, gas sensors, and biomedicine are discussed. Finally, the challenges and future prospects in the field of co-doped ZnO nanomaterials are also elucidated.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Yu
- Shaanxi Laboratory of Catalysis, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (P.R.); (Z.Y.); (J.Z.); (X.Z.)
| |
Collapse
|
3
|
Jabbar KQ, Barzinjy AA. Biosynthesis and antibacterial activity of ZnO nanoparticles using Buchanania obovatafruit extract and the eutectic-based ionic liquid. NANOTECHNOLOGY 2024; 35:265601. [PMID: 38527365 DOI: 10.1088/1361-6528/ad375e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The fruit extract ofBuchanania obovataand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs. XRD results confirmed the wurtzite structure of the ZnO NPs, exhibiting hexagonal phases in the diffraction patterns. The SEM and TEM images display that the biosynthesized ZnO NPs exhibit crystalline and hexagonal shape, with an average size of 40 nm for the fruit-based and 25 nm for the eutectic-based ionic liquid. The Brunauer-Emmett-Teller (BET) surface area analysis, revealed a value ∼13 m2g-1for ZnO NPs synthesized using the fruit extract and ∼29 m2g-1for those synthesized using the eutectic-based ionic liquid. The antibacterial activity of the biosynthesized ZnO NPs was assessed against clinically isolated Gram-negative (E. coli) and Gram-positive (S. aureus) bacterial strains using the inhibition zone method. The ZnO NPs produced from the eutectic-based ionic liquids confirmed superior antibacterial activity against bothS. aureusandE. colicompared to those mediated by the utilized fruit extract. At a concentration of 1000, the eutectic-based ionic liquid mediated ZnO NPs displayed a maximum inhibition zone of 16 mm againstS. aureus, while againstE. coli, a maximum inhibition zone of 15 mm was observed using the fruit extract mediated ZnO NPs. The results of this study showed that the biosynthesized ZnO NPs can be utilized as an efficient substitute to the frequently used chemical drugs and covering drug resistance matters resulted from continual usage of chemical drugs by users.
Collapse
Affiliation(s)
- Kadhim Qasim Jabbar
- Department of Physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Azeez Abdullah Barzinjy
- Scientific Research Center, Soran University, Kurdistan Region, Iraq
- Physics Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Sekar K, Doineau R, Mayarambakam S, Schmaltz B, Poulin-Vittrant G. Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review. Heliyon 2024; 10:e24706. [PMID: 38322830 PMCID: PMC10844130 DOI: 10.1016/j.heliyon.2024.e24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Due to their excellent properties, Zinc oxide nanowires (ZnO NW) have been attractive and considered as a promising electron-transporting layer (ETL) in flexible Perovskite Solar Cells (FPSCs). Since the first report on ZnO NWs-based FPSCs giving 2.6 % power conversion efficiency (in 2013), great improvements have been made, allowing to reach up to∼15 % nowadays. However, some issues still need to be addressed, especially on flexible substrates, to achieve uniform and well-aligned ZnO NWs via low-cost chemical solution techniques. Several parameters, such as the growing method (time, temperature, precursors concentration), addition of seed layer (thickness, roughness, annealing temperature) and substrate (rigid or flexible), play a crucial role in ZnO NWs properties (i.e., length, diameter, density and aspect ratio). In this review, these parameters allowing to control the properties of ZnO NWs, like the growth techniques, utilization of seed layers and the growing method (time or precursors concentration) have been summarized. Then, a particular focus on the ZnO NW's role in FPSCs as well as the use of these results on the development of ZnO NWs-based FPSCs have been highlighted.
Collapse
Affiliation(s)
- Karthick Sekar
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
| | - Raphaël Doineau
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
| | | | - Bruno Schmaltz
- PCM2E EA 6299, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
5
|
Yigit O. Thermal, chemical, and structural investigation of the usability of Cs/nHAp-ZnO/Glutaraldehyde polymer matrix composite in potential biomaterial applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
6
|
Zahoor F, Hussin FA, Isyaku UB, Gupta S, Khanday FA, Chattopadhyay A, Abbas H. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing. DISCOVER NANO 2023; 18:36. [PMID: 37382679 PMCID: PMC10409712 DOI: 10.1186/s11671-023-03775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/17/2023] [Indexed: 06/30/2023]
Abstract
The modern-day computing technologies are continuously undergoing a rapid changing landscape; thus, the demands of new memory types are growing that will be fast, energy efficient and durable. The limited scaling capabilities of the conventional memory technologies are pushing the limits of data-intense applications beyond the scope of silicon-based complementary metal oxide semiconductors (CMOS). Resistive random access memory (RRAM) is one of the most suitable emerging memory technologies candidates that have demonstrated potential to replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. RRAM has grown in prominence in the recent years due to its simple structure, long retention, high operating speed, ultra-low-power operation capabilities, ability to scale to lower dimensions without affecting the device performance and the possibility of three-dimensional integration for high-density applications. Over the past few years, research has shown RRAM as one of the most suitable candidates for designing efficient, intelligent and secure computing system in the post-CMOS era. In this manuscript, the journey and the device engineering of RRAM with a special focus on the resistive switching mechanism are detailed. This review also focuses on the RRAM based on two-dimensional (2D) materials, as 2D materials offer unique electrical, chemical, mechanical and physical properties owing to their ultrathin, flexible and multilayer structure. Finally, the applications of RRAM in the field of neuromorphic computing are presented.
Collapse
Affiliation(s)
- Furqan Zahoor
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Fawnizu Azmadi Hussin
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
| | - Usman Bature Isyaku
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
| | - Shagun Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, India
| | - Farooq Ahmad Khanday
- Department of Electronics & Instrumentation Technology, University of Kashmir, Srinagar, India
| | - Anupam Chattopadhyay
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Haider Abbas
- Division of Material Science and Engineering, Hanyang University, Seoul, South Korea
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Carnide G, Champouret Y, Valappil D, Vahlas C, Mingotaud A, Clergereaux R, Kahn ML. Secured Nanosynthesis-Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204929. [PMID: 36529954 PMCID: PMC9929256 DOI: 10.1002/advs.202204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction-injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low-pressure plasma, DLRI produces nanocomposite with homogeneously well-dispersed small nanoparticles that in the particular case of ZnO-DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet-gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry.
Collapse
Affiliation(s)
- Guillaume Carnide
- LCCCNRS UPR8241Université de Toulouse205 route de NarbonneToulouse31077France
- LAPLACECNRS UMR5213Université de Toulouse118 route de NarbonneToulouse31062France
| | - Yohan Champouret
- LCCCNRS UPR8241Université de Toulouse205 route de NarbonneToulouse31077France
- LAPLACECNRS UMR5213Université de Toulouse118 route de NarbonneToulouse31062France
| | - Divyendu Valappil
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623, Université Toulouse III – Paul Sabatier, 118 route de NarbonneToulouse31062France
| | - Constantin Vahlas
- CIRIMATCNRS UMR5085Université de Toulouse4 allée Émile Monso, BP‐44362, Toulouse Cedex 4Toulouse31030France
| | - Anne‐Françoise Mingotaud
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623, Université Toulouse III – Paul Sabatier, 118 route de NarbonneToulouse31062France
| | - Richard Clergereaux
- LAPLACECNRS UMR5213Université de Toulouse118 route de NarbonneToulouse31062France
| | - Myrtil L. Kahn
- LCCCNRS UPR8241Université de Toulouse205 route de NarbonneToulouse31077France
| |
Collapse
|
8
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
9
|
Khir H, Pandey A, Saidur R, Shakeel Ahmad M, Abd Rahim N, Dewika M, Samykano M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS 2022; 53:102745. [DOI: 10.1016/j.seta.2022.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Lucilha AC, Camargo LP, Liberatti VR, Barbosa ECM, Dall’Antonia LH. Zn1-xCoxO vs Ag-ZnO photoanodes design via combustion: Characterization and application in photoelectrocatalysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Visible light photodegradation performance of zinc oxide/carbon nanotubes/reduced graphene oxide nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For hybrid electric vehicles, supercapacitors are an attractive technology which, when used in conjunction with the batteries as a hybrid system, could solve the shortcomings of the battery. Supercapacitors would allow hybrid electric vehicles to achieve high efficiency and better power control. Supercapacitors possess very good power density. Besides this, their charge-discharge cycling stability and comparatively reasonable cost make them an incredible energy-storing device. The manufacturing strategy and the major parts like electrodes, current collector, binder, separator, and electrolyte define the performance of a supercapacitor. Among these, electrode materials play an important role when it comes to the performance of supercapacitors. They resolve the charge storage in the device and thus decide the capacitance. Porous carbon, conductive polymers, metal hydroxide, and metal oxides, which are some of the usual materials used for the electrodes in the supercapacitors, have some limits when it comes to energy density and stability. Major research in supercapacitors has focused on the design of stable, highly efficient electrodes with low cost. In this review, the most recent electrode materials used in supercapacitors are discussed. The challenges, current progress, and future development of supercapacitors are discussed as well. This study clearly shows that the performance of supercapacitors has increased considerably over the years and this has made them a promising alternative in the energy sector.
Collapse
|
13
|
Lee S, Nam K, Kim JH, Hong GY, Kim SD. Effects of Seed-Layer N 2O Plasma Treatment on ZnO Nanorod Based Ultraviolet Photodetectors: Experimental Investigation with Two Different Device Structures. NANOMATERIALS 2021; 11:nano11082011. [PMID: 34443842 PMCID: PMC8398532 DOI: 10.3390/nano11082011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The crystalline quality of ZnO NR (nanorod) as a sensing material for visible blind ultraviolet PDs (photodetectors) critically depends on the SL (seed layer) material of properties, which is a key to high-quality nanocrystallite growth, more so than the synthesis method. In this study, we fabricated two different device structures of a gateless AlGaN/GaN HEMT (high electron mobility transistor) and a photoconductive PD structure with an IDE (interdigitated electrode) pattern implemented on a PET (polyethylene terephthalate) flexible substrate, and investigated the impact on device performance through the SL N2O plasma treatment. In case of HEMT-based PD, the highest current on-off ratio (~7) and spectral responsivity R (~1.5 × 105 A/W) were obtained from the treatment for 6 min, whereas the IDE pattern-based PD showed the best performance (on-off ratio = ~44, R = ~69 A/W) from the treatment for 3 min and above, during which a significant etch damage on PET substrates was produced. This improvement in device performance was due to the enhancement in NR crystalline quality as revealed by our X-ray diffraction, photoluminescence, and microanalysis.
Collapse
|
14
|
Qin L, Mawignon FJ, Hussain M, Ange NK, Lu S, Hafezi M, Dong G. Economic Friendly ZnO-Based UV Sensors Using Hydrothermal Growth: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4083. [PMID: 34361276 PMCID: PMC8347016 DOI: 10.3390/ma14154083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
Ultraviolet (UV) sensors offer significant advantages in human health protection and environmental pollution monitoring. Amongst various materials for UV sensors, the zinc oxide (ZnO) nanostructure is considered as one of the most promising candidates due to its incredible electrical, optical, biomedical, energetic and preparing properties. Compared to other fabricating techniques, hydrothermal synthesis has been proven to show special advantages such as economic cost, low-temperature process and excellent and high-yield production. Here, we summarize the latest progress in research about the hydrothermal synthesis of ZnO nanostructures for UV sensing. We particularly focus on the selective hydrothermal processes and reveal the effect of key factors/parameters on ZnO architectures, such as the laser power source, temperature, growth time, precursor, seeding solution and bases. Furthermore, ZnO hydrothermal nanostructures for UV applications as well as their mechanisms are also summarized. This review will therefore enlighten future ideas of low-temperature and low-cost ZnO-based UV sensors.
Collapse
Affiliation(s)
- Liguo Qin
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (F.J.M.); (M.H.); (N.K.A.); (S.L.); (M.H.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Dhandapani P, AlSalhi MS, Karthick R, Chen F, Devanesan S, Kim W, Rajasekar A, Ahmed M, Aljaafreh MJ, Muhammad A. Biological mediated synthesis of RGO-ZnO composites with enhanced photocatalytic and antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124661. [PMID: 33288337 DOI: 10.1016/j.jhazmat.2020.124661] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 05/22/2023]
Abstract
In this study, we reported the biological approach to synthesis of ZnO nanorod (NR) on the reduced graphene oxide (RGO) for photocatalytic, antibacterial activity and hydrogen production under sunlight. Bacillus subtilis played a vital role in the production of biogenic ammonia from synthetic urine and utilized for the synthesis of ZnONR on the RGO sheet. The morphological study revealed that RGO sheets displayed a tremendous role in anchoring ZnONR. XRD patterns showed the ZnO crystal phase on the RGO sheets. XPS and Raman spectra confirmed that the bio-hydrothermal method as suitable for GO converted into RGO. The transient photocurrent and I/V measurement are exhibited as an increment on the RGO-ZnONR compared to ZnONR. The RGO-ZnONR composites showed excellent performance with decolorization of MB and textile dyes and efficient control of the E. coli and S. aureus. RGO-ZnONR exhibited remarkable noted as a higher photocatalytic hydrogen evolution rate (940 μmol/h/gcat) than the ZnONR (369.5 μmol/h/g cat). As a result of photocatalytic performance to correlate with sunlight intensity was extensively studied. RGO plays an essential role in interface electron transfer from sunlight to ZnONR for enhancing •OH radical formation to cleavage of dye color substance and eradicated bacterial cells.
Collapse
Affiliation(s)
- Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ramalingam Karthick
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006. PR China
| | - Fuming Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006. PR China
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India.
| | - Mukhtar Ahmed
- Department of Zoology, Central Laboratory, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mamduh J Aljaafreh
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Atif Muhammad
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Mallakpour S, Okhovat M. Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Int J Biol Macromol 2021; 175:330-340. [PMID: 33556403 DOI: 10.1016/j.ijbiomac.2021.01.210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
Biocompatible nanocomposites (NCs) with antibacterial activity containing organic matrix and inorganic nanoparticles (NPs) are vital for providing a suitable substrate for hydroxyapatite (HA) formation. Therefore, we fabricated a series of biocompatible NCs of chitosan (CS) and tragacanth gum (TG) and different percentages of ZnO NPs and ZnO@Ag NPs as fillers into the CS-TG blend. The characteristics of the NCs were distinguished with the field-emission scanning electron microscope (FE-SEM), X-Ray diffraction, Fourier transform infrared, and transmission electron microscopy (TEM). The CS-TG/ZnO@Ag(1:0.500) NC 8 wt% showed a rough surface according to FE-SEM. Moreover, the TEM image of CS-TG/ZnO NC 8 wt% depicted a uniform dispersion of NPs into the matrix. The biocompatibility of these NCs was evaluated by the formation of HA on their surfaces. The outcomes depicted the deposition of HA on the surface of all NCs. Also, CS-TG/ZnO@Ag(1:0.500) NC 8 wt% exhibited the most HA deposition on its surface. The antibacterial activity of these NCs toward Staphylococcus aureus and Escherichia coli bacteria was evaluated. The CS-TG/ZnO@Ag(1:0.500) NC 8 wt% exhibited a higher inhibition zone diameter in comparison to the ZnO@Ag (1:0.500) NPs for the S. aureus bacteria. Generally, antibacterial activity of the NCs containing ZnO@Ag NPs are more than NCs containing ZnO NPs.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Milad Okhovat
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
17
|
Ghos B, Farhad SFU, Patwary MAM, Majumder S, Hossain MA, Tanvir NI, Rahman MA, Tanaka T, Guo Q. Influence of the Substrate, Process Conditions, and Postannealing Temperature on the Properties of ZnO Thin Films Grown by the Successive Ionic Layer Adsorption and Reaction Method. ACS OMEGA 2021; 6:2665-2674. [PMID: 33553884 PMCID: PMC7860103 DOI: 10.1021/acsomega.0c04837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 06/01/2023]
Abstract
Here, we report the effect of the substrate, sonication process, and postannealing on the structural, morphological, and optical properties of ZnO thin films grown in the presence of isopropyl alcohol (IPA) at temperature 30-65 °C by the successive ionic layer adsorption and reaction (SILAR) method on both soda lime glass (SLG) and Cu foil. The X-ray diffraction (XRD) patterns confirmed the preferential growth thin films along (002) and (101) planes of the wurtzite ZnO structure when deposited on SLG and Cu foil substrates, respectively. Both XRD and Raman spectra confirmed the ZnO and Cu-oxide phases of the deposited films. The scanning electron microscopy image of the deposited films shows compact and uniformly distributed grains for samples grown without sonication while using IPA at temperatures 50 and 65 °C. The postannealing treatment improves the crystallinity of the films, further evident by XRD and transmission and reflection results. The estimated optical band gaps are in the range of 3.37-3.48 eV for the as-grown samples. Our experimental results revealed that high-quality ZnO thin films could be grown without sonication using an IPA dispersant at 50 °C, which is much lower than the reported results using the SILAR method. This study suggests that in the presence of IPA, the SLG substrate results in better c-axis-oriented ZnO thin films than that of deionized water, ethylene glycol, and propylene glycol at the optimum temperature of 50 °C. Air annealing of the samples grown on Cu foils induced the formation of Cu x O/ZnO junctions, which is evident from the characteristic I-V curve including the structural and optical data.
Collapse
Affiliation(s)
- Bijoy
Chandra Ghos
- Energy
Conversion and Storage Research Section, Industrial Physics Division
(IPD), BCSIR Laboratories, Bangladesh Council
of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
- Department
of Chemistry, Comilla University, Cumilla 3506, Bangladesh
| | - Syed Farid Uddin Farhad
- Energy
Conversion and Storage Research Section, Industrial Physics Division
(IPD), BCSIR Laboratories, Bangladesh Council
of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Abdul Majed Patwary
- Department
of Chemistry, Comilla University, Cumilla 3506, Bangladesh
- Department
of Electrical and Electronic Engineering, Saga University, Honjo, Saga 840-8502, Japan
| | - Shanta Majumder
- Energy
Conversion and Storage Research Section, Industrial Physics Division
(IPD), BCSIR Laboratories, Bangladesh Council
of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
- Department
of Chemistry, Comilla University, Cumilla 3506, Bangladesh
| | | | - Nazmul Islam Tanvir
- Energy
Conversion and Storage Research Section, Industrial Physics Division
(IPD), BCSIR Laboratories, Bangladesh Council
of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | | | - Tooru Tanaka
- Department
of Electrical and Electronic Engineering, Saga University, Honjo, Saga 840-8502, Japan
| | - Qixin Guo
- Department
of Electrical and Electronic Engineering, Saga University, Honjo, Saga 840-8502, Japan
| |
Collapse
|
18
|
Zhao Y, Zhang L, Liu J, Adair K, Zhao F, Sun Y, Wu T, Bi X, Amine K, Lu J, Sun X. Atomic/molecular layer deposition for energy storage and conversion. Chem Soc Rev 2021; 50:3889-3956. [PMID: 33523063 DOI: 10.1039/d0cs00156b] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energy storage and conversion systems, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting, have played vital roles in the reduction of fossil fuel usage, addressing environmental issues and the development of electric vehicles. The fabrication and surface/interface engineering of electrode materials with refined structures are indispensable for achieving optimal performances for the different energy-related devices. Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques, the gas-phase thin film deposition processes with self-limiting and saturated surface reactions, have emerged as powerful techniques for surface and interface engineering in energy-related devices due to their exceptional capability of precise thickness control, excellent uniformity and conformity, tunable composition and relatively low deposition temperature. In the past few decades, ALD and MLD have been intensively studied for energy storage and conversion applications with remarkable progress. In this review, we give a comprehensive summary of the development and achievements of ALD and MLD and their applications for energy storage and conversion, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting. Moreover, the fundamental understanding of the mechanisms involved in different devices will be deeply reviewed. Furthermore, the large-scale potential of ALD and MLD techniques is discussed and predicted. Finally, we will provide insightful perspectives on future directions for new material design by ALD and MLD and untapped opportunities in energy storage and conversion.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Mechanical & Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Heo DY, Do HH, Ahn SH, Kim SY. Metal-Organic Framework Materials for Perovskite Solar Cells. Polymers (Basel) 2020; 12:E2061. [PMID: 32927727 PMCID: PMC7569814 DOI: 10.3390/polym12092061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MOF-derived materials have been used for several applications, such as hydrogen storage and separation, catalysis, and drug delivery, owing to them having a significantly large surface area and open pore structure. In recent years, MOFs have also been applied to thin-film solar cells, and attractive results have been obtained. In perovskite solar cells (PSCs), the MOF materials are used in the form of an additive for electron and hole transport layers, interlayer, and hybrid perovskite/MOF. MOFs have the potential to be used as a material for obtaining PSCs with high efficiency and stability. In this study, we briefly explain the synthesis of MOFs and the performance of organic and dye-sensitized solar cells with MOFs. Furthermore, we provide a detailed overview on the performance of the most recently reported PSCs using MOFs.
Collapse
Affiliation(s)
- Do Yeon Heo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Ha Huu Do
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
20
|
Wojnarowicz J, Chudoba T, Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1086. [PMID: 32486522 PMCID: PMC7353225 DOI: 10.3390/nano10061086] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Collapse
Affiliation(s)
- Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (T.C.); (W.L.)
| | | | | |
Collapse
|
21
|
Abstract
Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations and printing techniques for ZnO-based nanocrystalline inks, as well as of the major applications which have been demonstrated. The most relevant ink-processing conditions so far explored will be correlated with the resulting film morphologies, showing the possibility to tune the ZnO ink composition to achieve facile, versatile, and scalable fabrication of devices of different natures.
Collapse
|
22
|
Photoluminescence of ZnO Nanowires: A Review. NANOMATERIALS 2020; 10:nano10050857. [PMID: 32365564 PMCID: PMC7712396 DOI: 10.3390/nano10050857] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/09/2023]
Abstract
One-dimensional ZnO nanostructures (nanowires/nanorods) are attractive materials for applications such as gas sensors, biosensors, solar cells, and photocatalysts. This is due to the relatively easy production process of these kinds of nanostructures with excellent charge carrier transport properties and high crystalline quality. In this work, we review the photoluminescence (PL) properties of single and collective ZnO nanowires and nanorods. As different growth techniques were obtained for the presented samples, a brief review of two popular growth methods, vapor-liquid-solid (VLS) and hydrothermal, is shown. Then, a discussion of the emission process and characteristics of the near-band edge excitonic emission (NBE) and deep-level emission (DLE) bands is presented. Their respective contribution to the total emission of the nanostructure is discussed using the spatial information distribution obtained by scanning transmission electron microscopy−cathodoluminescence (STEM-CL) measurements. Also, the influence of surface effects on the photoluminescence of ZnO nanowires, as well as the temperature dependence, is briefly discussed for both ultraviolet and visible emissions. Finally, we present a discussion of the size reduction effects of the two main photoluminescent bands of ZnO. For a wide emission (near ultra-violet and visible), which has sometimes been attributed to different origins, we present a summary of the different native point defects or trap centers in ZnO as a cause for the different deep-level emission bands.
Collapse
|
23
|
Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. MATERIALS 2020; 13:ma13071737. [PMID: 32276380 PMCID: PMC7178700 DOI: 10.3390/ma13071737] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Sol-gel technique is used to synthesize as-grown zinc oxide (ZnO) and iron-nickel (Fe-Ni) co-doped ZnO thin films deposited on glass substrates using dip coating technique. The structural properties and crystal imperfections of as-prepared thin films are investigated. We performed the structural analysis of films using X-ray diffraction (XRD). The XRD analysis reveal that the as-prepared films exhibit wurtzite structure. Furthermore, XRD-line profile analysis is performed to study the correlation between structural properties and imperfections of the nanocomposite thin films. The crystallite size and microstrains parameters are predicted using the Williamson–Hall method. We found that the crystallites size increases as the co-doped (Fe-Ni) concentration is increased. However, microstrains of the nanocomposite films decreases as (Fe-Ni) concentration is increased. The optical properties of the (Fe-Ni) co-doped nanocomposite films are investigated by performing UV-Vis (250 nm–700 nm) spectrophotometer measurements. We found that as the (Fe-Ni) concentration level is steadily increased, transmittance of the undoped ZnO thin films is decreased. Remarkably, refractive index of undoped ZnO thin films is found to exhibit values extending from 1.55 to1.88 that would increase as (Fe-Ni) concentration is increased.
Collapse
|
24
|
Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. CRYSTALS 2020. [DOI: 10.3390/cryst10020132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Zinc oxide (ZnO) is a versatile and inexpensive semiconductor with a wide direct band gap that has applicability in several scientific and technological fields. In this work, we report the synthesis of ZnO thin films via two simple and low-cost synthesis routes, i.e., the molecular precursor method (MPM) and the sol–gel method, which were deposited successfully on microscope glass substrates. The films were characterized for their structural and optical properties. X-ray diffraction (XRD) characterization showed that the ZnO films were highly c-axis (0 0 2) oriented, which is of interest for piezoelectric applications. The surface roughness derived from atomic force microscopy (AFM) analysis indicates that films prepared via MPM were relatively rough with an average roughness (Ra) of 2.73 nm compared to those prepared via the sol–gel method (Ra = 1.55 nm). Thin films prepared via MPM were more transparent than those prepared via the sol–gel method. The optical band gap of ZnO thin films obtained via the sol–gel method was 3.25 eV, which falls within the range found by other authors. However, there was a broadening of the optical band gap (3.75 eV) in thin films derived from MPM.
Collapse
|
25
|
Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E14. [PMID: 31861406 PMCID: PMC6981647 DOI: 10.3390/ma13010014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
This present study proposed a successful one pot synthesis of zinc oxide nanoparticles (ZnO NPs) and their optimisation for photocatalytic applications. Zinc chloride (ZnCl2) and sodium hydroxide (NaOH) were selected as chemical reagents for the proposed study. The design of this experiment was based on the reagents' amounts and the ultrasonic irradiations' time. The results regarding scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of ZnO NPs with pure hexagonal wurtzite crystalline structure in all synthesised samples. Photocatalytic activity of the developed samples was evaluated against methylene blue dye solution. The rapid removal of methylene blue dye indicated the higher photocatalytic activity of the developed samples than untreated samples. Moreover, central composite design was utilised for statistical analysis regarding the obtained results. A mathematical model for the optimisation of input conditions was designed to predict the results at any given point. The role of crystallisation on the photocatalytic performance of developed samples was discussed in detail in this novel study.
Collapse
Affiliation(s)
- Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic;
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic; (J.M.); (M.A.)
| | - Michal Petru
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Jiří Militký
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic; (J.M.); (M.A.)
| | - Musaddaq Azeem
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic; (J.M.); (M.A.)
| | - Muhammad Azeem Ashraf
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
26
|
Ajmal HMS, Khan F, Huda NU, Lee S, Nam K, Kim HY, Eom TH, Kim SD. High-Performance Flexible Ultraviolet Photodetectors with Ni/Cu-Codoped ZnO Nanorods Grown on PET Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1067. [PMID: 31349615 PMCID: PMC6722620 DOI: 10.3390/nano9081067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022]
Abstract
As a developing technology for flexible electronic device fabrication, ultra-violet (UV) photodetectors (PDs) based on a ZnO nanostructure are an effective approach for large-area integration of sensors on nonconventional substrates, such as plastic or paper. However, photoconductive ZnO nanorods grown on flexible substrates have slow responses or recovery as well as low spectral responsivity R because of the native defects and inferior crystallinity of hydrothermally grown ZnO nanorods at low temperatures. In this study, ZnO nanorod crystallites are doped with Cu or Ni/Cu when grown on polyethylene terephthalate (PET) substrates in an attempt to improve the performance of flexible PDs. The doping with Ni/Cu or Cu not only improves the crystalline quality but also significantly suppresses the density of deep-level emission defects in as-grown ZnO nanorods, as demonstrated by X-ray diffraction and photoluminescence. Furthermore, the X-ray photoelectron spectroscopy analysis shows that doping with the transition metals significantly increases the oxygen bonding with metal ions with enhanced O/Zn stoichiometry in as-grown nanorods. The fabricated flexible PD devices based on an interdigitated electrode structure demonstrates a very high R of ~123 A/W, a high on-off current ratio of ~130, and a significant improvement in transient response speed exhibiting rise and fall time of ~8 and ~3 s, respectively, by using the ZnO nanorods codoped by Ni/Cu.
Collapse
Affiliation(s)
| | - Fasihullah Khan
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea
| | - Noor Ul Huda
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea
| | - Sunjung Lee
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea
| | - Kiyun Nam
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea
| | - Hae Young Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea
| | - Tae-Hyong Eom
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea
| | - Sam Dong Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea.
| |
Collapse
|